数学建模论文校园公交车调度问题

数学建模论文校园公交车调度问题
数学建模论文校园公交车调度问题

西南交通大学2012年新秀杯数学建模竞赛

题目:A题

组别:大二组

西南交通大学教务处

西南交通大学实验室及设备管理处

西南交通大学数学建模创新实践基地

校园通行车路线的设计

摘要

本文主要研究的是校园交通车的站点设置、在固定停车和招手即停两种模式结合下的运载能力、运行路线和时间安排以及相应行驶方案的规划问题。

问题一中,我们对校园通行车现有行车路线网络和常停站点进行了调查和分析。

首先,在数据处理阶段,将站点实体间的线路选择抽象为图论最短路模型,用Matlab软件画出三条主要的行车线路,然后利用GIS空间分析方法解决单个交通线路上站点规划问题。该方法依据乘客出行时间最短确定单个线路上的站点个数,结合GIS缓冲区分析和叠合分析,在路线上做站点设置的适宜性讨论,提出基于最优化理论和GIS空间分析技术的站点规划方法,确定站点的位置,从而提供一种可行的行驶方案。

问题二中,考虑固定停车和招手即停相结合的方案,我们首先将最佳行驶路线定义为车辆运行时间最短的路线,将图论中经典的Dijkstra算法(单源最短路径)进行改进,结合哈密尔顿图,以结点之间的时间作为权数,利用C++编程得到最佳推销员回路,也就是通行车行驶的最佳路径。

考虑到招手即停模式具有极大的随机性,为了便于调度,我们首先对乘车人次密度分布进行了调查和分析,并通过随机模拟出概率分布值较大的区域,将其抽象为一假想固定停车点,这样就将模型简化为固定停车点最佳行驶路径的问题。根据已得到的乘车时段分布规律和学校实际的作息时间表,按照模糊聚类分析法将一工作日数单位时间段划分为更概括的高峰期、低潮期和一般期,并应用Matlab中的fgoalattain进行非线性规划求出实际发车数,以及应用时间步长法估计发车间隔,从而给出两种模式结合下通行车每周运行的车辆数、路线和时刻表。

问题三中,我们首先对校区师生乘车需求人数进行了描述性统计,从乘车人数的均值、方差、峰度以及正态性四个角度对样本进行检测,找到相关的分布规律与结论,即每日在各时段中的乘车人数分布相似。随后,我们以ANOV A方差检验、组内与组间均值比较以及标准误差分析为手段,进一步验证了所得结论的准确性。并且以此建立较为理想化的整数规划模型,将全局约束以发车时间划分为几个高峰时段,用Lingo软件在个高峰时段约束中全局最优解,从而得到在已知行驶方案下校园通行车的运载能力。

本文建立的行驶方案模型能与实际紧密联系,结合校园实际情况对问题进行求解,并在模型扩展中利用计算机编程和仿真软件对所得结果和调度方案进行分析和评价,使得模型具有很好的通用性和推广性。

关键字:站点选址最优化原理 GIS 模糊聚类非线性规划图论

1 问题重述

西南交通大学犀浦校区位于成都市西北郫县犀浦镇,紧靠成都市外环线500米生态带,距市中心约12公里,校园占地约3000亩。犀浦校区的规划和建设都强调和突出“自然、人文”的先进理念,按照“一轴二带三环六区”的规划骨架,由南至北,逐步展开的。

从2004年第一批学生入住以来,犀浦校区的规模日渐扩大并趋于成熟。但是由于校区面积过大,出现了师生出行难,上课、回寝室、出校等所花时间较多等问题。为解决这一问题,校园内出现了便捷通行车,师生只用花费一元钱就可以在校内往返。

目前,这种通行车采取招手即停的方式,校园内的任意地点都基本可以到达,但是当规模进一步扩大,管理更加规范后,可能需要考虑固定班次和行车路线。

题图2给出了交大犀浦校区的平面地图,利用数学模型研究以下问题:

1、请在校园内设置一些固定停车点,并说明其合理性;

2、将固定停车和招手即停两种模式结合起来,给出每周通行车从上午7点到晚上10点的运行车辆数、运行路线及时刻表;

3、预测校园通行车在您安排的行驶方案下的运载能力。

2 问题分析

问题一:

影响固定停车点分布的主要因素有通行车的数量、乘客人数分布与到站规律、交通流量及线路上的其他随机因素对车辆运行的干扰。一般来说,站点安排应考虑到以下两点:

1)使乘客的出行总时间降到最低

2)固定停车点附近的所有乘客到达站点的总路程最短

本节就此问题仅对最短通行时间路径进行讨论,即在所用时间最短的前提下,求解所经过的道路点。

问题二:

考虑固定停车和招手即停两种模式结合,该情况的影响因子很多,且各因素都是随机的。因此,必须对模型做一定的简化。

首先,我们搜集了北区第一讲课之前乘车高峰时间段及乘车人数的统计数据并进行了描述性统计,由对样本的分析结果找到相关的人流密度分布规律,且通过模糊聚类分析对时间段进行划分,假设每日各时段的乘车人数分布相似。随后,通过检验与误差分析进一步验证所得结论的准确性,为以后的分析和建模做好准备。

之后,结合图论中的Dijkstra算法和哈密尔顿圈问题分析,得出适合该问题求解的最佳路径模型,根据已得到的乘车时段分布规律和学校实际的作息时间表,应用Matlab进行多目标规划并结合时间步长法估计发车间隔和发车数,从而给出两种模式结合下通行车每周运行的车辆数、路线和运行时刻表。

问题三:

根据问题一、二得出的行驶方案,利用计算机仿真对模型进行模拟和检验。根据已有数据建立多目标规划模型,考虑时间、车辆数、路线等对目标函数的约束,分析影响通行车运载能力的因素,求出全局最优解,并对所得结论进行实际合理性分析和验证。

3 模型假设

(1) 通行车在行驶过程中以20km/h V =的速度匀速运行,在停车点前后

各A m 内为加减速距离,平均车速为一般车速的一半;不考虑每一站停车延迟及其他因素的影响

(2) 考虑各站上下车以“先下后上”方式,每位乘客上下车时间都相等

(3) 通行车的运行时间只包括乘客上下车时间和必要的运行时间,不考

虑其他时间

(4) 乘客候车时间一般不超过10分钟,早高峰时一般不超过5分钟

(5) 如果候车人数多于座位数,假设等待的乘客不离开

(6) 通行车运行过程中处于良好状态,即不出现中途因电量不足或其他

故障临时停车或换乘情况

(7) 通行车按时刻表顺次发车,在同一时间段内相邻两辆车发车时间间

隔相同,且准时到达每个站点

(8) 通行车在每个固定站点停留时间均为30s T =

4 符号说明

20km/h V =:通行车运行过程中行驶速度

(,)w i j :最短时间下从固定停车点i 到固定停车点j 之间的距离

l v ():表示从顶点0u 到v 的经过一条路所用时间的权

z v ():表示最佳的路线,v 的父亲点

i λ:第i 时间点需要乘车的人数(i =1,2,…k )

k :控制参数

c i Q N L =??:某时段运载能力

其中L 为通行车单程总运行距离

5 校园通行车固定停车点选择模型(问题一)

由于校园交通车行车网络受到道路状况、交通流量、道路长度、人流分布等

多种因素的制约,但考虑诸多因素建立起来的模型必然很复杂且难以求解。我们经分析取舍,考虑主要的影响因子,建立了一个用于解决固定停车点规划问题的方法。该方法主要基于最优化理论[1]和GIS 适宜性分析技术[2],首先通过建立一

个优化的数学模型[3]确定固定停车点的总数目,同时同这个数学模型得到各影响

因子和站点个数之间关系的函数表达式,该表达式说明在什么地方适宜建固定停车点,从而为GIS适应性分析提供依据。

停车点数目确定后,在确定站点的空间布局。该方法采用了GIS适宜性分析技术,对人流分布、交通流量、道路状况等因素进行量化,通过叠合分析和缓冲区分析,找到最适宜的地方建立站点,用GIS的方法弥补了确定站点数目的优化数学模型的引入因素少的不足,使建立GIS辅助规划系统成为现实。

5.1 固定停车点选址的优化模型

5.1.1 影响固定停车点选址的相关因素

模型中选址问题的影响因子有人流分布、交通流量、交通起讫点、一般车速、道路状况等,我们主要考虑以下四点:

1)两相邻停车点间的距离(,)

w i j;

2)人流分布。根据实际情况,固定停车点应设置在人流密度相对较大的地

方;

3)道路状况。考虑交叉口和不同路段宽度、车道数对设站的影响:停车点

越靠近交叉口对乘客越方便,但考虑安全和交通流畅,一般应离开交叉

口30~50米[2]。为减少通行车行驶对学生步行以及骑自行车的影响,道

路路段宽度大的地点比宽度窄的地点更适宜设置固定停车点;

4)交通流量。路段上公交流量的分布状况是通行车停车点选址的重要依据。

通行车的停驶会给其他学生带来一定的干扰,因此,若路段交通状况原

本就比较拥挤,则不宜设置停车点。

5.1.2 通行车行驶线路规划

设置固定停车点的原则为方便乘客和节省乘客出行时间。

首先,我们根据校园车现今大体行驶路线,用Matlab软件画出假设的三条主要行车路线(如图5-1),该路线覆盖了学校已建成大部分地区的主干道。

图5-1

其中,

M:南门→南区体育场→一食堂→西二门→北区体育场→15号天佑斋1

M:南门→虹桥→X桥→体育馆→15号天佑斋→北区校车站

2

M:南门→南区校车站→一教→二教→图书馆→八教→北区校车站→15号3

天佑斋

5.1.2.1 最佳站距公式

利用乘客步行到站与离站时间、乘车时间之和最短的原理,得到最佳站距公

式为[2]:

式中,d为站距;r V为乘客到停车点的平均速度;L乘为乘客距离固定乘车点的平均距离;0t为站点停靠时间。求出最佳停车点站距后,在具体设置站点时,还应根据沿线用地性质进行合理布置。

5.1.2.2 基于最优理论的通行车优化模型

实际情况表明,当停车点很多时,每位乘客在线路上的行程会因为中途停车次数较多而导致总出行时间增大;而当停车点很少时,乘客平均到最近一个停车点的时间会加长,可能超过在路上形成部分所节省的时间,从而导致总出行时间还是很大。可见,当停车点间距很小或很大时,总出行时间都会较大,而在此间存在着某个最优站点数目,使总的行程时间最小[2]。

总行程时间最小的通行车优化模型为

r 4(1)min 2(1)M X A Y F XT V V V L A X Y

-?=+++???=-+? (1) 式中:F 为总出行时间;X 为停车点的个数;T 为公交车辆在公交站点停

留的时间;M 为乘客到最近停车点的平均距离;r V 为乘客到停车点的平均速度; L 为通行车路线的总里程数;Y 为一般车速V 运行的公里数,这样X T 为在站点总的停靠时间;4(1)X A V

-为在站点前后加减速的运行时间;Y V 是以速度V 运行的时间。

在式(1)中,除了M 与站点距离有关,和X 属于因变量外,r ,,A,V T V 都可做自变量,对于特定的r ,,A,V T V 值,可以得出一个最佳的X 值来。 以3M K X =(经验值),2(1)Y K A X =--代入式(1)的第一个式子得

r 34(1)2(1)min K K X A K A X F XT V V V

---=+++ 令0F x

?=?得

X = (2)

式(2)即为最优停车点数的公式

根据式(2),在其他变量一定的情况下,人流越密集,那么停靠时间T 越大,则站点应建的越少;同样,人们到达停车点的速度越小,站点应建的越多[3];公交车辆在路上可达到的加速度越大,则A 越小,停车点应建的越多[3]。这些都是进行GIS 适宜性分析的依据。

5.1.3 基于GIS 适宜性分析的停车点选址

当站点数目确定后,利用GIS 空间适宜性分析技术实现站点的空间定位,

主要步骤为

1、对人流分布,交通流量,道路状况进行量化。量化过程中采用下面的规

则:

[1]道路上的人流分布采用以10m 的步长逐点做100m 范围缓冲区的方法,

在缓冲区内的人数就是对应道路上的人流分布值(或者采用克里金插值生成人流密度表面,一般口越密集,站点应建的越少;反之人口过于稀少,也不应设置过多站点);

[2]交通流量以实地采集的日平均数据为准;

[3]校园中道路状况大体相当,可看作相同忽略不计

说明:为了便于说明模型的思路,以下的图表都是示意性的,实际系统中将

量化成灰度图,以下是经量化获得的各影响因子的值。

表1 线路1M 人口分布、交通流量度量指标

南门 南体育场 一食堂 三食堂 北体育场 四食堂 15天佑斋

交通流量4533321 Q 7 9 8 8 7 6 6

2

南门玻璃桥虹桥X桥北区体育馆15天佑斋人流分布244622

交通流量543332 Q 7 8 7 9 5 4

3

南门一教二教图书馆八教北区校车站15天佑斋人流分布2445432

交通流量4113322 Q 6 5 5 8 7 5 4

注:表中人流分布按照很稀疏、稀疏、一般稀疏、中等、一般密集、密集、很密集分别对应

量化值2、3、4、5、4、3、2;交通流量从量很小过渡到很多分别对应6~0的量化值;道路

状况取较好状态度量值5.

2、按照上面的规则生成对交通路径的交通流量、人流分布的灰度图,结果

分别如图1、2,再对两个图层进行叠合分析,对量化指标栅格化得到栅格

图(图略)

图1 交通流量图图2 人流分布图图3 在叠加结果上

做缓冲区

3、根据固定停车点数X,在交通路径上等间距取X个点。对每个点在步骤

2、得到的栅格图上做半径为10m的点缓冲区(图3)

4、在缓冲区内交通流量、人流分布量化值最大的位置设置固定停车点

5.1.4 固定停车点选择方案

以起点南门处为中心,沿前行方向分别以200m和500m绘制圆弧,形成环形缓冲区,选取缓冲区内量化值最大的点作下一个站点;若缓冲区内出现最大量化值相等的点,那么就取距离上一个点为300m的点为站点;再以寻找到的站点为新的起点,重复上述步骤,直到线路终点,如图5-2为设计总图

图5-2

5.3 模型的评价

由图可以观察到,利用该方法设计的校园通行车固定停车点个数为11个,这些站点在道路交叉口附近和人流密集的教学区、住宿区都有分布,非常方便学生上下课以及出入校园的情况。而且比较现有的通行情况,固定线路和停车点减少了乘客总的出行时间,提高了运载效率。因此,利用该方法进行选址是比较合理的。

当然,为了模型方便求解,我们对于交通流量、道路状况、人流分布等因素的相关关系,以及它们在站点选择时所占的权重并没有多加考虑。

另外,如果考虑到学校未来的规划(如图5-3),则需增加一条线路

图5-3

M:南门→七教→一五教→东门→行政大楼→北区校车站→研究生小高楼4

→教师公寓

人流分布244622交通流量543332 Q 7 8 7 9 5 4 该线路可方便教师出行及上下课的情况。

6 将固定停车和招手即停相结合的通行车行驶方案模型(问题二)

结合问题一我们可定义通行车最佳行驶路线为:在所用时间最短的前提下所

经过的道路点。为了求出最短时间下的优化路径从而给出合理的行车路线的方

案,我们采用了图论中最佳推销员回路以及Dijkstra算法建立相关模型。

6.1 招手即停模式的概率抽象模型

对于学生来说,每天乘车的人数为随机变量,因此为了探讨交通车运行数据

的规律,首先要对每天乘坐校车的学生的人数的分布情况进行统计分析。

我们实地调查了一周每天早晨北区宿舍楼附近的候车情况,高峰期大致出现

在7:45~8:00之间(如图6-1所示)

对总体学生乘车人数的样本总体进行描述性分析,得到下表(表6-1):

6.2 最佳行驶路线模型的建立

如图6-3为问题一中确定的固定停车点的抽象线图,编号分别表示各站点,

两点间连线表示可通行。

图 6-3

6.2.1最佳推销员回路问题的哈密尔顿图

首先考虑运行线路为环线的情况。在加权图G=(V,E,F)中,给出最佳H图定

义:

1.权最小的哈密尔顿图成为最佳H图

2.经过每个顶点至少一次且权最小的闭通路成为最佳销售回路

由定义可知,本题可以转化为最佳推销员回路问题。有给定的G=(V,E)构造一个以V为顶点集的完备图''

G=(V,E,F),'E中的每条边(,)

X Y的权等于顶点X与Y在图G中最短路径的权,即min(,)()

=

X Y w e'

根据哈密尔顿回路,由C++语言编写程序和相应解释见附件(附录二)。

下面给出程序运行结果:

以该方法可给出37种不同的行车路线,其中最短路径为:

L总

1→9→10→8→7→6→11→5→4→3→2→1,总行驶里程=5106m

6.2.2 根据Dijstra算法的最佳路径

根据所学图论知识,我们将图采用邻接矩阵的形式描述,(,)

w i j表示在最短

时间下从道路点i 到道路点j 之间的距离,如果没有直接连通,则为无穷大,计算机可以用一个很大的数据代替(如matlab 中的inf )。由于Dijkstra 算法只能求从结点i 到其他各结点的最短路径,对每个顶点,定义两个标记(l v (),z v ()),其中:l v ()表从顶点0u 到v 的经过一条路所用时间的权。z v ()表示v 的父亲点,用以确定最佳的路线。算法的过程就是在每一步改进这两个标记,使最终l v ()为从顶点0u 到v 的最时间的权。输入 G 的带权邻接矩阵),(v u w 。

算法步骤:

1)赋初值:令 {}0=S u ,0()=0l u \,v S V S ?∈=令l v ()=W u v (,)0,z v ()= u 0 u ←u 0

2)更新l v ()、z v ():\v S V S ?∈=,若l v ()>l u W u v ()(,)+

则令l v ()=l u W u v ()(,)+,z v ()=u

3)设v *是使l v ()取最小值的S 中的顶点,则令S=S ∪{v *},u ←v *

4)若S φ≠,转步骤2,否则停止

用上述算法求出的l v ()就是u 0到v 的最短时间的权,从v 的父亲标记)(v z 追溯到u 0, 就得到u 0到v 的最佳路线(程序用C 语言编写,具体代码见附录一,源程序见附件)

程序运行结果如下:

给定问题一求解出的11个固定停车点之间的连通关系,根据算法和已知相邻的点的距离,选择具有11个节点的有向图6-2,我们可以得到其各边权重及拓扑结构。

图6-4

上述程序选取了节点7为目的节点,程序中采用邻接矩阵表示一个有向图,输入为该图的邻接矩阵以及目的节点,输出为图中各点的邻接关系,依照次邻接关系可得到到达目的节点的最短路径。如从节点2到达节点7,需顺次经过第3点、第4点和第5点,最优路径为2—3—4—5—7,路程总长度为1482m.

该方法可以求出最短路径以及所对应的路程,在车速假设一定的前提下,所对应的行车时间最短,也就是说减少了乘客的总出行时间,提高了运行效率。

6.3 非线性规划分析法求解通行车线路安排及时刻表

首先通过数据的分析,考虑到方案的可操作性,根据学校实际的作息时间表,我们对时间段按照模糊聚类分析法划分为不同时间段高峰期、低潮期和一般期。

引入乘客利益

6.3.1 符号约定

λ:某一时段发车次数(注:由于数据给定为平均客流量只需考虑在一个完整的周期内的车次,即从始发站到终点站的这段时间)

β:该时段的平均满载率(一般情况下,车辆满载率不应超过100%,也不要低于50%)

T=+i L t v

∑:一辆通行车走完全程的时间 i a :第i 站上车平均客流量

V

Q α∑=∑:供求匹配比

k :控制参数

Q :某时段运客能力

6.3.2 发车次数的确定

依据前面的分析,兼顾乘客出行时间与线路利用效率最大化,对6.2中求解出的最佳路线建立如下的多目标规划模型:

目标函数1:Ⅰ 供求的最优匹配 2min()Q V β?-

Ⅱ 各时段的发车车次均最小 min{}n

约束条件:①各时段的平均满载率限制 0.51β≤≤

②供求匹配比限制

目标函数Ⅰ使某一时段的运客能力Q 与运输需求(实际客运量)V 达到最优匹配,β反映满载率高低的影响;目标函数Ⅱ使所需的最大发车次,在满足约束条件下尽可能少,以使总车辆数较少。

约束条件①是限制满载率满足运营调度要求,条件②是限制供求匹配比k α≤;为使始发站车场每天起始时刻的车辆数保持不变,需使总发车次数与总收车次数相等,即必须使单程车次总数达到匹配(12=λλ) ,而受满载率限制,1λ不能减少,因此用二次规划可求得各时段发车次数i λ

目标函数2:1min k

i i i Z C X ==∑ i 1,2,..k =?() 约束条件:满足每一个时刻点的乘车人数即可,即1k

i i i i X d λ=≥∑ i 1,2,..k =?()

6.3.3 发车数量及发车间隔的确定

对于这个问题,我们采用上时间步长法,根据假设一个时段内发车间隔时间i t 相等,则i t 可由λ确定,从而得到发车时刻表。按此发车时刻表模拟实际运行过程,目标是确定能满足时刻表的最小车辆数n ,统计各项运营指标,搜索最优调度方案解。

数学建模论文-物资调度问题

物资调度问题 摘要 “运输调度”数学模型是通过运输车运输路线的确定以及运输车调配方案的确定来使运输的花费最小。本文首先分析了物资调度中运费、载重量及各站点需求量间相互关系。而后,紧抓住总运营费用最小这个目标,找出最短路径,最后完成了每辆运输车的最优调度具体方案。 问题一:根据题目及实际经验得出运输车运输物资与其载重量及其行驶的路程成正比例关系,又运输的价格一定,再结合题目给出的条件“运输车重载运费2元/吨公里”,其重载运费的单位“元/吨公里”给我们的启发。于是结合题目给定的表,我们将两个决策变量(载重量,路程)化零为整为一个花费因素来考虑,即从经济的角度来考虑。同理我们将多辆车也化零为整,即用一辆“超大运输车”来运输物资。根据这样从经济的角度来考虑,于是我们将需求点的需求量乘入需求点的坐标得到一个新的表,即花费经济表,我们再运用数学软件Mathematic 作出一个新的坐标,这样可以得到一个花费坐标。于是按照从经济花费最少的角度,根据我们所掌握的最短路径及Dijkstra 算法再结合数学软件Mathematic ,可求得经济花费坐标上的最短路径。具体求法上,采用了 Dijkstra 算法结合“最优化原理” ,先保证每个站点的运营费用最小,从而找出所有站点的总运营费用最小,即找出了一条总费用最低的最短路径。用我们的“超大运输车”走这条最小花费的路线,我们发现时间这个因素不能满足且计算结果与实际的经验偏差较大。于是我们重新分配路线,并且同时满足运输车工作时间这个因素的限制,重新对该方案综合考虑,作出了合理的调整.此处我们运用了“化整为零”的思想,将该路线分为八条路径。同时也将超大车进行分解,于是派八辆运输车向29个需求点运送物资。同样的道理我们也将运输车运送物资从经济的角度看,即将运量乘以其速度,又因运输的价格一定,因此便可以将运输车在整体上从经济考虑。于是便可以将整体从经济上来考虑。将运输最小花费转化从经济方面来考虑比较合理。由此可求解出运输车全程的最低费用: 结合各约束条件求得最低费用为1980.16元。 问题二:由题目知运输车的载重量不同,但由于我们从整体的经济上来考虑运输物资的花费最少问题,因此花费坐标的最短路径仍然不变。因此结合运输车工作时间的这个因素,我们仍用问题一的思路,运用“化零为整”,“化整为零”的思想来考虑第二问。按照这样的的思路我们制定了八条路线,派了七辆运输车来运送物资。同样在整体上对问题从经济上来考虑比较合理。 29 1 1234302+0.5527213420+34+18+242+0.5527213420341824i i T T T T T T ='??'''''=?+++++?+++++++∑(++++) ()() 结合各约束条件求得最低费用为1969.66元,需要7辆车 关键词:物资调度 最短路线 最优化原理 Dijkstra 算法 0-1规划 一、问题重述 29 ij 1231Min Min Min 0.5()S S d n ij i S c c c c μ==+=?+?++++∑总去返

公交车调度问题数学建模论文设计

2011年数学建模论文 ——对公交车调度问题的研究 摘要:本文根据所给的客流量及运营情况排出公交车调度时刻表,以及反映客运公司和乘客的利益有多个指标,建立了乘客的利益及公司利益两个目标函数的多目标规划数学模型。基于多目标规划分析法,进行数值计算,从而得到原问题的一个明确、完整的数学模型,并在模型扩展中运用已建的计算机模拟系统对所得的结果和我们对于调度方案的想法进行分析和评价。 首先通过数据的分析,并考虑到方案的可操作性,将一天划为;引入乘客的利益、公司利益作为两个目标函数,建立了两目标优化模型。通过运客能力与运输需求(实际客运量) 达到最优匹配、满载率高低体现乘客利益;通过总车辆数较少、发车次数最少表示公司利益建立两个目标函数。应用matlab中的fgoalattain进行多目标规划求出发车数,以及时间步长法估计发车间隔和车辆数。 关键字:公交车调度;多目标规划;数据分析;数学模型;时间步长法,matlab

一问题的重述: 1、路公交线路上下行方向各24站,总共有L 辆汽车在运行,开始时段线路两端的停车场中各停放汽车m辆,每两车可乘坐S人。这些汽车将按照发车时刻表及到达次序次发车,循环往返地运行来完成运送乘客的任务。建立数学模型,根据乘客人数大小,配多少辆车、多长时间发一班车使得公交公司的盈利最高,乘客的抱怨程度最小。假设公交车在运行过程中是匀速的速度为v。 1路公交车站点客流量见下表

1 已知数据及问题的提出 我们要考虑的是市的一路公交线路上的车辆调度问题。现已知该线路上行的车站总数N1 ( = 24 ),下行的车站总数N2 ( = 24 ),并且给出每一个站点上下车的人数。公交线路总路程L(=L);公交行驶的速度V=20km/ h;运营调度要求,车辆满载率不应超过r= 120 % ,一般也不要底于r= 50 %。 现要我们根据以上资料和要求,为该线路设计一个公交公司发车

公交车调度数学建模

公交车调度数学建模

公交车调度 摘 要 本文通过对给定数据进行统计分析,将数据按18个时段、两个行驶方向进行处理,计算出各个时段各个站点以及两个方向的流通量,从而将远问题转化为对流通量的处理。首先,利用各时段小时断面最高流通量计算出各时段各方向的最小发车次数,进行适当的调整,确定了各时段两个方向的发车次数。假定采用均匀发车的方式。继而求出各时段两个方向发车间隔,经部分调整后,列出0A 站和13A 站的发车时刻表,并给出了时刻表的合理性证明,从而制定调度方案。根据调度方案采用逐步累加各时段新调用的车辆数算法,求出公交车的发配车辆数为57辆。其次,建立乘客平均待车时间和公交车辆实际利用率与期望利用率的差值这两个量化指标,并用这两个指标来评价调度方案以如何的程度照顾到乘客和公交公司双方利益。前者为4.2分钟,后者为13.88%。最后,我们以上述两个指标为优化目标,以乘客的等车时间数学期望值和公交车辆的满载率的数学期望为约束指标,建立了一个双目标的优化模型。并且给出了具体的求解方法,特别指出的是,给出了计算机模拟的方法求解的进程控制图。通过了对模型的分析,提出了采集数据的 采集数据方法的建议。 注释: 第i 站乘客流通量:∑=i k 1 (第k 站的上车的人数与 第k 站的下车人数的差值); 总的乘客等车时间:∑=m i 1 ∑=n j 1 (第i 时段第j 站等车 乘客数)?(第I 时段第j 站等待时间); 乘客平均等车时间:总的乘客等车时间与总乘客数的比值; 实际利用率:总实际乘客流通量与公司车辆总最大客运量的比值;

期望利用率:总期望乘客流通量与公司车辆总最大客运量的比值

公交车调度问题的数学模型

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 赵惠平 2. 李敏 3. 赵俊海 指导教师或指导教师组负责人 (打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

对公交车调度问题的研究 摘要 公交车调度问题是现代城市交通中一个突出的问题。本文通过所给的一条公交线路上下行方向各时间段,各站点的客流量,根据一些合理假设,并在优先考虑将乘客拉完同时兼顾公交公司利益最大化的基础上,利用最优化思想建立线性规划模型。然后根据所给资料,利用数学软件编程检验。 通过对数据的分析,并且考虑到方案的可操作性,将一天划分为高峰时间段和一般时间段,。首先给该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表和车辆数。通过分析发现满足高峰时间段所需的车辆数便可满足一整天其他时间所需车辆数,所以对于车辆数,是通过对各路段个时间端上车人数净增量来确定的。算出时间段内每分钟车上的净增人数,根据每小时发车的时间间隔算出每小时的车辆数,进而得到了全天的车辆数。我们通过假设乘客均匀到站,并且乘客候车时间包括在车辆运行中,即认为公交车到站后乘客上车不费时间,建立线性规划模型进行求解。 最后我们对题目所给数据进行了处理,得出了车辆具体的运行方案,并用所建模型对结果作检验。并用Matlab编写了所需程序。 关键字:公交车调度线性规划净增量均匀到站

数学建模电梯调度问题

电梯调度问题

电梯调度问题 摘要: 本题为一个电梯调度的优化问题,在一栋特定的写字楼内,利用现有的电梯资源,如何使用电梯能提高它的最大运输量,在人流密度十分大的情况下,如何更快的疏通人流成为一个备受关注的问题。为了评价一个电梯群系统的运作效率,及运载能力,在第一问中,我们用层次分析发,从效益、成本两大方面给出了六个分立的小指标,一同构成电梯群运载效率的指标体系。对第二问,本文根据题目情况的特殊性,定义忙期作为目标函数,对该电梯调度问题建立非线性规划模型,最后用遗传算法对模型求解。第三问中,本文将模型回归实际,分析假设对模型结果的影响,给出改进方案。 对于问题一,本文用评价方法中的层次分析法对电梯群系统的运作效率及运载能力进行分析。经分析,本文最终确定平均候梯时间、最长候车时间、平均行程时间、平均运营人数(服务强度)、平均服务时间及停站次数这六个指标作为电梯调度的指标体系。在这些评价指标的基础上,本文细化评价过程,给出完整的评价方案:首先,采用极差变换法对评价指标做无量纲化处理。然后,采用综合评价法对模型进行评价。在这个过程中,本文采用受人主观影响较小的夹角余弦法来确定权重系数。 对于第二问,本文建立非线性优化模型。借鉴排队论的思想,本文定义忙期,构造了针对本题中特定情形的简单数学表达式,作为目标函数。利用matlab软件,采用遗传算法对模型求解。多次运行可得到多个结果,然后用第一问中的评价模型进行评价,最终选出较优方案。最得到如下方案: 第一个电梯可停层数为:1,2,3,4,5,6,7,10,14,15,16,19,20,22 第二个电梯可停层数:1,4,5,7,10,13,16,18,19,20,21 第三个电梯可停层数:1,2,3,4,6,8,10,11,12,15,16,20,22 第四个电梯可停层数:1,2,3,4,7,10,11,17,18,19,21,22 第五个电梯可停层数:1,2,4,7,8,9,17,18,19,20,21 第六个电梯可停层数:1,4,5,6,7,8,9,11,13,18,19,20 此方案平均忙期为:15.3分钟。 对于第三问,本文是从每分钟到达人群数的分布角度改进模型的。第二问中

数学建模-2001年地公交车调度问题

第三篇公交车调度方案的优化模型 2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题 的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 *本文获2001年全国一等奖。队员:叶云,周迎春,齐欢,指导教师:朱家明等。

公交车调度论文

关于公交车调度问题 摘要 随着国民生活水平的提高,公共交通问题也日益重要起来,而公交车调度是制约公共交通的重要因素。根据题中所给的数据,建立数学模型对公交车调度问题进行分析。 用LINGO 44 此模型 寻求 有11和9 关键词 一问题的重述 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交路线情况,一个工作日两个方向上下车的乘客数量统计表如表1、表2所示。已知调度要求如下:

该条公交线路上行方向共14站,下行方向共13站,公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 需要解决的问题: (1)为该线路设计一个便于操作全天(工作日)的公交车调度方案,包括两个起点的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照度到了乘客和公交公司双方的利益:等等。 (2 虑, 析: (1 (2 符号说明如表1:

(1)交通情况、路面状况良好,不出现意外交通事故,公交车之间无超车现象;(2)公交车车速以理想车速运行即:20公里/小时; (3)发车时间间隔取整数分钟数,公交车之间发车时间间隔不超过20分钟;(4)乘客按顺序依次上车,不允许插队。

五 模型的建立与求解 5.1 模型一 5.1.1 计算最大客容量 (1)本文已经把数据分成上行方向和下行方向18个时段进行了处理,考虑到每个时段乘客量 1) 2 5.1.2 计算各个时间段最少发车次数 由于公交车标准载客为100人,车辆满载率在50%~120%之间,这里求的是最小发车次数,所 以取车辆满载率为120%,即120=ij z 人,由模型:

数学建模的公交车调度问题

数学建模的公交车调度问 题 Revised by Jack on December 14,2020

第三篇公交车调度方案的优化模型 2001年 B题公交车调度 公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(,)根据双方满意度范围和程度,找出同时达到双方最优日满意度,,且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 §1 问题的重述 一、问题的基本背景 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。 二、运营及调度要求 1.公交线路上行方向共14站,下行方向共13站; 2.公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; 3.乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 三、要求的具体问题 1.试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益,等等; 2.如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法; *本文获2001年全国一等奖。队员:叶云,周迎春,齐欢,指导教师:朱家明等。

数学建模-公交车调度问题

第三篇公交车调度方案得优化模型 2001年 B题公交车调度Array公共交通就是城市交通得重要组成部分,作好公交车得调度 对于完善城市交通环境、改进市民出行状况、提高公交公司得经 济与社会效益,都具有重要意义。下面考虑一条公交线路上公交车 得调度问题,其数据来自我国一座特大城市某条公交线路得客流 调查与运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3—1 给出得就是典型得一个工作日两个运行方向各站上下车得乘客数量统计。公交公司配给该线路同一型号得大客车,每辆标准载客100人,据统计客车在该线路上运行得平均速度为20公里/小时.运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料与要求,为该线路设计一个便于操作得全天(工作日)得公交车调度方案,包括两个起点站得发车时刻表;一共需要多少辆车;这个方案以怎样得程度照顾到了乘客与公交公司双方得利益;等等。 如何将这个调度问题抽象成一个明确、完整得数学模型,指出求解模型得方法;根据实际问题 得要求,如果要设计更好得调度方案,应如何采集运营数据.

公交车调度方案得优化模型* 摘要:本文建立了公交车调度方案得优化模型,使公交公司在满足一定得社会效益与获得最大经济效益得前提下,给出了理想发车时刻表与最少车辆数。并提供了关于采集运营数据得较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客得最少车次数462次,从便于操作与发车密度考虑,给出了整分发车时刻表与需要得最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司与乘客双方日满意度为(0、941,0、811)根据双方满意度范围与程度,找出同时达到双方最优日满意度(0、8807,0、8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解.对问题3,数据采集方法就是遵照前门进中门出得规律,运用两个自动记录机对上下车乘客数记录与自动报站机(加报时间信息)作录音结合,给出准确得各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 §1 问题得重述 一、问题得基本背景 公交公司制定公交车调度方案,要考虑公交车、车站与乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车得乘客数量统计见表3-1. 二、运营及调度要求 1.公交线路上行方向共14站,下行方向共13站; 2.公交公司配给该线路同一型号得大客车,每辆标准载客100人,据统计客车在该线路上运营得平均速度为20公里/小时.车辆满载率不应超过120%,一般也不低于50%; 3.乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 三、要求得具体问题 1.试根据这些资料与要求,为该线路设计一个便于操作得全天(工作日)得公交车调度方案,包括两个起点站得发车时刻表;一共需要多少辆车;这个方案以怎样得程度照顾到了乘客与公交公司双方得利益,等等; 2.如何将这个调度问题抽象成一个明确完整得数学模型,并指出求解方法; 3.据实际问题得要求,如果要设计好更好得调度方案,应如何采集运营数据。 3、2问题得分析 本问题得难点就是同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司得经济与*本文获2001年全国一等奖。队员:叶云,周迎春,齐欢,指导教师:朱家明等。

关于公交车调度的数学模型

关于公交车调度的数学模型

公交车调度 关于公交车调度的数学模型 摘要:本文根据典型的一个工作日两个运行方向各站上下车的乘客数量统计,首先探讨了如何利用平滑法来确定一个有价值并且效率高的车辆运行时刻表,使其满足乘客的舒适性和公交公司低成本的服务;接着,又利用最优化的基本思想,对此问题进行了进一步的讨论,得到了最小配车辆的数量,然后针对满意度的评价水平问题,建立了几个良好刻画公司以及乘客满意度的满意度函数并求出了乘客与公交公司双方的满意度。最后,我们对新提出的模型进行了模型的评价和模型改进方向的讨论,并对如何采集公交车客运量的数据,提出了几个中肯的建议,完成了对关于公交车调度问题的较为详细而合理的讨论。 (一)问题重述 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司

配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。 (二)定义与符号说明 1、T( I )------ 第I个时段 ( I=1、2……18 ) 2、A( J )------ 第J个公交车站 (J=1、2……15 ) 3、P( I )------ 在第I个时段内的配车量 4、L( I )------ 在第I个时段内的客流量 5、G( I )------ 在第I个时段内的满载率 6、S( I )------ 在第I个时段内的乘客候车时间期望值 7、V--------- 客车在该线路上运行的平均速度 8、ΔL(J)---第J-1个公交车站到第J个公交车站之间的距离

数学建模电梯的调度问题

高峰模式下高层办公楼电梯调度改善方案 摘要 电梯调度方案是指在特定的交通状况下,电梯系统应遵循的一组确定控制策略的规则。对于配有多台电梯的现代高层办公楼,如何建立合适的电梯运行方式至关重要。本文的目的就是建立合理的调度方案,主要运用概率,运筹学等理论对问题建立相关的数学模型,用matlab 等软件对问题进行求解,最终得出最合理的安排及优化方案,已解决高层办公楼电梯拥挤的情况。 本题的评价指标有三个,一是排队等待时间,二是电梯运行时乘客在电梯等待的时间,三是6部电梯将全部员工运送到指定楼层所用的时间,三个评价指标中,排队等待时间与电梯运行时乘客在电梯等待的时间可以综合为乘客的满意度。 对于问题一,首先考虑最简单的情形建立模型一,采用极端假设的方法,不考虑乘客到来的随机性,不考虑乘客的等待时间,在规定的时间,电梯每次都是满载的,且运送的都是同一层的员工。这样得到一个简化模型,此模型运送完员工所花费的时间是最短的,同时求解出在确定的电梯数量确定的办公人数分布前提下电梯调度的最大运载能力。将所有的人都运到的最短的时间为:1955.5秒。 接着对于理想模型实际化建立模型二,以“最后被运送的乘客的等待时间最短”为评价标准,以“电梯运行周期与运行总时间之比等于电梯在一个周期运送的乘客数与乘客总数之比”的“比例”云则为依据,对几种常见电梯运行方案建立数学模型,比较其运行效率,得出分段运行方案是符合要求的最优方案。 在极端假设条件下的模型的基础上进行改进建立模型三,对所有的楼层进行分段,每个电梯负责特定的楼层,以概率的方法,得出非线性规划方程组,求得最优的分段数,并求出一些表征参数如:总运行时间及运载能力。

公交车调度论文

公交车调度论文 This model paper was revised by the Standardization Office on December 10, 2020

关于公交车调度问题 摘要 随着国民生活水平的提高,公共交通问题也日益重要起来,而公交车调度是制约公共交通的重要因素。根据题中所给的数据,建立数学模型对公交车调度问题进行分析。 对于问题一:首先,根据城市中某条公交线路各个时段的客流信息,得出了公交车公司的最大客容量,发车车次,发车时间间隔。运用MATLAB编程,计算出各个时段的最大客容量,在满足公交满载率的情况下得出日最少发车车次为460次,其中上行线230车次,下行线230车次,用LINGO计算出发车时间间隔,并给出公交车发车时刻调整表。基于公交车从起始站运行到终点站的用时为44分钟,且时间间隔应为整分间隔,可算出早高峰所需最少车辆为58辆。 其次,一个合理的公交车调度方案应该考虑公交公司的最大利益和乘客的满意度两个方面。故建立了满意度分析模型,在此模型中,运用了层次分析法。对满意度进行了分析计算。结合整数规划模型中的结果可求得满意的分析模型中公交公司与乘客双方之间满意度,并且使二者和达到最大,同时双方满意度之差最小,得到上下行的最优满意度(,)。 最后,综合了公交车公司的最大客容量、发车车次、公交公司满意度等方面因素,且以公交公司所发的车次最小为目标,乘客的等待时间和公交载客率为约束条件提出了整数规划模型。此模型是把公交车调度问题抽象成数学模型来表达,从考虑发车车次最小出发,满足各项约束条件,寻求最优解。运用LINGO编程,可计算出公交公司日发车车次最小值为461次。因此该解法是在满足乘客的情况下求的最优解。乘客的等待时间的满意度

数学建模-全国一等奖 公交线路

11701 B 本科 2001年全国大学生数学建模竞赛答卷 (全国一等奖) 学员:叶云周迎春齐欢指导老师:朱家明 公交车调度方案的优化模型 摘要 本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。 并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较, 得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给 出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型, 结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811) 根据双方满意度范围和程度,找出同时达到双方最优日满意度 (0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果 为484次45辆。对问题2,交待了综合效益目标模型及线性规划法求解。对 问题3,采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下 车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数 据,返站后结合日期储存到公司总调度室。 关键词:公交调度模糊优化法层次分析满意度

一、问题的提出 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表1。已知运营情况及调度要求如下: 1、公交线路上行方向共14站,下行方向共13站; 2、公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; 3、乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 现提出以下三个问题: 1、试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 2、如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法。 3、据实际问题的要求,如果要设计好更好的调度方案,应如何采集运营数据。 二、符号约定 a:上或下行第j时段第k站上车人数 ijk b:上或下行第j时段第k站下车人数 ijk l上或下行第j时段最大客容量 ij k上或下行时第j时段平均载客量 ij C日所需总车次 c上或下行第j时段的车次 ij s上或下行第j时段平均发车时差 ij p上或下行第j时段平均载客量 ij t上或下行的平均发车时间间隔 ij

数学建模_电梯调度问题

写字楼电梯调度问题 摘要 随着社会的发展,人们对电梯的需求量也在不断增加,电梯问题也随之而来。本文着重探讨如何合理地调控使用现有电梯,提高电梯的服务效率。 针对该写字楼在工作日里每天早晚高峰时期均是非常拥挤,而且等待电梯的时间明显增加的现象,分别在不同的约束条件下建立了优化的电梯调运模型。 本文采用侧重于乘客等待电梯时间的优化的“时间最小/最大”群控方法,依据“电梯运行周期与运行总时间之比等于电梯在一个周期内运送的乘客数与乘客总数之比”的“比例”原则,先对电梯常见的几种运行模式进行具体分析,得到最优的运行模式——某部电梯直达某高层以上(分段运行方案)。然后对高层写字楼电梯运行管理建立数学模型,进行定量分析求解。 由于电梯数目固定,为使电梯能尽可能地把各层楼的人流快速送到,减少候梯时间,故只能通过优化电梯的调度方案,减少每部电梯运行过程中的停靠次数来缩短电梯平均往返运行时间,以达到提高电梯运行效率的目的。 通过计算机仿真电梯运行情况,我们得到分区越多,电梯平均往返时间越短,电梯运行越高效。因此对楼层进行分区,每部电梯分别服务特定楼层,我们将整个楼层分为六个服务区,每区分配一部电梯。通过对各区域电梯平均往返时间的计算,得出每一区域运送完所有人员所需时间,将各个区域作为动态规划的各个阶段,每个区域的最高楼层作为各阶段的状态变量,以时间作为权值,建立了两个模型。 在模型一中,以各电梯运完所负责楼层人员所需时间 TM的和最小为目标 i 建模,建模过程中,先给出一个可行解,在此基础上,通过限制条件:各电梯完 成运送所用时间 TM不应相差太大;来简化模型筛选数据,最终,建立动态规划 i 中最短路问题的模型,利用matlab与lingo,得出运送完所有人员所需时间最短条件下的最优路径,“无地下部分”下,即得到楼层最优分配方案为: 服务区i 1 2 3 4 5 6 服务楼层2-5 6-9 10-13 14-16 17-19 20-22 所需时间3096 4620 6300 5835 4686 5393 总时间29930 平均时间4988.3 TM的最大值最小为目标建模,通过不断地筛选数据,简在模型二中,以使 i 化模型,最终得到9种方案,接着采用枚举法选出其中的最优解,最优解为:服务区i 1 2 3 4 5 6 服务楼层2-6 7-10 11-13 14-16 17-19 20-22 所需时间4585 4647 4966 5835 4686 5393 总时间30112 平均时间5018.7

6公交车调度的数学模型讲解

6公交车调度的数学模型讲解

公交车调度的数学模型 摘要 随着人口的增加以及现代化建设的加快,城市人口迅猛增长,城市公共交通面临着巨大的挑战。为缓解城市交通的拥堵,除了提倡错峰出行、减少私家车出行之外,对公共交通设施进行合理的调度也特别重要。本文正是通过已知的某条公交线路的客流调查和运营资料,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,以解决该条公交线路上公交车的调度问题。 公交车的运营可以产生经济效益和社会效益,两种效益的关系是对立统一的,当乘客人数一定的情况下,产生的经济效益越高,即同一时段公交车的数量越少、发车次数越少,社会效益就越低;同理,产生的社会效益越高,经济效益就越低。故在制定公交车调度方案时,我们要综合考虑经济效益与社会效益。 公交车产生的经济效益由公交车的满载率、运营所需的公交车总数、运营时间内总发车次数所决定,而社会效益则由乘客的等待抱怨度以及拥挤抱怨度所决定。通过分析,我们发现要使公交车的运营产生最大的效益,既要使公交车的满载率最大、所需公交车总数和发车次数越小、乘客等待抱怨度和拥挤抱怨度最低,同时,我们发现在某段时间内乘客人数一定的条件下,这些决定因素本质上都是由某段时间内的发车次数所决定的。因此,我们可通过建立多目标的优化模型、采用遗传算法、用Lingo软件编程进行求解。最后,我们得出要使乘客与公交公司的利益最大化,全天需要公交52辆,共需发车445次,并绘制出上、下行起始点发车时刻表。

3、数据分析 根据问题分析,我们对已知数据进行简要分析。 对于公交公司,当满载120人时公交公司最满意,人数越少,满意度越来越低。对于乘客,可设当等车时间不超过5分钟,车辆满载率不超过100%时,乘客满意度为1,随着等待时间增加和车载率的上升,乘客满意度会逐渐下降。我们取当公交车平均载客人数分别为120人,100人,50人试作分析。 考虑上行方向,当j ik p →120人时,第18段无需考虑,120j ik ij p mg =,则公交公司满意度171 171 jk ij j jk j p mg mg p ==?=∑∑=0.9722 。乘客的满意度由发车车次数j n 和发车 时间间隔jk t ?,算出乘客的满意度mc =0.7334。 当j ik p →100人时,公交公司满意度mg =0.8116,乘客的满意度为mc =0.9218 。 当j ik p →50人时 ,此时公交公司的利益达到最小,相应的乘客满意度会变大,公交公司满意度mg =0.4207, 乘客满意度mc =0.9800 首先考虑上行问题:根据公交公司的满意度和乘客的满意度的对应关系,(0.9722,7334)、( 0.8116,0.9218)、( 0.4207,0.9800),可以利用二次拟合得出公交公司和乘客的函数f(mg 1): 21.8737 2.16940.3953mc mg mg =-++(9722.0m g 4270.01≤≤) 拟合曲线如图1(相关程序见附录二): 0.20.30.40.50.6 0.70.80.910.7 0.8 0.9 11.1 上行时(mg,mc)的拟合曲线 mg m c

数学建模2001年的公交车调度问题

第三篇公交车调度方案的优化模型 2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3- 1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计.公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时.运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%. 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的 要求,如果要设计更好的调度方案,应如何采集运营数据。

21 / 14

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0。8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 *本文获2001年全国一等奖。队员:叶云,周迎春,齐欢,指导教师:朱家明等。

生产过程调度的数学模型

生产过程调度的数学模型 1 问题的提出 ?k A j 图1-1是某企业的生产示意图,A0是出厂产品,A1,A2,…,A6是中间产品,A i?→ 表示生产一个单位A j产品需要消费k单位A i,其余类似. 图1-1 生产结构示意图 表1-1给出了生产单位产品所需的资源(工人,设备)和时间,注意表中所给数据是基本的,即既不能通过增加工人和设备来缩短时间,也不能通过加长时间而节省工人和设备. 表1-1 生产单位产品所需的资源和时间 问题 1 无资源浪费、连续均衡生产的最小生产规模是多大?相应的最短周期是多少?其中“无资源浪费”指在整个生产周期中没有闲置的设备和闲散人员.“连续”指整个周期中所有产品的生产过程不会停顿.“均衡”指所有中间产品A1,…,A6的库存与上一周期结束时的库存相同.“生产规模”指完成整个生产过程所需各种资源的总和. 问题2 如果考虑相同的资源可以通用,那么问题1得到的最小生产规模在无资源浪费、均衡生产中能否减少?请写出你得到的生产规模,相应的周期和生产过程的调度方案.问题3 如果该企业的资源限制为:I类工人120名,II类工人80名,技术工人25名,甲种设备8台,乙种设备10台及周期限制(一星期,共24?5.5=132h),请作出生产过程的调度方案,使在均衡生产条件下资源的浪费最小.[1] 2 基本假设

假设生产开始的瞬间,马上有产品出产. 忽略各中间产品的输送时间. 资源(包括工人和设备)的效率是持续而且均衡的,即忽略工人的生理因素、设备的老化损耗以及原材料的利用率对生产效率的影响. “数据是基本的”意思是一条生产线上安排操作的人员数经已经固定,如果人员减少 了,流水线就无法生产,但如果人员多了,岗位并没有相应增加,因此不能加快生产的进度.[1] “均衡生产”是指经过一个周期的生产,中间产品供求平衡,其库存增加量完全转化组装成为最终产品A 0 ,其数值表示为零. “无资源浪费”是指各种设备和各类人员的拥有量与使用量相等,在整个生产周期中没有闲置的设备和闲散的人员. “连续”是指在整个周期中,不仅资源的总使用量不变,而且用于各种产品的资源使用量也不变,所有产品的生产过程不会停顿. 3 问题的解决 3.1最小生产规模与最短生产周期 在生产各产品的资源均独立运作、不能通用的情况下,设生产单位产品所需的资源量为1组,x i ,i=0,…,6,是生产各产品的组数,T 为一个生产周期.由于生产是均衡的,在T 时间内生产的中间产品将全部组装成最终产品A 0 .也就是说,周期时间内各中间产品的库存增加量均为零,即中间产品的生产量与消耗量相等.现在要求最小的生产规模,也即要求各产品的生产组数之和的最小值.由条件可以得出以下的线性规划模型[2] : ∑==6 min i i x z ???? ???????? ?????=>∈?=?? =??+?=??+?=?? =??=?6 ,...,1,0,0,6 122612632665656643..06055042030201i x Z x T x T x T x T x T x T x T x T x T x T x T x T x T x T x t s i i (3.1) 整理得:

相关文档
最新文档