数字图像处理答案

数字图像处理答案
数字图像处理答案

DISP1

1、说明图象数字化与图象空间分辨率之间的关系。

答:图像数字化包括两个过程:采样和量化。而图像的空间分辨率是在图像采样过程中选择和产生的。空间分辨率用来衡量数字图像对模拟图像空间坐标数字化的精度。

2、说明图象数字化与图象灰度分辨率之间的关系。

答:图像数字化包括两个过程:采样和量化。而图像灰度分辨率是在图像量化过程中选择和产生的。灰度分辨率是只对应同一模拟图像的亮度分布进行量化操作所采用的不同量化级数,也就是说可以用不同的灰度级数来表示同一图像的灰度分布。

3、看图说明伪彩色图象采集卡的工作原理,并说明LUT的原理和作用。

答:模拟图像数据由摄像头采集后,经A/D转换器处理,转化成数字信号,传给帧处理器经过其处理后,然后查询LUT表,经过D/A转换器输出RGB三色。LUT(显示查找表)实际上就是一张像素灰度值的映射表,它将实际采样到的像素灰度值经过一定的变换,变成了另外一个与之对应的灰度值,这样可以很容易根据需求得到相应的颜色,它的优点在于易于调整、起到突出图像的有用信息、增强图像的光对比度的作用。

DISP2

1、粗略画出下列图象的傅立叶变换图象:

变换后的图像如下:(从左至右)

2、证明付里叶变换的可分离性及快速算法可行性。

答:可分离性:对于二维傅里叶变换,若把y看成一个常数,则可得到沿x方向的u=0,1,……,N-1的一维傅里叶变换,再将y看成一个变量,x不变,则可得到y方向上v=0,1,……,N-1的一维傅里叶变换,因此二维傅里叶变换可分离。快速算法可行性:假设N是2的L次方,对于有N个点的傅里叶变换,需要完成N*N次复数乘法和N*(N-1)次复数加法,而对于快速算法,则有(N/2)*L个蝶形算法,因此运算量为(N/2)*㏒2N个复乘和N㏒2N个复加,在N较大时,计算量比DFT少很多。

证明:

可分离性:F(u,v)=(1/N)∑∑f(x,y)exp[-j2π(ux+vy)/N]

其变换核g(x,y,u,v)= exp[-j2π(ux+vy)/N]

= exp(-j2πux/N)*exp(-j2πvy/N)

所以,F(u,v)=(1/N)∑{[∑f(x,y)exp(-j2πux/N)]exp(-j2πvy/N)}

这相当于先对x进行傅里叶变换,再对y进行傅里叶变换,可分离性证毕。

快速算法可行性:由可分离性可知,对一维的快速算法可行,那么对二维同样可行,下证一维的快速算法可行性。

F(u)=∑f(x)exp(-j2πux/N),其中N是2的M(整数)次幂。

令f(2r)=f1(r);f(2r+1)=f2(r),

则F(u)=∑f(2r)exp[-j2πu(2r)/N]

+∑

f(2r+1)exp[-j2πu(2r+1)/N]

=∑f(2r)exp[-j2πu(2r)/N]

+exp(-j2π

u/N)f(2r+1)exp[-j2πu(2r)/N]

=F1(u)+exp(-j2πu/N)F2(u)

因此,F(u)可以分为2个(N/2)长的序列的傅里叶变换。若一直分下去,则最终被划分为两两一组,即快速傅里叶变换。

DISP3

1. a.可分离性:

b.快速算法可行性:

首先证明一维情况下的快速算法FWT:

又由沃尔什变换的可分离性及其对称性,可知:对于二维沃尔什变换W(u,v),可先针对x变量用FWT求出W(u,y),接着再针对y变量用FWT求出W(u,v)。所以可知二维沃尔什变换是具有可行性的。

2.

∴快速计算一个N点DCT可以通过2N点FFT实现:

①将x(n)补N个零点形成2N点序列x2N(n)点;

②用FFT求x2N(n)的DFT,得X2N(k);

③将X2N(k)乘以e-jkπ/2N,后取实部,得X2N’(k);

④对于奇异点,做如下处理:

这样,便完成N点FDCT的计算。

DISP4

1、试述直方图均衡化的增强原理。

答:直方图均衡化是最常见的间接接对比度增强方法之一。直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。综上所述,直方图均衡可以达到增强图像的效果。

2、试述规定化直方图增强原理。

答:在实际应用中,希望能够有目的地增强某个灰度区间的图像,即能够人为地修正直方图的形状,使之与期望的形状相匹配,这就是直方图规定化的基本思想。换句话说,希望可以人为地改变直方图形状,使之成为某个特定的形状,直方图规定化就是针对上述要求提出来的一种增强技术,它可以按照预先设定的某个形状来调整图像的直方图。直方图规定化是在运用均衡化原理的基础上,通过建立原始图像和期望图像之间的关系,选择地控制直方图,使原始图像的直方图变成规定的形状,从而弥补了直方图均衡不具备交互作用的特性。其增强原理是先对原始的直方图均衡化:S = T(r),同时对规定的直方图均衡化:v = G(z),由于都是均衡化,故令 S = v,则:z = G-1(v) = G-1[T(r)] 。

DISP5

1、探讨图象平滑与图象锐化的异同点及它们的适用领域。

答:区别:锐化处理的主要目的是突出图像中的细节或者增强被模糊了的细节,这种模糊不是由于错误操作,就是特殊图像获取方法的固有影响。图象锐化是用于增强边缘,导致高频分量增强,会使图象清晰。图像锐化处理的方法多种多样,其也包括多种应用,从电子印像和医学成像到工业检测和军事系统的制导,等等。锐化主要使用基于二阶微分的图像增强——拉普拉斯算子。

图象平滑用于模糊处理和减小噪声,对图象高频分量即图象边缘会有影响。模糊处理经常用于预处理,例如,在提取大的目标之前去除图像中一些琐碎的细节、桥接直线或曲线的缝隙。通过线性滤波器和非线性滤波器的模糊处理可以减小噪声。平滑滤波器的概念非常直观。它用滤波掩模确定的邻域内像素的平均灰度值去代替图像每个像素点的值,这种处理减小了图像灰度的“尖锐”变化。

相同点:都属于图象增强,改善图象效果。

2、探讨空域增强处理与频域增强处理的特点,比较其性能。

答:空域增强算法是图像增强技术的一种,直接对图像的象素(灰度值)进行处理,不需要进行变换。常见的增强算子如锐化算子、高通算子、平滑算子等,可以完成图像的边缘提取、噪声去除等处理。

这里,采用空域法进行处理,其模型为:

f ( x , y)-------增强函数h ( x , y)-------

g ( x , y)

记为g ( x , y) = EH[ f ( x , y) ]

式中 f ( x , y) ———代表待增强的图像;

h ( x , y) ———空域增强函数;

EH ———增强操作。

空域变换增强根据对图像的每次处理是对单个像素进行的或是对小的子图像(模板) 进行的, 可分为2 组:基于像素(点) 的和基于模板的。在基于像素的处理(也叫点处理) 中, 增强过程对每个像素的处理与其他像素无关;而模板处理则是指每次处理操作都是基于图像中的某个小区域进行的。各种空域滤波处理根据功能又主要分成平滑的和锐化的目的。平滑可用低通滤波器实现。平滑的目的又可分应会受到很大影响,需要视每次试验的实际情况调整PID 参数的值。

频域增强:主要是在频域内对图像进行变换。频率域增强算法的处理基础是傅立叶变换和滤波技术, 主要有低通滤波(平滑)、高通滤波(锐化)、同态滤波等。一般来说, 图像的边缘和噪声都对应于傅立叶变换的高频分量, 而低频分量主要决定图像在平滑区域中总体灰度级的显示, 故被低通滤波的图像比原图像少一些尖锐的细节部分。同样, 被高通滤波的图像在图像的平滑区域中将减少一些灰度级的变化并突出细节部分.

在频域空间,图像的信息表现为不同频率分量的组合。如果能让某个范围内的分量或某些频率的分量受到抑制而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。

频域空间的增强方法有两个关键:

1.将图像从图像空间转换到频域空间所需的变换(T)以及再将图像从频域空间转换回图像空间所需的变换

2.在频域空间对图像进行增强加工的操作(EH)

频域空间的增强方法三个步骤:

a.将图像从图像空间转换到频域空间(如傅里叶变换)

b.在频域空间对图像进行增强

c.将增强后的图像再从频域空间转换到图像空间

在频率域中进行增强的操作步骤:(即上面的第2步)

a.计算需增强图像的傅里叶变换 f(x,y) - > F(u,v)

b.将其与一个转移函数相乘 F(u,v)*H(u,v)

c.再将结果傅里叶反变换以得到增强的图像 G(u,v) - > g(x,y)

转移函数的设计要根据增强目的进行,其基本思路是要允许一定频率通过,限制或消减另外一些频率。常用频域增强方法根据滤波特点,特别是消除或保留的频率分量可以分为: 1.低通滤波2.高通滤波3.带通和带阻滤波4.同态滤波

1、1920*1080、50帧/秒的高清彩色电视信号(8bit量化)用6Mbps的网络传输时,对应的压缩比是多少?

解:1920×1080×50×8×3/(1024*1024)=2373Mbps

2373:6=395:1

2、简述三大图象编码技术各自的工作原理、特点。并根据其各自特点,组合设计一种具有较高编码效率的图象压缩方法。

答:熵编码:基于信号统计特性的编码技术,是一种无损编码。在信源数据中出现概率越大的符号,编码以后相应的码长越短;出现概率越小的符号,其码长越长,从而达到用尽可能少的码符表示信源数据。常见的熵编码有行程编码、哈夫曼编码和算术编码。

预测编码:根据数据在时间和空间上的相关性,利用已有样本对新样本进行预测,将样本的实际值与其预测值相减得到误差值,再对误差值进行编码。通常误差值比样本值小得多,从而达到数据压缩的效果。

变换编码:以某种可逆的正交变换把给定的图像变换到另一个数据/频率域,从而利用新的数据域的特点,用一组非相关数据(系数)来表示原图像,并以此来去除或减小图像在空间域中的相关性,将尽可能多的信息集中到尽可能少的变换系数上,使多数系数只携带尽可能少的信息,实现用较少的数据表示较大的图像数据信息,进而达到压缩数据的目的。

JPEG编码:JPEG编码中DCT编码方式。主要编码方法为:

1)数据分块:对每个图象分割成不重叠的8*8像素块,每一个像素块称为一个数据单元。

2)DCT处理:图象数据块分割后,以MCU为单位顺序将DU进行二维离散余弦变换。得到64个系数代表了该图像的频率成分,其中,直流系数DC在左上角,其余的63个叫做交流系数AC

3)系数量化:在DCT处理得到64个系数中,对直流分量和交流分量进行不同的量化,支流分量细量化,交流分量粗量化。

4)Z形扫描:量化后,构成一个稀松矩阵。为了保证低频分量先出现,高频分量后出现,以增加形成中连续“0”的个数,剩余63个元素采用Z型扫描。。

——采用变换编码,把给定的图像变换到另一个数据/频率域,从而利用新的数据域的特点,将尽可能多的信息集中到尽可能少的变换系数。

5)DC系数编码:对DC系数作差分编码,用前一数据块的同一分量的DC系数作为当前块的预测值,再对当前块的实际值与预测值的差值作哈夫曼编码。

——预测编码,根据数据空间上的相关性,将样本的实际值与其预测值相减得到误差值,再对误差值进行编码。

6)AC系数编码:经过Z形排列的AC系数,更有可能出现连续0组成的字符串,从而对其进行行程编码有利于压缩数据。

——行程编码,用行程的灰度和行程的长度代替行程本身,去除像素冗余。

DISP9

1、当图象直方图呈双峰特性时,如何确定二值化的阈值?当图象直方图呈单峰特性时,又如何确定二值化的阈值?

答:当图象直方图呈双峰特性时,如下图,双

峰的波谷最为分割阈值,也可以用求导的方

法,来求出确切的值:

P(z)的导数等于0,且P(z)的二阶导为0既可

求出.

阈值T=P(z)

图象直方图呈单峰特性时:

a 可以采用迭代算法:

1: 选择一个初始阈值T1;

2:根据初始阈值T1将图像分割为G1和G2两部分。G1包含所有小于等于T1的像素,G2包含所有大一等于T1的像素。分别求出G1和G2的平均灰度值U1和U2.

3: 计算新的阈值T2=(U1+U2)/2

4: 如果|T2-T1|<=T0(T0为预先设定的很小的正数),即迭代过程中前后2次的阈值很接近时,迭代完成,否则重复2,3步骤

b 也可以根据初始阈值所产生的二值图像来判断应该增加还是减少,并且多次判断,得到一个比较合适的阈值

2、试述轮廓追踪的基本原理和操作步骤。

答:轮廓跟踪的基本原理:轮廓跟踪是二值图象中常用到的一种基本操作。就拿给连接成分的标记来说,要计算机去识别这是一个连接成分,必须让它自动去把这个成分找出来,然后才能去标记或填充。在医用图象处理,希望提取二值图象的区域形状特征,如区域轮廓形状、面积大小、周长……,也需要轮廓跟踪这一操作。

一个连通的像素集合R的轮廓定义为:它至少有一个d-近邻不在R内的所有R中像素的集合。注意的是

(1)定义中提出的判别条件是4-邻域,而不是8-邻域。

(2)定义中提出,4-邻域中至少有一个像素不在R内,不能没有。

(3)如果4-邻域均不在像素的集合R内时,可以分两种情况来考虑:①如果它的8-邻域中的1,3,5,7方向中的任一个存在R内时,该像素可能构成轮廓像素。②如果当前像素的4-邻域均不在R内,且1,3,5,7方向上的像素也不在R内,这是一种特殊情况,则当前像素为孤立点。

一个连接成分,总可以认为它存在一个封闭的轮廓。因此,一个轮廓上的像素总可以有一条通路来跟踪它。轮廓跟踪就是通过顺序找出边缘点来跟踪边界的。

轮廓跟踪的基本步骤:若图象是二值图像或图像中不同区域具有不同的像素值,但每个区域内的像素值是相同的,则如下可以完成基于4连通域或8连通区域的轮廓跟踪。

步骤1:首先按从上到下,从左到右的顺序扫描图像,寻找没有标记跟踪结束记号的第一个边界起始点Ao,Ao是具有最小行和列值的边界点。定义一个扫描方向变量dir,该变量用于记录上一步中沿着前一个边界点到当前边界点的移动方向,其初始化取值为:

(1)对4连通区域取dir=3

(2)对8连通区域取dir=7

步骤2:按逆时针方向搜索当前像素的3*3邻域,其初始搜索方向设定如下:

(1)对4连通区域取(dir+3)mod4

(2)对8连通区域,若dir为奇数取(dir+7)mod8,若dir为偶数取(dir+6)mod8 在3*3邻域中搜索到的第一个与当前像素值相同的像素便为新的边界点An,同时更新变量dir为新的方向值。

步骤3:如果An等于第二个边界点A1且前一个边界点An-1等于第一个边界点A0,则停止搜索,结束跟踪,否则重复步骤2继续搜索。

步骤4:由边界点A0、A1、A2、…、An-2构成的边界便为要跟踪的边界。

上述步骤是图像轮廓跟踪最基本的算法,它只能跟踪目标图像的内边界(边界包含在目标点集内),另外,它也无法处理图像中的孔和洞。如果连接成分的内部存在有孔,根据要解决问题的需要对轮廓也需要标记时,那外轮廓跟踪一次,孔的轮廓也应跟踪一次,一般来说,如果外轮廓沿逆时针方向跟踪时,则内轮廓(孔轮廓)沿顺时针方向跟踪。

3、探讨二值图象细化的几种算法,并比较其优缺点。

答:二值图像细化的算法有:

(1)中轴转换法:它是用一个连接成分的中轴来代表该连接成分细化的结果。所谓一个连接成分的中轴,可以这样来定义:假定用R表示这个连接成分的像素集合,B是它的轮廓。对

集合R中的每一个像素X,寻找它在轮廓B上最近的近邻像素M,为像素X到B上的最小距离。如果X有多余一个这样的近邻,它被认为是属于R中的中轴上的像素。其优点是:

①形状简单的轮廓与中心轴大致相符。其细化结果(连接成分的中轴)基本上反映了区域内

部结构和轮廓形状;②中轴的分叉处与轮廓外形无简单的对应关系。缺点是轮廓上小的扰动,

造成中轴线的变化很敏感,一般来说,由于连接成分多是无规则的,轮廓处存在凸、凹的可能性很大,这必将造成采用中轴转换法来反映轮廓形状的失真。

(2)骨架法:

①内切圆模型:采用一个可任意改变直径大小的圆盘,连接成分由一系列的而这些最大圆盘

来描述。这些盘与连接成分的轮廓相切。连接成分的骨架可以看成是这一系列最大内切圆盘圆心的连线。优点是对轮廓小扰动的灵敏度有所降低。缺点是(1)受轮廓小扰动的影响并未消除;(2)实施起来最大的困难是寻找它的圆心,往往要耗费很多的时间。

②波前模型:连接成分的轮廓可以考虑成波传播的某一瞬间的波前。波前向区域内部传播,

当它们第一次相遇时的交点就形成了骨架。区域的初始轮廓就是某一瞬间的波前,经过时间后,向内传播的结果又构成新的波前,经过2,3…直到它们相遇时为止,骨架就形成了。

初始轮廓经过后形成新波前的过程,可以看成是轮廓上的像素向区域内收缩距离为1的过

程,新的波前继续向内传播下一个,又可看成一个新的轮廓按8-邻域距离又向内移动1个

像素。其与内切圆模型相比较,计算速度要快很多。

③固定轮廓上某特殊点的逐层收缩法:采用波前模型,对某一类图形区域来说容易造成失真,

如正方形区域。而固定轮廓上某特殊点的逐层收缩法就是克服这一缺点,当逐层删除轮廓像素时,保留住轮廓像素中的某些特殊点,当删除过程结束后,最后的区域轮廓加上这些特殊点就组成了该区域的骨架。优点是:所寻求的该连接成分的骨架,在大多数应用中既能反映区域的额内部结构,又能反映出区域的轮廓特征。但是缺点就是为了确定轮廓上的特殊点以及计算机如何去识别它们而做到保留它们,这将会大大增加算法的复杂性。

④保留轮廓上多重像素的轮廓跟踪法:迭代轮廓跟踪算法,检查轮廓上的像素是否是多重的,

如果是,则保留它们作为区域的骨架像素。逐层剥离,最后得到细化的骨架。缺点是有可能会将区域的连接性破坏,因此常常可能保留轮廓上的某些非多重像素,

⑤用像素的连接数来找骨架:像素的连接数是刻画像素及其邻域的局部特征的一个参数。由

公式Nc = 1 时为端点、Sxk不为1 时为边缘点,确定图象上各象素的去留,最后获得骨架。

缺点是运算速度极慢。

(3)直观细化法:首先分析你要细化的对象及其细化的目的,按具体情况具体分析的原则去选择或设计一种方法,来达到你所要求的目的。比如在处理光干涉图像处理中,只要找到干涉条纹图像的灰度值的极大值和极小值,有序地连接这些极值点就构成了一幅细化图像。该方法优点是速度快,效果好。

Disp8

1、用频域的方法建立运动模糊退化模型( x , y 两方向移动),求出退化系统传递函数。

解:运动模糊模型g(x,y)如上所示:

x, y 两方向移动时:令x0(t)=at/T,y0(t)=bt/T

则退化系统传递函数为

H(u,v)= ∫exp(-2jπ[ux0(t)+vy0(t)])dt=T*sin(πab(u+v))*exp(-jπab(u+v))/ (πab(u+v))

2、探讨参变量维纳滤波中g 的作用,如何求得最佳的参变量g 。

答:(1)参变量维纳滤波中g的作用是:通过调整参变量g使得维纳滤波器可以根据不同的实际需要达到期望的效果。

(2)利用均方误差最小原则求解最佳的参变量g。设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。因此均方误差越小,噪声滤除效果就越好。为使均方误差最小,关键在于求冲激响应。如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。根据维纳-霍夫方程,最佳维纳滤波器的冲激响应,完全由输入自相关函数以及输入与期望输出的互相关函数所决定。

DISP7

1、简述JPEG编码的压缩原理,探讨如何选择量化表。

(1)把一幅图像分8×8的子块按图中的框图进行离散余弦正变换(FDCT)和离散余弦逆变换(IDCT)。在编码器的输入端,原始图像被聚分成一系列8×8的块,作为离散余统正变换(FDCT)的输入。在解码器的输出端,离散余弦逆变换(IDCT)输出许多8×8的数据块,用以重构图像。

(2)对DCT系数F(u,v)需作量化处理。量化处理是一个多到一的映射它是造成DCT编解码信息损失的根源。在JPEG标准中采用线性均匀量化器。量化表元素随DCT变换系数的位置而改变,同一像素的亮度量化表和色差量化表不同值,将输入的频谱值除以量化表相应位置的值后取整输出。量化表的尺寸也是64,与64个变换系数一一对应。量化表中的每一个元素值为1至255之间的任意整数,其值规定了对应位置变换系数的量化器步长。在接收端要进行逆量化。(3)对量化后的DC系数和行程编码后的AC系数进行基于统计特性的熵编码。DC系数是64个图像采样平均值。因为相邻的8×8块之间有强的相关性,所以相邻块的DC系数值很接近,对量化后前后两块之间的DC系数差值进行编码,可以用较少的比特数。DC系数包含了整个图像能量的主要部分。经量化后的63个AC系数编码以“Z”字形行程扫描。量化后编码的AC系数通常有许多零值,沿“Z”字形路径行进,可使零AC系数集中,便于使用行程编码方法。63个AC系数行程编码和码字,可用两个字节表示。

量化表的选择

DCT变换后的频谱图的例子,直流成份,低频成份,高频成份在后面。采用非均匀量化,对不太需要的成份进行粗量化,主能量进行细量化,使得图像的有效信息得到一定压缩。主能量主要在直流成份及低频成份,位于在左上方,所以除数选择较小的,进行精量化;而高频成份位于下面右下角部分,可以进行粗量化,这种粗量化的结果就是很多高频系数都量化为0。亮度进行精量化的频带比色度来得宽.

2、简述MPEG编码的压缩原理,分析视频图像压缩与静止图像压缩在技术上的区别。

MPEG编码过程:帧内的每一组RGB值转换成亮度和色度信号YCrCb组,I图象变换后进行宏块变换编码,最后进行熵编码,类似于JPEG编码;而P/B图象经过YUV变换形成YCrCb组后,与参考帧(I图象)进行比较,然后对活动部分误码差项进行变换编码,加入活动矢量,进行熵编码。

为了降低时间冗余度,MPEG采用了帧间数据压缩、运动补偿和双向预测。

MPEG采用了三种图像——帧内图象I、预测图象P和双向预测图象B。帧内图象指原始图象,预测图象则是指活动部分的图象,双向预测图象是由原始的和预测的图象插补得到的图象。具有中等程序压缩的帧内图象,提供随机存取的进入点。预测图象是参考“过去”的图象(帧内的或已预测的)进行预测。双向预测图象能提供最大的压缩比,它要求“过去”的图象和“未来”的图象在此间作插补,但它不能作预测的参考图象。原始帧内图象不能过分地追求压缩而使质量下降,因为要用原始帧去预测以后的图象,具有参照性,要求尽可能多的保留细节。

帧运动补偿就是指当前的图解Ii可以按照上一时刻的图解Ii-1来复制。两者仅仅在局部的活动信息上有区别。或者说仅仅只有少数的对应片层或宏块有差别。这局部的活动信息(活动矢量)的位移大小和方向是需要编码的,与Ii-1比较起来,Ii上编码的比特数就极大地减少了。这就使得数据有相当大的压缩。Ii-1称为参考帧。如果参考帧的选择既有过去的,又有未来的,不是说用Ii-1和Ii+1来插补得到Ii,这Ii就是双向插补图象。插补得到的图象就是B图象。

参考帧的B图解越多,越降低它与参考帧之间的相关性。

实验程序:

实验一图象显示

一、实验目的:掌握在计算机上显示图象的方法

二、实验要求:

1、熟悉参考程序,熟悉C语言。

2、输入图象显示源程序,建立C语言程序调试环境。

3、在计算机屏幕上显示制定的图像(提供两个图像文件A2和B2),并计

算显示其灰度直方图。

4、修改程序,在屏幕上显示256*256的对度图像(灰度变化分别是左边暗

-右边亮、左下暗-中间亮-右上暗、左上暗-中间亮-右下暗)。

三、实验程序

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

union REGS iregs, oregs, sregs;

double data1[512], data2[512], max1, bu1[3], bu2[3];

unsigned char image1[128][128], image2[128][128];

int max;

main(int argc, char *argv[]) /----参数argc代表了输入参数的个数,char *argv[]

表示传入的参数的字符串,是一个字符串数组。

------/

{

FILE *fp, *fp1;

int a,b,c,x,y,z;

int n, isi, driver, mode1;

unsigned char d[128][128], datam[256];

driver=DETECT;

mode1=2;

initgraph(&driver,&mode1,"") ;/---initgraph()函数直接进行的图形初始化程序------/

iregs.x.ax=0x0100;

iregs.x.cx=0x0000;

int86(0x10,&iregs,&oregs);

closegraph();

driver=DETECT;

mode1=2;

initgraph(&driver,&mode1,"");

iregs.x.ax=0x005f;

int86(0x10,&iregs,&oregs);

for(a=0;a<256;a++){

iregs.x.ax=0x1010;

iregs.x.bx=a;

iregs.h.dh=a/4;

iregs.h.ch=a/4;

iregs.h.cl=a/4;

int86(0x10,&iregs,&oregs);

}

fp=fopen("f:\\exp\\tc\\a2","rb");

for(a=0;a<64;a++){

fread(datam,64,1,fp);

for(b=0;b<64;b++) {

putpixel2(b*2+256,a*2+100,(int)datam[b]);

putpixel2(b*2+257,a*2+100,(int)datam[b]);

putpixel2(b*2+256,a*2+101,(int)datam[b]);

putpixel2(b*2+257,a*2+101,(int)datam[b]);

}

}

fclose(fp);

getch();

closegraph();

}

getpixel2( int a, int b ) /--显示像素---/

{

iregs.h.ah=0xd;

iregs.x.dx=b;

iregs.x.cx=a;

iregs.x.bx=0;

int86(0x10,&iregs,&oregs);

return(oregs.h.al);

}

putpixel2( int a, int b,int num)

{

iregs.h.ah=0xc;

iregs.h.al=num;

iregs.x.dx=b;

iregs.x.cx=a;

iregs.x.bx=0;

int86(0x10,&iregs,&oregs);

}

Ⅰ、显示256*256的灰度图象(灰度变化分别是左边暗-右边亮)的程序修改:红色区域内改为

fp=fopen(argv[1],"rb");

for(a=0;a<64;a++){

fread(datam,64,1,fp);

for(b=0;b<64;b++) {

putpixel2(b*2+256,a*2+100, b);

putpixel2(b*2+257,a*2+100,b);

putpixel2(b*2+256,a*2+101, b);

putpixel2(b*2+257,a*2+101,b);

Ⅱ、显示256*256的灰度图象(灰度变化分别是左下暗-中间亮-右上暗)的程序修改:

红色区域内改为

fp=fopen(argv[1],"rb");

for(a=0;a<256;a++){

fread(datam,256,1,fp);

for(b=0;b<256;b++) {

putpixel2(b*2+256,a*2+100,256-abs(a+b-256));

putpixel2(b*2+257,a*2+100, 256-abs(a+b-256));

putpixel2(b*2+256,a*2+101, 256-abs(a+b-256));

putpixel2(b*2+257,a*2+101, 256-abs(a+b-256));

Ⅲ、显示256*256的灰度图象(灰度变化分别是左上暗-中间亮-右下暗)的程序修改:

红色区域内改为

fp=fopen(argv[1],"rb");

for(a=0;a<256;a++){

fread(datam,256,1,fp);

for(b=0;b<256;b++) {

putpixel2(b*2+256,a*2+100, abs(a+b-256));

putpixel2(b*2+257,a*2+100,abs(a+b-256));

putpixel2(b*2+256,a*2+101, abs(a+b-256));

putpixel2(b*2+257,a*2+101, abs(a+b-256));

实验二图象的二维傅立叶变换

一、实验目的:掌握在计算机上进行二维傅立叶变换的编程方法以及显示变换图

象的方法

二、实验要求:

1、编写二维傅立叶变换的C语言程序及相应的显示程序。

2、建立输入图象,在64*64的白色图象矩阵的中心建立16*16的黑色矩形

图像点阵,形成图象文件(共4096字节)。

3、对输入图象进行变换,将原始图象及变换图象都显示于屏幕上。

4、调整输入图象中白色矩形的尺寸,再进行变换,比较变换结果。

5、建立输入图象,在64*64的白色图象矩阵的中心建立半径为6个像素黑

色的圆,形成图象文件。对输入图象进行变换,将原始图象及变换图象

都显示于屏幕上。调整圆半径的尺寸,比较变换结果。

三、实验程序:

正方形的傅里叶变换:

for(a=0;a<128;a++){

for(b=0;b<128;b++) {

if(a>=40&&a<88&&b>=40&&b<88) data1[b]=100.0;

else data1[b]=0.0;

data2[b]=0.0;

putpixel2(b,a+200,255-(int)data1[b]);

}

程序运行结果如下:

较大的正方形的傅里叶变换:

for(a=0;a<128;a++){

for(b=0;b<128;b++) {

if(a>=25&&a<120&&b>=25&&b<120) data1[b]=100.0;

else data1[b]=0.0;

data2[b]=0.0;

putpixel2(b,a+200,255-(int)data1[b]);

}

程序运行结果如下:

矩形的傅里叶变换

for(a=0;a<128;a++){

for(b=0;b<128;b++) {

if(a>=58&&a<70&&b>=40&&b<88) data1[b]=100.0;

else data1[b]=0.0;

data2[b]=0.0;

putpixel2(b+400,a+150,255-(int)data1[b]);

}

程序运行结果如下:

数字图像处理课后参考答案

数字图像处理 第一章 1、1解释术语 (2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。 (3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。 1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。 1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。 1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。 1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。 1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。 1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。 第二章 2、1解释下列术语 (18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。 (19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。 (20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。 (21)像素的8邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的8个像素称为该像素的8邻域像素,她们的坐标分别为(x-1,y-1)(x-1,y)(x-1,y+1)(x,y-1)(x,y+1)(x+1,y-1)(x+1,y)(x+1,y+1)。 (28)欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D e(p,q)=[(x-u)2+(y-v)2]1/2 (29)街区距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的街区距离定义为:D4(p,q)=|x-u|+|y-v|。 (30)棋盘距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D8(p,q)=max(|x-u|,|y-v|)。 (33)调色板:就是指在16色或者256色显示系统中,将图像中出现最频繁的16种或者256种颜色组成的一个颜色表,并将她们分别编号为0~15或0~255,这样就使每一个4位或者8位的颜色编号或者颜色表中的24位颜色值相对应。这种4位或者8位的颜色编号称为颜色的索引号,由颜色索引号及对应的24位颜色值组成的表称为颜色查找表,即调色板。 2、7对图像进行描述的数据信息一般应至少包括: (1)图像的大小,也即图像的宽与高 (2)表示每个像素需要的位数,当其值为1时说明就是黑白图像,当其值为4时说明就是16色或16灰度级图像,当其值为8时说明就是256色或256灰度级图像,当其值为24就是说明就是真彩色图像。 同时,根据每个像素的位数与调色板的信息,可进一步指出就是16色彩色图像还就是16灰度级图像;就是256色彩色图像还就是256灰度级图像。 (3)图像的调色板信息。 (4)图像的位图数据信息。 对图像信息的描述一般用某种格式的图像文件描述,比如BMP等。在用图像文件描述图像信息时,相应的要

《数字图像处理》习题解答

胡学龙编著 《数字图像处理(第 3 版)》思考题与习题参考答案 目录 第 1 章概

述 (1) 第 2 章图像处理基本知识 (4) 第 3 章图像的数字化与显示 (7) 第 4 章图像变换与二维数字滤波 (10) 第 5 章图像编码与压缩 (16) 第 6 章图像增强 (20) 第 7 章图像复原 (25) 第 8 章图像分割 (27) 第 9 章数学形态学及其应用 (31) 第 10 章彩色图像处理 (32)

第1章概述 连续图像和数字图像如何相互转换 答:数字图像将图像看成是许多大小相同、形状一致的像素组成。这样,数字图像可以 用二维矩阵表示。将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像 (连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。图像的数字 化包括离散和量化两个主要步骤。在空间将连续坐标过程称为离散化,而进一步将图像的幅 度值(可能是灰度或色彩)整数化的过程称为量化。 采用数字图像处理有何优点 答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点: 1.具有数字信号处理技术共有的特点。(1)处理精度高。(2)重现性能好。(3)灵活性高。 2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。 3.数字图像处理技术适用面宽。 4.数字图像处理技术综合性强。 数字图像处理主要包括哪些研究内容 答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的 图像。 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。 答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可

数字图像处理期末复习题2教学总结

第六章图像的锐化处理 一.填空题 1. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。垂直方向的微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 2. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Roberts交叉微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 3. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Sobel 微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 4. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Priwitt微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 5. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Laplacian微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 6. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Wallis 微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 7. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。水平方向的微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 8. 图像微分______________了边缘和其他突变的信息。(填“增强”或“削弱”) 9. 图像微分______________了灰度变化缓慢的信息。(填“增强”或“削弱”) 10. 图像微分算子______________用在边缘检测中。(填“能”或“不能”) 四.简答题 1. 图像中的细节特征大致有哪些?一般细节反映在图像中的什么地方? 2. 一阶微分算子与二阶微分算子在提取图像的细节信息时,有什么异同? 3. 简述水平方向的微分算子的作用模板和处理过程。 4. 简述垂直方向的微分算子的作用模板和处理过程。 5. 已知Laplacian微分算子的作用模板为:,请写出两种变形的Laplacian算子。解答: 1. 图像的细节是指画面中的灰度变化情况,包含了图像的孤立点、细线、画面突变等。孤 立点大都是图像的噪声点,画面突变一般体现在目标物的边缘灰度部分。 2. 一阶微分算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界 比较清晰;二阶微分算子获得的边界是比较细致的边界。反映的边界信息包括了许多的细节 信息,但是所反映的边界不是太清晰。 五.应用题 1. 已知Roberts算子的作用模板为:,Sobel算子的作用模板为: 。 设图像为:

数字图像处理期末复习

遥感与数字图像处理基础知识 一、名词解释: 数字影像图像采样灰度量化像素 数字影像:数字影像又称数字图像,即数字化的影像。基本上是一个二维矩阵,每个点称为像元。像元空间坐标和灰度值均已离散化,且灰度值随其点位坐标而异。 图像采样:指将在空间上连续的图像转换成离散的采样点集的操作。 灰度量化:将各个像素所含的明暗信息离散化后,用数字来表示。 像素:像素是A/D转换中的取样点,是计算机图像处理的最小单元 二、填空题: 1、光学图像是一个连续的光密度函数。 2、数字图像是一个_离散的光密度_函数。 3、通过成像方式获取的图像是连续的,无法直接进行计算机处理。此外,有些遥感图像是通过摄影方式获取的,保存在胶片上。只有对这些获取的图像(或模拟图像)进行数字化后,才能产生数字图像。数字化包括两个过程:___采样___和__量化___。 4、一般来说,采样间距越大,图像数据量____小____,质量____低_____;反之亦然。 5、一幅数字图像为8位量化,量化后的像素灰度级取值范围是________的整数。设该数字图像为600行600列,则图像所需要的存储空间为________字节。 6、设有图像文件为200行,200列,8位量化,共7个波段,则该图像文件的大小为________。 三、不定项选择题:(单项或多项选择) 1、数字图像的________。 ①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的 ③两者都是连续的④两者都是离散的 2、采样是对图像________。 ①取地类的样本②空间坐标离散化③灰度离散化 3、量化是对图像________。 ①空间坐标离散化②灰度离散化③以上两者。 4、图像灰度量化用6比特编码时,量化等级为________。 ①32个②64个③128个④256个 5、数字图像的优点包括________。 ①便于计算机处理与分析②不会因为保存、运输而造成图像信息的损失 ③空间坐标和灰度是连续的

数字图像处理:部分课后习题参考答案

第一章 1.连续图像中,图像为一个二维平面,(x,y)图像中的任意一点,f(x,y)为图像于(x,y)于处的值。 连续图像中,(x,y)的取值是连续的,f(x,y)也是连续的 数字图像中,图像为一个由有限行有限列组成的二维平面,(i,j)为平面中的任意一点,g(i,j)则为图像在(i,j)处的灰度值,数字图像中,(i,j) 的取值是不连续的,只能取整数,对应第i行j列,g(i,j) 也是不连续的,表示图像i行j列处图像灰度值。 联系:数字图像g(i,j)是对连续图像f(x,y)经过采样和量化这两个步骤得到的。其中 g(i,j)=f(x,y)| x=i,y=j 2. 图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有 区别,如下图所示。 图像处理的重点是图像之间进行的变换。尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间 图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。 图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。 如果说图像分析主要以观察者为中心来研究客观世界,那么图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)的。 联系:图像处理、图像分析和图像理解处在三个抽象程度和数据量各有特点的不同层次上。 图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。图像理解主要是高层操作,基本上是对从描述抽象出来的符号进行运算,其处理过程和方法与人类的思维推理有许多类似之处。 第二章:

数字图像处理部分作业答案

3.数字化图像的数据量与哪些因素有关? 答:数字化前需要决定影像大小(行数M、列数N)和灰度级数G的取值。一般数字图像灰度级数G为2的整数幂。那么一幅大小为M*N,灰度级数为G的图像所需的存储空间M*N*g(bit),称为图像的数据量 6.什么是灰度直方图?它有哪些应用?从灰度直方图你能获得图像的哪些信息? 答:灰度直方图反映的是一幅图像中各灰度级像素出项的频率之间的关系。以灰度级为横坐标,纵坐标为灰度级的频率,绘制频率同灰度级的关系图就是灰度直方图。 应用:通过变换图像的灰度直方图可以,使图像更清晰,达到图像增强的目的。 获得的信息:灰度范围,灰度级的分布,整幅图像的平均亮度。但不能反映图像像素的位置。 2. 写出将具有双峰直方图的两个峰分别从23和155移到16和255的图像线性变换。 答:将a=23,b=155 ;c=16,d=255代入公式: 得 1,二维傅里叶变换有哪些性质?二维傅里叶变换的可分离性有何意义? 周期性,线性,可分离性,比例性质,位移性质,对称性质,共轭对称性,差分,积分,卷积,能量。 意义:分离性表明:二维离散傅立叶变换和反变换可用两组一维离散傅立叶变换和反变换来完成。 8.何谓图像平滑?试述均值滤波的基本原理。 答:为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。 均值滤波是一种局部空间域处理的算法,就是对含有噪声的原始图像f(x,y)的每个像素点取一个领域S,计算S中所有像素的灰度级平均值,作为空间域平均处理后图像g(x,y)像素值。 9.何谓中值滤波?有何特点? 答:中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,它是一种非线性的图像平滑法。 它对脉冲干扰及椒盐噪声的的图像却不太合适。抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多 6图像几何校正的一般包括哪两步?像素灰度内插有哪三种方法?各有何特点? 答:1)建立失真图像和标准图像的函数关系式,根据函数关系进行几何校正。 2)最近邻插值,双线性插值,三次卷积法 3)最近邻插值:这种插值方法运算量小,但频域特性不好。 3、若f(1,1)=4,f(1,2)=7,f(2,1)=5,f(2,2)=6,分别按最近邻元法、双线性插值法确定点(1.2,1.6)的灰度值。 最近邻元法:点(1.2,1.6)离(1,2)最近,所以其灰度值为7.双线性法:f(i+u,j+v)=(1-u)(1-v)f(i,j)+(1-u)vf(i,j+1)+u(1-v)f(i+1,j)+uvf(i+1,j+1) 将i=1,j=1,u=0.2,v=0.6代入,求得:f(i+u,j+v)=5.76。四舍五入取整后,得该点其灰度值为6

数字图像处理期末考题

数字图像处理 一、填空题 1、数字图像的格式有很多种,除GIF格式外,还有jpg 格式、tif 格式。 2、图像数据中存在的有时间冗余、空间冗余、结构冗余、信息熵冗余、知识 冗余、视觉冗余。 3、在时域上采样相当于在频域上进行___延拓。 4、二维傅里叶变换的性质___分离性、线性、周期性与共轨对称性、__位 移性、尺度变换、旋转性、平均值、卷积。(不考) 5、图像中每个基本单元叫做图像元素;在早期用picture表示图像时就称为 像素。 6、在图象处理中认为线性平滑空间滤波器的模板越大,则对噪声的压制越 好 ;但使图像边缘和细节信息损失越多; 反之, 则对噪声的压制不好 ,但对图像的细节等信息保持好。模板越平,则对噪声的压制越好 ,但对图像细节的保持越差;反之,则对噪声的压制不好,但对图像细节和边缘保持较好。 7、哈达玛变换矩阵包括___+1 和___—1 两种矩阵元素。(不要) 8、对数变换的数学表达式是t = Clog ( 1 + | s | ) 。 9、傅里叶快速算法利用了核函数的___周期性和__对称性。(不要) 10、直方图均衡化的优点是能自动地增强整个图像的对比度。(不要) 二、选择题 ( d )1.一幅灰度级均匀分布的图象,其灰度范围在[0,255],则该图象的信息量为: a. 0 .255 c ( c )2.采用模板[-1 1]主要检测____方向的边缘。 a.水平 b.45 c.垂直 ( c )3. 下列算法中属于图象平滑处理的是: a.梯度锐化 b.直方图均衡 c. 中值滤波增强 ( b )4.图象与灰度直方图间的对应关系是: a.一一对应 b.多对一 c.一对多 d.都不对 ( a )5.对一幅图像采样后,512*512的数字图像与256*256的数字图像相比较具有的细节。 a.较多 b.较少 c.相同 d.都不对 ( b )6.下列算法中属于点处理的是: a.梯度锐化 b.二值化 c.傅立叶变换 d.中值滤波 ( d )7.二值图象中分支点的连接数为: .1 c ( a )8.对一幅100100像元的图象,若每像元用8bit表示其灰度值,经霍夫曼编码后压缩图象的数据量为40000bit,则图象的压缩比为: :1 :1 c.4:1 :2 ( d )9.下列算法中属于局部处理的是: a.灰度线性变换 b.二值化 c.傅立叶变换 d.中值滤波 ( b )10.下列图象边缘检测算子中抗噪性能最好的是: a.梯度算子算子算子d. Laplacian算子

数字图像处理期末复习试题3

1、数字图像:指由被称作像素的小块区域组成的二维矩阵。将物理图像行列划分后,每个小块区域称为像素(pixel)。 数字图像处理:指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术. 2、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。 3、灰度直方图:指反映一幅图像各灰度级像元出现的频率。 4、中值滤波:指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。 像素的邻域 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。即{(x=p,y=q)}p、q为任意整数。 像素的四邻域 像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 三、简答题( 每小题10分,本题共30 分 ): 1. 举例说明直方图均衡化的基本步骤。 直方图均衡化是通过灰度变换将一幅图象转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。 直方图均衡化变换:设灰度变换s=f(r)为斜率有限的非减连续可微函数,它将输入图象Ii(x,y)转换为输出图象Io(x,y),输入图象的直方图为Hi(r),输出图象的直方图为Ho(s),则根据直方图的含义,经过灰度变换后对应的小面积元相等:Ho(s)ds=Hi(r)dr 直方图修正的例子 假设有一幅图像,共有6 4(6 4个象素,8个灰度级,进行直方图均衡化处理。 根据公式可得:s2=0.19+0.25+0.2l=0.65,s3=0.19+0.25+0.2l+0.16=0.8l,s4=0.89,s5=0.95,s6=0.98,s7=1.00 由于这里只取8个等间距的灰度级,变换后的s值也只能选择最靠近的一个灰度级的值。因此,根据上述计算值可近似地选取: S0≈1/7,s 1≈3/7,s2≈5/7,s3≈6/7,s4≈6/7,s5≈1,s6≈l,s7≈1。 可见,新图像将只有5个不同的灰度等级,于是我们可以重新定义其符号: S0’=l/7,s1’=3/7,s2’=5/7,s3’=6/7,s4’=l。 因为由rO=0经变换映射到sO=1/7,所以有n0=790个象素取sO这个灰度值;由rl=3/7映射到sl=3/7,所以有1 02 3个象素取s 1这一灰度值;依次类推,有850个象素取s2=5/7这一灰度值;由于r3和r4均映射到s3=6/7这一灰度值,所以有656+329=98 5个象素都取这一灰度值;同理,有245+1 22+81=448个象素都取s4=1这一灰度值。上述值除以n=4096,便可以得到新的直方图。 2. 简述JPEG的压缩过程,并说明压缩的有关步骤中分别减少了哪种冗余? 答:分块->颜色空间转换->零偏置转换->DCT变换->量化->符号编码。颜色空间转换,减少了心理视觉冗余;零偏置转换,减少了编码冗余;量化减少了心理视觉冗余;符号编码由于是霍夫曼编码加行程编码,因此即减少了编码冗余(霍夫曼编码)又减少了像素冗余(行程编码)。 JPEG2000的过程:图像分片、直流电平(DC)位移,分量变换,离散小波变换、量化,熵编码。3、Canny边缘检测器 答:Canny边缘检测器是使用函数edge的最有效边缘检测器。该方法总结如下:1、图像使用带有指定标准偏差σ的高斯滤波器来平滑,从而可以减少噪声。2、在每一点处计算局部梯度g(x,y)=[G2x+G2y]1/2 和边缘方向α(x,y)=arctan(Gy/Gx)。边缘点定义为梯度方向上其强度局部最大的点。3、第2条中确定的边缘点会导致梯度幅度图像中出现脊。然后,算法追踪所有脊的顶部,并将所有不在脊的顶部的像素设为零,以便在输出中给出一条细线,这就是众所周知的非最大值抑制处理。脊像素使用两个阈值T1和T2做阈值处理,其中T1

数字图像处理复习整理

《数字图像处理》复习 第一章绪论 数字图像处理技术的基本容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表示与描述)、彩色图像处理和多光谱及高光谱图像处理、形态学图像处理 第二章数字图像处理基础 2-1 电磁波谱与可见光 1.电磁波射波的成像方法及其应用领域: 无线电波(1m-10km)可以产生磁共振成像,在医学诊断中可以产生病人身体的横截面图像 ☆微波(1mm-1m)用于雷达成像,在军事和电子侦察领域十分重要 红外线(700nm-1mm)具有全天候的特点,不受天气和白天晚上的影响,在遥感、军事情报侦察和精确制导中广泛应用 可见光(400nm-700nm)最便于人理解和应用最广泛的成像方式,卫星遥感、航空摄影、天气观测和预报等国民经济领域 ☆紫外线(10nm-400nm)具有显微镜方法成像等多种成像方式,在印刷技术、工业检测、激光、生物学图像及天文观测 X射线(1nm-10nm)应用于获取病人胸部图像和血管造影照片等医学诊断、电路板缺陷检测等工业应用和天文学星系成像等 伽马射线(0.001nm-1nm)主要应用于天文观测 2-2 人眼的亮度视觉特征 2.亮度分辨力——韦伯比△I/I(I—光强△I—光照增量),韦伯比小意味着亮度值发生较小变化就能被人眼分辨出来,也就是说较小的韦伯比代表了较好的亮度分辨力 2-3 图像的表示 3. 黑白图像:是指图像的每个像素只能是黑或白,没有中间的过渡,一般又称为二值图像 (黑白图像一定是二值图像,二值图像不一定是黑白图像) 灰度图像:是指图像中每个像素的信息是一个量化了的灰度级的值,没有彩色信息。 彩色图像:彩色图像一般是指每个像素的信息由R、G、B三原色构成的图像,其中的R、B、G是由不同的灰度级来描述的。 4.灰度级L、位深度k L=2^k 5.储存一幅M×N的数字图像所需的比特b=M×N×k 例如,对于一幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit) 2-4 空间分辨率和灰度级分辨率 6.空间分辨率是图像中可分辨的最小细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。一种常用的空间分辨率的定义是单位距离可分辨的最少黑白线对数目(单位是每毫米线对数),比如每毫米80线对。对于一个同样大小的景物来说,对其进行采样的空间分辨率越高,采样间隔就越小,图片的质量就越高。 7.灰度级分辨率是指在灰度级别中可分辨的最小变化,通常把灰度级级数L称为图像的灰度级分辨率(灰度级通常是2的整数次幂) 8.在图像空间分辨率不变的情况下,采样数越少,图像越小。同时也证实了,在景物大小不变的情况下,图像阵列M×N越小,图像的尺寸就越小;

数字图像处理第三版中文答案--冈萨雷斯

数字图像处理第三版中文答案--冈萨雷斯

第二章 2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形) 对应点的视网膜图像的直径x 可通过如下图题2.1所示的相似三角形几何关系得到,即 ()()017 02302.x .d = 解得x=0.06d 。根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小25327.?π成像单元的阵列。假设成像单元之间的间距相等,这表明在总长为1.5 mm (直径) 的一条线上有655个成像单元和654个成像单元间隔。则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m 。 如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。换句话说, 眼睛不能检测到以下直径的点: m .d .x 61011060-?<=,即m .d 6 10318-?<

2.2 当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。2.1节描述的视觉过程在这种情况下起什么作用? 亮度适应。 2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。美国的商用交流电频率是77HZ 。问这一波谱分量的波长是多少? 光速c=300000km/s ,频率为77Hz 。 因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km. 2.5 根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为: ])0()0[(22),(y y x x Ke y x i -+--= 的光源照射。为简单起见,假设区域的反射是恒定的,并等于1.0,令K=255。如果图像用k 比特的强度分辨率进行数

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案 第一章和第二章作业:1.简述数字图像处理的研究内容。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 3.列举并简述常用表色系。 1.简述数字图像处理的研究内容? 答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面, 将这几个方面展开,具体有以下的研究方向: 1.图像数字化, 2.图像增强, 3.图像几何变换, 4.图像恢复, 5.图像重建, 6.图像隐藏, 7.图像变换, 8.图像编码, 9.图像识别与理解。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。 根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。 图像处理着重强调在图像之间进行的变换。比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。图像处理主要在图像的像素级上进行处理,处理的数据量非常大。图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。 图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。 第三章图像基本概念

数字图像处理复习题

第一章绪论 一.选择题 1. 一幅数字图像是:( ) A、一个观测系统 B、一个有许多像素排列而成的实体 C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 2. 半调输出技术可以:( ) A、改善图像的空间分辨率 B、改善图像的幅度分辨率 C、利用抖动技术实现 D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 3. 一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:( ) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。 4. 图像中虚假轮廓的出现就其本质而言是由于:( ) A、图像的灰度级数不够多造成的 B、图像的空间分辨率不够高造成 C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃,图像中的虚假轮廓最易在平滑区域内产生。 5. 数字图像木刻画效果的出现是由于下列原因所产生的:() A、图像的幅度分辨率过小 B、图像的幅度分辨率过大 C、图像的空间分辨率过小 D、图像的空间分辨率过大 提示:图像中的木刻效果指图像中的灰度级数很少 6. 以下图像技术中属于图像处理技术的是:()(图像合成输入是数据,图像分类输出 是类别数据) A、图像编码 B、图像合成 C、图像增强 D、图像分类。 提示:对比较狭义的图像处理技术,输入输出都是图像。 解答:1.B 2.B 3.A 4.A 5.A 6.AC 二.简答题 1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。 2. 什么是图像识别与理解? 3. 简述数字图像处理的至少3种主要研究内容。 4. 简述数字图像处理的至少4种应用。 5. 简述图像几何变换与图像变换的区别。 解答: 1. ①图像数字化:将一幅图像以数字的形式表示。主要包括采样和量化两个过程。②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。③图像的几何变换:改变图像的大小或形状。④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。 2. 图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望

南昌大学数字图像处理(双语第三版)课后答案第八章

数字图形处理第八章课后偶数题号作业 8.2 (a)一个单一的原始数据包含2n 位。而最大的长度为2n ,因此需要n 位来表示。每一个行的起始坐标还需要n 位,并且它可以随意的设置在2n 的像素位置。 由21n n =和)1(2)(22N N n avg avg n n n n + =++ =得知: 1) 1(22 2 1>+ = = N n n avg n n C ,即得:12 1 -< -n n avg N (b)当10=n 时,2.5010 10 110 2 2 9 1 10=-= -< -N avg 8.4 根据灰度级数据{12,12,13,13,10,13,57,54}可得这条线经过精度为6比特的均匀量化可得他的IGS 编码。具体如下所示: 例如108=01101100,而其中0110为6,可得IGS 量化编码值为-12。同理,根据灰度级数据可得相应的量化误差为{-12,-11,-7,-4,-12,-13,-8,-3}所以得到: 84 .7)492(8 1)96416916164925144(8 1== +++++++= e rms 相应信噪比计算如下: 353 492 96 64160176240 12814496 2 2222 2 22 =+++++ ++= SNR rms 8.6 因为x a x b b a log log log 1 = 得知,一个哈特利(Hartley)等于3.322 bits 。通常 信息以e 为底的单元通常称为一个奈特(nat),从而一个奈特等于1.4427 bits 。 8.8 有两种代码可知:0,11,10和1,00,01。而这些代码相互补充。是根据霍夫曼编码规则得以计算的。 8.10 由题意可得,为a a a a a a a a a 422252663

数字图像处理习题解答

第二章 (2.1、2.2略) 2.4 图像逼真度就是描述被评价图像与标准图像的偏离程度。 图像的可懂度就是表示它能向人或机器提供信息的能力。 2.5 所以第一副图像中的目标人眼观察时会觉得更亮些。 第三章 3.1 解:(a )??+-= y x dxdy vy ux j y x f v u F ,)](2exp[),(),(π (b ) 由(a )的结果可得: 根据旋转不变性可得: (注:本题由不同方法得到的最终表达式可能有所不同,但通过变形可以互换) 3.2 证:作以下代换: ?? ?==θθ s i n c o s r y r x ,a r ≤≤0,πθ20≤≤ 利用Jacobi 变换式,有: 3.3 二维离散傅立叶变换对的矩阵表达式为 当4N =时 3.4 以3.3 题的DFT 矩阵表达式求下列数字图像的 DFT: 解:(1) 当N=4 时 (2) 3.5解: 3.6 解: 3.11 求下列离散图像信号的二维 DFT , DWT,DHT 解: (1) (2) 第四章 4.1阐述哈夫曼编码和香农编码方法的理论依据,并扼要证明之。 答:哈夫曼编码依据的是可变长度最佳编码定理:在变长编码中,对出现概率大的信息符号赋予短码字,而对出现概率小的信息符号赋予长码字。如果码字长度严格按照所对应符号出现概率大小逆序排列,则编码结果平均码字长度一定小于其它排列方式。 香农编码依据是:可变长度最佳编码的平均码字长度。 证明:变长最佳编码定理 课本88页,第1行到第12行 变长最佳编码的平均码字长度 课本88页,第14行到第22行 4.2设某一幅图像共有8个灰度级,各灰度级出现的概率分别为

数字图像处理计算题复习精华版

30452计算题复习 一、直方图均衡化(P68) 对已知图像进行直方图均衡化修正。 例:表1为已知一幅总像素为n=64×64的8bit数字图像(即灰度级数为8),各灰度级(出现的频率)分布列于表中。要求将此幅图像进行均衡化修正(变换),并画出修正(变换)前后的直方图。 表1 解:对已知图像均衡化过程见下表:

r 7=7 81 7 7→7 画出直方图如下: (a )原始图像直方图 (b )均衡化后直方图 **以下部分不用写在答题中。 其中: ① r k 、n k 中k = 0,1,…,7 ② p r (r k ) = n k /n ,即计算各灰度级像素个数占所有像素个数的百分比,其中∑==k j j n n 0 ,在此题中n =64×64。 ③ ∑== k j j r k r p s 0 )(计,即计算在本灰度级之前(包含本灰度级)所有百分比之和。 ④ ]5.0)1int[(+-=计并k k s L s ,其中L 为图像的灰度级数(本题中L = 8),int[ ]表示对方括号中的数字取整。 ⑤ 并k k s s = ⑥ n sk 为映射对应关系r k →s k 中r k 所对应的n k 之和。 ⑦ n n s p sk k s /)(=,或为映射对应关系r k →s k 中r k 所对应的p r (r k )之和。

二、 模板运算 使用空间低通滤波法对图像进行平滑操作(P80) 空间低通滤波法是应用模板卷积方法对图像每一个像素进行局部处理。模板(或称掩模)就是一个滤波器,它的响应为H (r ,s ),于是滤波输出的数字图像g(x ,y )用离散卷积表示为 )6.2.4() ,(),(),(∑∑-=-=--= l l s k k r s r H s y r x f y x g 式中:x ,y = 0,1,2,…,N -1;k 、l 根据所选邻域大小来决定。 具体过程如下: (1)将模板在图像中按从左到右、从上到下的顺序移动,将模板中心与每个像素依次重合(边缘像素除外); (2)将模板中的各个系数与其对应的像素一一相乘,并将所有的结果相加; (3)将(2)中的结果赋给图像中对应模板中心位置的像素。 对于空间低通滤波器而言,采用的是低通滤波器。由于模板尺寸小,因此具有计算量小、使用灵活、适于并行计算等优点。常用的3*3低通滤波器(模板)有: 模板不同,邻域内各像素重要程度也就不同。但无论怎样的模板,必须保证全部权系数之和为1,这样可保证输出图像灰度值在许可范围内,不会产生灰度“溢出”现象。 1 7 1 8 1 7 1 1 1 1 1 5 1 1 1 1 1 1 5 5 5 1 1 7 1 1 5 5 5 1 8 1 8 1 1 5 1 1 1 1 8 1 1 5 1 1 8 1 1 1 1 5 1 1 1 1 1 7 1 8 1 7 1 1 解:低通滤波的步骤为: (1)将模板在图像中按从左到右、从上到下的顺序移动,将模板中心与每个像素依次重合(边缘像素除外);

数字图像处理课后题答案

1. 图像处理的主要方法分几大类 答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。 空域法:直接对获取的数字图像进行处理。 频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空 间域,得到图像的处理结果 2. 图像处理的主要内容是什么 答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。图像变换:对图像进 行正交变换,以便进行处理。图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。图 像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。图像编码:在满足一定的图形质量要求下 对图像进行编码,可以压缩表示图像的数据。图像分析:对图像中感兴趣的目标进行检测和测量,从而获 得所需的客观信息。图像识别:找到图像的特征,以便进一步处理。图像理解:在图像分析的基础上得出 对图像内容含义的理解及解释,从而指导和规划行为。 3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。 答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。通常,表 示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格 即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点 数。单位是“像素点/单位长度” 图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素 可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色 数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表 示,这一数据位的位数即为像素深度,也叫图像深度。图像深度越深,能够表现的颜色数量越多,图像的 色彩也越丰富。) 图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。 4. , 5. 什么是采样与量化 答:扫描:按照一定的先后顺序对图像进行遍历的过程。采样:将空间上连续的图像变成离散点的操作。 采样过程即可看作将图像平面划分成网格的过程。量化:将采样得到的灰度值转换为离散的整数值。灰度 级:一幅图像中不同灰度值的个数。一般取0~255,即256个灰度级 5.说明图像函数 的各个参数的具体含义。 答:其中,x 、y 、z 是空间坐标,λ是波长,t 是时间,I 是像素点的强度。它表示活动的、彩色的、三维 的视频图像。对于静止图像,则与时间t 无关;对于单色图像,则波长λ为常数;对于平面图像,则与坐 标z 无关。 1.请解释马赫带效应,马赫带效应和同时对比度反映了什么共同的问题 答:马赫带效应:基于视觉系统有趋向于过高或过低估计不同亮度区域边界值的现象。同时对比度现象: 此现象表明人眼对某个区域感觉到的亮度不仅仅依赖它的强度,而与环境亮度有关 共同点: 它们都反映了人类视觉感知的主观亮度并不是物体表面照度的简单函数。 2. 色彩具有那几个基本属性描述这些基本属性的含义。 答:色彩是光的物理属性和人眼的视觉属性的综合反映。色彩具有三个基本属性:色调、饱和度和亮度 色调是与混合光谱中主要光波长相联系的(红绿蓝)饱和度表示颜色的深浅程度,与一定色调的纯度有关, 纯光谱色是完全饱和的,随着白光的加入饱和度逐渐减少。(如深红、浅红等)亮度与物体的反射率成正比。 颜色中掺入白色越多就越明亮,掺入黑色越多亮度越小。 { 3.什么是视觉的空间频率特性什么是视觉的时间特性 答:视觉的空间频率特性:空间频率是指视像空间变化的快慢。明亮的图像(清晰明快的画面)意味着有 ),,,,(t z y x f I λ=

数字图像处理期末考试卷

复习题 一、填空题 1、存储一幅大小为1024 1024 ,256个灰度级的图像,需要8M bit。 2、依据图像的保真度,图像压缩可分为有损和无损。 3、对于彩色图像,通常用以区别颜色的特性是亮度、色调、 饱和度。 4、模拟图像转变为数字图像需要经过采样、量化两个过程。 5、直方图修正法包括直方图的均衡化和规定化。 6、图像像素的两个基本属性是空间位置和像素值; 7、一般来说,模拟图像的数字化过程中采样间隔越大,图像数据量小, 质量差; 8、图像处理中常用的两种邻域是四领域和八领域; 9、在频域滤波器中,Butter-worth滤波器与理想滤波器相比,可以避免或 减弱振铃现象。 10、高通滤波法是使低频受到抑制而让高频顺利通过,从而实 现图像锐化。 二、判断题 1、马赫带效应是指图像不同灰度级条带之间灰度交界处,亮侧亮度上冲, 暗侧亮度下冲的现象。(Y ) 2、均值平滑滤波器可用于锐化图像边缘。(N ) 3、变换编码常用于有损压缩。(Y ) 4、同时对比效应是指同一刺激因背景不同而产生的感觉差异的现象. (Y ) 5、拉普拉斯算子可用于图像的平滑处理。(N ) 三、选择题 6、图像与图像灰度直方图的对应关系是(B ) A 一对多 B 多对一 C 一一对应 D 都不对 7、下列图像处理算法中属于点处理的是(B )

A 图像锐化 B 二值化 C 均值滤波 D 中值滤波 8、下列图像处理中属于图像平滑处理的是(C) A Hough变换 B 直方图均衡 C 中值滤波 D Roberts算子 9、下列图像处理方法中,不能用于图像压缩的是(A ) A 直方图均衡 B DCT变换 C FFT变换 D 小波变换 四、名词解释 1、数字图像p1 2、灰度直方图 2、图像锐化4、图像复原 五、简答题 1、简述数当在白天进入一个黑暗剧场时,在能看清并找到空座位时需要适 应一段时间,试述发生这种现象的视觉原理。(书p21 第三点) 2、你所知道的数字图像处理在实际中哪些领域有应用?结合所学知识,就 其中一种应用,简单叙述原理。(书p8) 3、简述数字图像处理的特点。(书p ) 4、简述图像增强的目的及常用手段。( 书p ) 六、计算题 1.试求N=4的哈达玛变换矩阵(变换核)和N=4的沃尔什变换矩阵 (变换核)( 书p48 ) 2.假定一幅20×20像素的图像共有5个灰度级s1, s2, s3, s4, s5, 在图 像中出现的概率分别为0.4, 0.175, 0.15, 0.15, 0.125,试对各灰度级 进行Huffman编码。

相关文档
最新文档