全国高中数学课堂竞赛活动教案

全国高中数学课堂竞赛活动教案
全国高中数学课堂竞赛活动教案

龙岗区一年教龄教师教学基本功竞赛课教案

【课 题】正、余弦函数单调性的应用

【教 材】苏教版普通高中课程标注实验教科书——数学必修(4)

【授课教师】坪山高级中学 刘志强

【教学目标】

◆知识目标:

1、进一步理解、掌握正弦函数、余弦函数的图象

2、进一步理解、掌握正弦函数、余弦函数的性质

3、能应用正、余弦函数的单调性解决不求值比较大小问题

4、能应用正、余弦函数的单调性解决函数sin()y x ω?=+(或cos()y x ω?=+)的单调性问题

◆能力目标:

1、通过图象回顾函数的性质,体会“数”与“形”相结合的思想,会用“形”来解决“数”的问题

2、能用所学知识所学的方法解决未知的问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识;

◆情感目标:

1、感受类比转化以及整体代换的解题方法;

2、通过一题多变,体会数学知识的层次性以及其千变万化中所展现出来的数学魅力。

【教学重点】应用正、余弦函数的单调性解决不求值比较大小问题以及求函数sin()y x ω?=+(或cos()y x ω?=+)的单调区间问题

【教学难点】当0ω<时,函数sin()y x ω?=+(或cos()y x ω?=+)的单调性问题

【教学方法】启发引导式和一题多变相结合

【教具准备】三角板、多媒体(电子白板)教学设备

【教学过程】

一、感性认识阶段——以旧带新,提出课题

师:上两节课,我们学习了正、余弦函数的图象和几个性质,现在我们来回顾一下,首先请回答哪一个是正弦曲线,哪一个是余弦曲线

(出示幻灯片1)(正余弦曲线)

借助多媒体展示图象,让学生直观上深刻体会正弦函数的性质

(出示幻灯片2)(正弦函数性质)

师:请大家按照上述数形结合的思路回顾一下余弦函数的相关性质

(出示幻灯片3)(余弦函数图象)

找一名学生回答余弦函数的性质,同时老师把正弦余弦函数的单调区间板书在黑板预先设计的位置。

【过度】师:好,现在我们已经对正余弦函数的图象和性质有了大致的了解和认识,我们又该如何利用这些性质呢?下面我们重点来看一下正余弦函数单调性的应用(板书课题)。

二、通过单调性概念结合图象解决第一类应用

师:下面我们首先看它的第一个应用:比较大小

(出示幻灯片4,展示例题1,让学生先思考再行讲解)

随后让学生做两个角度在同一个单调区间上比较大小的练习

【过度】如果所给的两个角度不在同一个单调区间上该如何办呢?

学生:通过诱导公式转化到同一个单调区间上再运用单调性求解。

【小结】比较大小的问题该如何办。

三、类比、探索、整体代换解决第二类应用

(出示幻灯片5)(求函数sin2

=的单调增区间)

y x

师:前天我们学习如何过画sin2

=的图象,大家回忆一下当时的处理

y x

方法。

学生:把2x看成一个整体

师:也就是整体代换的思想,借助已知的五点来选取未知的五点

【过度】那么我们又该如何解决这个函数的单调区间呢?

学生:一样的处理方法

师:共同完成解题过程

【确认】通过函数图象确认这种整体代换的思想求解出来的单调区间的方法是正确无误的。

讲练结合,做学案上的练习2

老师巡视找学生中出现的典型错误,再行讲解易错点。

【过度】

师:到现在大家会做类似的求解单调区间问题了吗?

学生:会了,整体代换

师:确定掌握了?

学生:掌握啦

四、通过一题多变——感受数学的层次性,提高能力,突破教学难点

活动:师生对对碰,我能考倒你,激发学生的学习兴趣。

(出示幻灯片6,例题2变式)

先出现一个变式,让学生做,并找一个学生到黑板上板演,再次熟悉整体代换的解决方法。

调动学生的积极性,让学生站在我的位置上进行出题,例题2还能怎么进行变化。

【过度】大家找出来很多变式,我从中找出一些具有代表性变式来看一下如何解决

出现变式2-4

学生回答解题思路,不需要求解。

对于变式4。

方案1,如何学生都认为直接整体代换就可以则直接进入解惑阶段

方案2,如何学生有分歧,首先请学生中正确的代表说一下如何做再进入解惑阶段。

【解惑】(使用电子白板)

把复合函数单调性的同增异减结论通过图象分析展示出来。

使用屏幕回放功能再次让学生体会这个过程

【过度】为什么对于变式4用整体代换就出现错误了呢?

引导:大家看x的系数,前面的变式一直是什么符号?现在变成了什么符号?

学生:负号

师:那我们又该如何变把x 的系数变成正数呢?

学生:诱导公式

师:怎么应用

师生共同完成这一个变换过程。

【小结】 如何应用正、余弦函数的单调性解决函数sin()y x ω?=+(或cos()y x ω?=+)的单调性问题

五、节节清:

清概念

(1)正弦函数的单调性

单调增区间 ,( ). 单调减区间 ,( ).

(2)余弦函数的单调性

单调增区间 ,( ). 单调减区间 ,( ). 清方法

(1)比较两个三角函数值的大小(解题思路)

(2)求函数 sin()y x ω?=+(或cos()y x ω?=+)的单调区间)(解题思路) 清题目 求函数 cos(2)3y x π

=- 的单调增区间(写在四清本上) 六、作业:

作业本:学案10课后作业第1题

思考题:函数sin()y A x ω?=+的图象与函数sin y x =的图象有什么关系。

【为下节课讲图象平移打下基础】

七、板书设计

第六届全国高中数学优质课观摩学习心得

第六届全国高中数学优质课观摩学习心得 2012年11月16日-19日,我有幸参加了"第六届青年杯"数学教师优质课评比"观摩活动”这次观摩活动中我共听了16节课,上课教师课题自备,包括《抛物线及其标准方程》,《平面与平面平行的判定》,《循环结构(二)》,《有趣的杨辉三角》,《平面几何中的向量方法》,《二分法与方程的解》,《二项式定理》,《算法的概念》,《导数的概念》,有些内容是两个老师同上,也就是同课异构,每节课都很有特色,听完课后,听有经验的专家点评,并向专家请教了许多问题,回来后结合自己的教学工作,思考实践,真正感受到这次观摩活动对提高自己的教育教学水平,有很大的帮助,使我受益匪浅,感受深刻; 一.学生教师双主体的地位改变 这次观摩活动中,每节课中学生的主体地位,教师的主导地位,得到较充分的体现,教师关注学生的学习过程,给学生提供“做”数学的学习机会,使学生有充分的时间去探究,交流,让学生在学习中去体验和经历数学。在实践过程中也注重培养学生的理性思维,真正教会学生怎样去解决一个新的问题。如《有趣的杨辉三角》这节课中,表现最为突出的是广西钦州灵山中学的赵金成老师,她的课堂气氛活跃,教学环节过度自然流畅,课堂上老师提出的问题大多数是由学生独立思考或相互探讨完成的,当然这与老师的引导和点播是分不开的。本节课赵老师运用小组合作学习方式,教学活动从学生的认知结构出发,通过四个问题设计 问题1:计算()n b a+ 通过填表你发现什么规律?问题2:观察“杨辉三角”你能得到哪些数字规律?(学生填到课前发的习题纸上)问题3.请与同组的同学交流你的想法,并试着证明你的猜想。问题4.请各小组派带代表发表你们的看法?让学生独立思考寻找杨辉三角中蕴含的数字规律,再通过小组全班的探讨交流证明发现的二项式系数的性质,注重运用了转化和化归的数学思想,把观察到的规律证明化归为组合数性质的应用,将合情推理和演绎推理有机结合,体现了真正的探究-猜想-证明的科学思维方法。学生有充分的思考探究与交流的时空,经历规律的发展过程,小组合作学习的成效明显。 二.语言简单明确,评价趋于多样化 这次参赛的各位老师语言精练,不管是老师的引导语还是提问语或评价语都十分的准确到

高中数学优质课-对数函数及性质教学设计

高中数学优质课-对数函数及性质教学设计. 》教学设计1 《对数函数及其性质一、教学分析、教学内容1

.教学内容为对数函数的概念、图象及性质本节是学习指数、指数函数和对数的后继内容,作出对数函数的图象以及得到相应根据描点法,对数函数既是指数函数的反函的对数函数性质.也是高中乃至以后的数学学习中应用极为广数,其研究方法以及研究的泛的重要初等函数之一,有利于进一步加深对函数思问题具有普遍意义.为进后面一步探究函数的综合应想方法的理解,用起到承上启下的作用.2、学生学习情况分析学

对数函数是高中引进的第二个初等函数,生在学习过程中,仍保留着初中生许多学习特能力发展正处于形象思维向抽象思维转折 阶点,由于函数概念十分抽象,段,但更注重形象思维.初中函数教学要求又以对数运 算为基础,同时,这双重问题增加了对较低,学生运算能力较弱,教师必须认识到这一点,教数函数教学的难度.学中要有控制的拔高,关注学习过程.但是只要 2 让学生类比指数函数的研究方法,通过课件演中,示,通过数形结合,让其感受1)a?0log y?x (a? 且a取不同值时反映出不同函数图象,并让学生观

a函数图象的规律.察、发现、归纳出图象的特征、、设计理念3以新课本节课以建构主义基本理论为指导, 针对学生的学习标基本理念为依据进行设计的,对数函数的教学首先要挖掘其与指数的联背景,系,其次,激发学生的学习热情,把学习的主动合作交流的权交给学生,为他们提供自主探究、机会,改变学生的学习方式.、教学目标4 知识技能 4.1(1)掌握对数函数的

概念、图像及性质.)应用对数函数性质,掌握求简单对数2(型函数定义域的方法;)掌握三种简单的分别比较对数、真数(3 .和底数大小的方法4.2过程与方法 利用指数函数以及性质导出对数函数概念在学习和应用对数函数性质的过和相应的函数, 3 .程中,着重数学思想方法的培养指数函数和对数函数概念1()类比的思想. 和性质的类比.

中学数学优质课评选规划方案.doc

中学数学优质课评选方案 根据《 2015—— 2016 学年“研训赛”工作方案》要求,拟于2016 年3 月举行中学数学优质课评选及观摩活动。现将有关事宜通知如下: 一、活动目的 重在参与,重在过程,重在交流,重在研究。通过中学数学优质课评选与观 摩活动,交流课堂教学经验,研讨提高中学数学课堂教学质量的方法,推动广大数学教师的专业化发展。 二、活动时间、地点 本次活动时间拟定于2016 年 3 月,具体时间、地点另行通知。 三、评选的有关事宜及要求 1.参评教师条件。参与2015——2016年研训赛活动的中学数学学科在职专 任教师,各乡镇中心校和县直学校在本单位上学年三轮赛课评选出的优质课教 师。 2.选拔推荐。本次活动由乡镇中心校、县直各学校负责,公开、公正、 公平,逐级选拔,择优推荐。 3.课题选择。在《函数》中任选一个课时,具体课题及教材版本选择由作 课教师自定。 4.评选项目及程序。本次评选活动分为录像课评审和现场作课两个阶段: ( 1)录像课评审。由评委对选手提交的录像课提前进行评审,确定一等奖;(2)现场作课:录像课被评为一等奖的选手进入本阶段,内容包括:作课( 40 分钟)、“教学设计说明与反思”(5 分钟,可采用课件展示说明)。 5.评奖办法。本次活动设一、二等奖,由教研室组织专家组评审确定奖 次。 6.材料报交。 (1)优质课教师评价表。本次活动的所有参评教师均需填写《2015—— 2016 学年中学数学优质课教师评价表》(见附件 1)。纸质加盖公章。 (2) 教学视频。一等奖候选教师须提供本节课完整的教学视频,时间40 分钟。视频要保证正常播放(教学视频中直接注明课题、作课人及单位,拷贝U 盘),播放流畅,图像、声音清晰,全面反映教师和学生的活动。 (3)教学设计和教学设计说明纸质和电子稿各一份(电子稿,word,A4) 。其中,教学设计主要包括:教学内容分析;教学目标设置;学生学情分析;④教学策略分析;⑤教学过程。教学设计说明大约 2000 字左右,大致包括以下

高中数学等比数列前n项和优质课比赛教案设计

等比数列的前n项和 一、教材分析 本节课选自《普通高中课程标准数学教科书·数学(必修5)》(北师大版)第一章第三节第一课时。从在教材中的地位与作用来:看《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 二、学情分析 从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。 三、设计思想 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,让学生通过个人、小组、集体等多种解难释疑的尝试活动,深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下: 四、教学目标 1、掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。 2、通过等比数列的前n项和公式的推导过程,体会错位相减法以及分类讨论的思想方法。 3、通过对等比数列的学习,发展数学应用意识,逐步认识数学的科学价值、应用价值,发展数学的理性思维。

五、教学重点与难点 重点:掌握等比数列的前n 项和公式,能用等比数列的前n 项和公式解决相关问题。 难点:错位相减法以及分类讨论的思想方法的掌握。 六、教学过程 (一)复习回顾 1、(提问)等比数列的定义?通项公式?性质? 2、(提问)等差数列前n 项和公式是什么? (二)创设问题情景 引例:“一个穷人到富人那里去借钱,原以为富人不愿意,哪知富人一口答 应了下来,但提出了如下条件:在30天中,富人第一天借给穷人1万元,第二天借给穷人2万元,以后每天所借的钱数都比上一天多1万;但借钱第一天,穷人还1分钱,第二天还2分钱,以后每天所还的钱数都是上一天的两倍,30天后互不相欠.穷人听后觉得挺划算,本想定下来,但又想到此富人是吝啬出了名的,怕上当受骗,所以很为难。”请在座的同学思考讨论一下,穷人能否向富人借钱? [设计一个学生比较感爱好的实际问题,吸引学生注重力,使其马上进入到研究者的角色中来!启发引导学生数学地观察问题,构建数学模型。] 学生直觉认为穷人可以向富人借钱,教师引导学生自主探求,得出: 穷人30天借到的钱:4652 30)301(3021'30=?+=+++= S (万元) 穷人需要还的钱:=++++=292302221 S ? [直觉先行,思辨引路,在矛盾冲突中引发学生积极的思维!] 教师紧接着把如何求=++++=292302221 S ?的问题让学生探究: 292302221++++= S ①若用公比2乘以上面等式的两边,得到 302923022222++++= S ② 若②式减去①式,可以消去相同的项,得到: 1073741823123030=-=S (分) ≈1073(万元) > 465(万元) 答案:穷人不能向富人借钱 (三)引导学生用“特例到一般”的研究方法,猜想数学规律。

全国高中数学说课大赛获奖优秀说课稿汇编

全国高中数学说课大赛获奖优秀说课稿汇编 一、教学理念 教师的教学方案必须建立在学生的基础之上。新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。” 笔者认为教学中成功的关健在于: 教师的“教”立足于学生的“学”。 1、从学生的思维实际出发,激发探索知识的愿望,不同发展阶段的学生在认知水平、认知风格和发展趋势上存在差异,处于同一阶段的不同学生在认知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。 2、遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的“规律性错误”比如学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误?当然应该是鼓励学生大胆地发表自己的意见、看法、想法。学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。 数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

高中数学《引言》79PPT课件 一等奖比赛优质课

※四川省2018年高中数学优秀课展评活动※ 1 《数列》章引言课教学设计 (普通高中课程标准实验教科书数学·人教A版·必修5·第二章) 成都树德中学 刘豹 一、内容和内容解析 1. 章引言是一章学习的起源 章引言就是高中数学一个章节、一个知识板块教学的第一课时.在这一课时中,教师往往要取材于章头图、章节引言,关注数学的发展过程,把握高中数学知识的整体结构,结合学生的实际认知水平,设计合理的问题导引,带领学生建构本章的主要知识脉络,揭示本章的基本思想方法,唤起学生对本章学习的热情.章引言课是高中数学教学中必不可少,又是需要重点关注的课型之一. 2. 数列是洞开离散函数的专列 数列作为一种特殊的函数,在现实生活中有着广泛的应用,它是揭示自然规律的离散函数模型.承接函数的基本概念、性质和几个连续的函数模型(指数函数、对数函数、幂函数、

三角函数)之后学习数列,不仅是函数概念和性质的又一次应用和深化,而且也为后续算法中的“程序框图和语句”,推理证明中的“数学归纳法”,甚至微积分中“积分”等重要概念的建立奠定了学习的基石.同时,数列作为一种离散函数模型,其规律的把握既重要又特殊.高中阶段,刻画数列规律的方式主要有三种:通项公式,递推公式和前n项和公式. 通项公式与前n项和公式都容易利用函数思想加以解释,而递推公式所包含的递推思想,以及这几种方式之间的联系与转化则是数列学习中的重点内容. 由此,本节课的教学重点是: (1) 通过类比函数的学习,揭示本章的知识脉络和基本思想方法; (2) 通过探讨与互动初步体会研究数列的基本方法,凸显递推关系在研究数列规律中的特殊地位. 二、目标和目标解析 数列章引言课是数列学习的第一课时,本课时的教学应立足于学生已有的认知经验和数列这一章中的重点内容,通过创设合理的情境和问题导引,让学生初步了解数列的概念和本章的主要内容,发现研究数列的基本方法,体会数列在数学自身发展中的价值和现实生活的简单应用.具体目标如下:

高中数学《排列与排列数公式》公开课优秀教学设计

《排列与排列数公式》(第1课时)教学设计 一.教学内容解析 本节课是人教版A版《数学选修2-3》第一章第2节的第一节课,排列是一类特殊而重要的计数问题,教科书从简化运算的角度提出了排列的学习任务,通过具体实例概括而得出排列的概念,应用分步计数原理得出排列数公式,对于排列,有两个想法贯穿始终,一是根据一类问题的特点和规律寻找简便的计数方法,就像乘法作为加法的简便运算一样;二是注意应用两个计数原理思考和解决问题。 本节课具有承上启下的地位,理解排列的概念是应用分步计数原理推导排列数公式的前提,对具体的排列问题的分析又为排列数公式提供了基础。排列数公式的推导过程是分布计数原理的一个重要应用,同时,排列数公式又是推导组合数公式的主要依据。 基于学生的认知规律,本节课只是对排列和排列数公式的初步认识,在后面知识的学习过程中,逐步加深理解和灵活运用。 本节课的教学重点是排列的概念、排列数公式,教学难点是排列的概念,排列的概念有一定的抽象性,本节课结合教科书的编排,采取了由特殊到一般的归纳思想来建构概念的理解过程,通过引导学生分析三个典型事例,从中归纳出共同特征,再进一步概括出本质特征,得出排列的定义,再跟进10个具体事例多角度加深对概念的理解,并多次强调一个排列的特点,n个不同的元素,取出m个元素,元素的顺序,奠定学生对排列定义的理解基础,为后面组合概念的提出埋下伏笔。同时通过有规律的展示分步计数原理得到的一长串排列数,为后面水到渠成得到排列数公式作好铺垫,排列数公式的简单应用体现了排列简化步骤的优点,让学生直观感受学习排列的必要。 二.教学目标设置 1.通过几个具体实例归纳概括出排列的概念,并能运用排列的判断具体的的计数问题是否为排列问题;能利用分步计数原理推导排列数公式,能简化分步计数原理解决问题的步骤。在排列数符号及其公式的产生过程中体现简化的思想。学生学习后能够对排列或非排列问题作出准确的判断,能够分析原因,能够简单应用排列数公式。 2.在教学过程中,通过排列的概念、排列数公式的得到培养学生的抽象概括能力、逻辑思维能力,以及解决与计数有关的问题时主动联系排列相关知识的能力,体会排列知识在实际生活中的应用,增强学生学习数学的兴趣。 3.让学生学会通过对各种事情现象、本质的分析,得出一般的规律,通过由简到繁的着色问题、由繁到简的数学符号的引入过程体会丰富的数学文化. 三.学生学情分析 学生对两个计数原理已很好的掌握,但凡计数的问题能够往分类或分步的方向进行思考,学生的层次决定了学生有较强的理解、分析、解决问题的能力,有着大量的生活中诸如设置密码、车牌号、排队、参加活动、接力赛...与计数问题有关的经验,对数学中归纳化归、有特殊到一般的思想方法比较敏感,但抽象概括的能力较弱,排列概念的得到,要独立将颜色、数字、人抽象为元素,对着色的方案抽象出顺序有一定的困难,需在独立思考加协作讨论的基础上再由老师引导突破教学难点。 四.教学策略分析 在本节课的教学过程中将数学文化和数学知识、实际生活有机的融合,让抽象的数学概念形成的过程丰富多元,避免单调枯燥。

最新高中数学优秀说课稿

精品文档 高中数学优秀说课稿等差数列 等差数列(第一课时)的内容。3.2本节课讲述的是人教版高一数学(上)§一、教材分析 1、教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 2、教学目标 根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标 a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。 b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。 c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。 3、教学重点和难点 根据教学大纲的要求我确定本节课的教学重点为: ①等差数列的概念。 ②等差数列的通项公式的推导过程及应用。 由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点 二、教法分析 针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。 三、 四、学法指导在引导分析 精品文档. 精品文档 留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。 四、教学程序 本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,

高中数学《指数函数(一)》优质课比赛教案设计

指数函数(一) 教学目标: 知识与技能: 理解指数函数的概念和意义,掌握指数函数的图像和性质,并能自觉、灵活地应用其性质(单调性、底数变化图像的变化规律、中介值)比较大小。 过程与方法: (1). 体会从特殊到一般再到特殊的研究问题的方法,培养学生 观察、猜想、归纳、概括的能力。 (2). 从数和形两方面理解指数函数的性质,体会数形结合、分 类讨论的数学思想方法,提高思维的灵活性,培养学生直 观、严谨的思维品质。 情感、态度与价值观: (1). 体验从特殊到一般再到特殊的学习规律,认识事物之间的 普遍联系与相互转化,培养学生用联系的观点看问题,激 发学生自主探究的精神,在探究过程中体验合作学习的乐 趣。 (2). 让学生在数形结合中感悟数学的统一美、和谐美,进一步 培养学生的学习兴趣。 教学重点:指数函数的图像和性质。 教学难点:指数函数的底数a对图像的影响。

教学过程: (一)、概念引入: 1. 某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成八个,以此类推,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数关系式是什么? 2.一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的12 ,设该物质的初始质量为1,经过x 年后的剩余质量为y ,你能写出,x y 之间的函数关系式吗? 1. 2()x y x N +=∈ 2. 1()()2x y x N +=∈ 上述两个函数都是正整数指数函数,但在实际问题中指数不一定都是正整数,比如在实例(2)中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,这就需要对正整数指数函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将正整数指数函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数。 一般地,函数(01x y a a a =>≠且)叫做指数函数,其中x R ∈。 结合指数的运算,引导学生分析为什么规定01a a >≠且,加深学生对概念的理解。 你能举出指数函数的例子吗? 练习1:判断下列函数是否为指数函数。 (1)3x y -= (2)2y x = (3)23x y += (4)(2)x y =-

高中数学《排列与排列数公式》公开课优秀教学设计.docx

《排列与排列数公式》(第 1 课时)教学设计 一.教学内容解析 本节课是人教版A 版《数学选修 2-3》第一章第 2 节的第一节课,排列是一类特殊而重 要的计数问题,教科书从简化运算的角度提出了排列的学习任务,通过具体实例概括而得出 排列的概念,应用分步计数原理得出排列数公式,对于排列,有两个想法贯穿始终,一是根 据一类问题的特点和规律寻找简便的计数方法,就像乘法作为加法的简便运算一样;二是注意应用两个计数原理思考和解决问题。 本节课具有承上启下的地位,理解排列的概念是应用分步计数原理推导排列数公式的前提,对具体的排列问题的分析又为排列数公式提供了基础。排列数公式的推导过程是分布计 数原理的一个重要应用,同时,排列数公式又是推导组合数公式的主要依据。 基于学生的认知规律,本节课只是对排列和排列数公式的初步认识,在后面知识的学习过程中,逐步加深理解和灵活运用。 本节课的教学重点是排列的概念、排列数公式,教学难点是排列的概念,排列的概念有一定的抽象性,本节课结合教科书的编排,采取了由特殊到一般的归纳思想来建构概念的 理解过程,通过引导学生分析三个典型事例,从中归纳出共同特征,再进一步概括出本质特 征,得出排列的定义,再跟进10 个具体事例多角度加深对概念的理解,并多次强调一个排 列的特点, n 个不同的元素,取出 m个元素,元素的顺序,奠定学生对排列定义的理解基础, 为后面组合概念的提出埋下伏笔。同时通过有规律的展示分步计数原理得到的一长串排列数,为 后面水到渠成得到排列数公式作好铺垫,排列数公式的简单应用体现了排列简化步骤的优点,让 学生直观感受学习排列的必要。 二.教学目标设置 1.通过几个具体实例归纳概括出排列的概念,并能运用排列的判断具体的的计数问题 是否为排列问题;能利用分步计数原理推导排列数公式,能简化分步计数原理解决问题的步 骤。在排列数符号及其公式的产生过程中体现简化的思想。学生学习后能够对排列或非排列问题 作出准确的判断,能够分析原因,能够简单应用排列数公式。 2.在教学过程中,通过排列的概念、排列数公式的得到培养学生的抽象概括能力、逻 辑思维能力,以及解决与计数有关的问题时主动联系排列相关知识的能力,体会排列知识在实际 生活中的应用,增强学生学习数学的兴趣。 3.让学生学会通过对各种事情现象、本质的分析,得出一般的规律,通过由简到繁的 着色问题、由繁到简的数学符号的引入过程体会丰富的数学文化. 三.学生学情分析 学生对两个计数原理已很好的掌握,但凡计数的问题能够往分类或分步的方向进行思考,学生的层次决定了学生有较强的理解、分析、解决问题的能力,有着大量的生活中诸如设置 密码、车牌号、排队、参加活动、接力赛...与计数问题有关的经验,对数学中归纳化归、 有特殊到一般的思想方法比较敏感,但抽象概括的能力较弱,排列概念的得到,要独立将颜 色、数字、人抽象为元素,对着色的方案抽象出顺序有一定的困难,需在独立思考加协作讨 论的基础上再由老师引导突破教学难点。 四.教学策略分析 在本节课的教学过程中将数学文化和数学知识、实际生活有机的融合,让抽象的数学概念形成的过程丰富多元,避免单调枯燥。

第八届全国高中青年数学教师优质课大赛:空间向量正交分解及其坐标表示教学设计(陈巴尔)

《空间向量的正交分解及其坐标表示》 p 浙江省温州中学陈巴尔

各位专家评委、老师们: 大家好!我是来自浙江省温州中学的数学教师陈巴尔.有机会参加本次全国青年教师课堂教学评比活动,并向全国的专家和老师们学习,我深感荣幸. 我的课题是《空间向量的正交分解及其坐标表示》,下面我就根据课程标准,结合我对教材的理解和所教学生的实际情况,从教学背景、教学目标、教学策略、教学过程、教学特点及反思五个方面对本节课作一个说明.希望各位专家评委、老师们对我的这节课例,多提宝贵意见. 一、教学背景分析 (一)教学内容解析 本节课是《普通高中课程标准实验教科书数学》人教A版选修2-1第三章《空间向量与立体几何》的3.1.4节《空间向量的正交分解及其坐标表示》属于新授课. 本章知识结构 《空间向量的正交分解及其坐标表示》属于空间向量及其运算部分中的第四节内容,位置处于在空间向量加减运算、数乘运算、数量积运算之后,坐标运算之前,意义十分明显,就是借助空间向量基本定理的建立,从而得出空间向量坐 标的定义,从而完成从向量到坐标的转化 .........,进而为后面的立体几何问题的解决服务. 但同时,学生已经在之前的必修4中学习过平面向量的相关知识.

因此,按照教学参考的教学建议,“宜多引导学生与平面向量及其运算作类比..,引导学生体会与平面向量及其运算有什么联系与区别,让学生经历向量由平面向空间推广的过程,使学生体会其中的数学思想方法:类比与归纳.....,体验数学在结.构.上的和谐性...与在推广过程中的问题,同时教学过程中,还应注意维度..增加..所带 来的影响.” “又因为教材在本章专门安排了 一个‘阅读与思考 向量概念的推广 与应用’,把二维向量,三维向量, 推广.. 为高维向量,并说明了其应用. 有条件的地区,可以引导学生学习这 个阅读材料,将空间向量的有关性质 向多维推广.... .” 而事实上,之前学生所学习的向 量共线定理,本质也是一样的,因此, 仔细研究教材的编写意图.... ,我们会发现这节课在整个高中向量课程教学中起到了一个重要的承上启下.... 的作用,即:完成了从必修4到选修2-1中的向量共线定理,平面向量基本定理,空间向量基本定理对比与统一.....,同时通过教材的阅读与思考.....

高中数学《基本不等式》公开课优秀教学设计

《§3.4.1基本不等式》的教学设计 教材:人教版高中数学必修5第三章 一、教学内容解析 本节选自人教版必修五的第三章第四节的第一课时,它是在学生学习完“不等式的性质”、“一元二次不等式及其解法”及“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究。在探究基本不等式内涵和证明的过程中,能够培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;在应用的过程中,通过对条件的转换和变式,有助于培养学生形成类比归纳的思想和习惯,进而形成严谨的思维方式。 二、教学目标设置 1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识; 2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。 3.通过例题让学生学会用基本不等式求最大值和最小值。 三、学生学情分析 对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。 四、教学策略分析 在教学过程中学生往往会直接应用不等式而忽略成立的条件,因此本节课的重点内容是对基本不等式的理解和运用。在运用过程中生成的规律,在学生做题时能灵活运用是难点,因此理解基本不等式和灵活应用基本不等式十本节课难点 五、教学过程: (一)情景引入 下图是2002年在北京召开的第24届国际数学家大会会议现场。

高中数学优质课、观摩课、示范课教学视频专辑

以下为高中数学视频专辑(专辑名称—视频个数) 浏览时请按下CTRL+点鼠标左键就可直接打开 这里只有几万视频中的一部分,更多视频请到https://www.360docs.net/doc/8410265594.html,浏览 2011年江苏省高中数学青年教师优秀课观摩与评比活动教学视频—13 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_16768579.html 2010年广东高中数学优质课评比教学视频—12 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_12065218.html 2009江苏省高中数学青年教师优质课教学视频—9 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_11971515.html 2006江苏省高中数学青年教师优质课观摩—27 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_11971514.html 高一数学优质课视频专辑—15 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_16172288.html 高中数学优质课视频—26 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_16162361.html 高中数学说课优质课观摩课集锦—6 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_16162358.html 高一数学优质课视频专辑教学视频—11 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_16159286.html 高二高三数学优质课视频专辑教学视频—26 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_16159285.html 新课程高中数学优质课评比教学视频—27 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_12065219.html 中小学数学教师基本功说课大赛决赛(重庆)--14 https://www.360docs.net/doc/8410265594.html,/playlist_show/id_16615550.html

高中数学第四届全国青年教师优秀课观摩大赛-导数的概念教案

高中数学第四届全国青年教师优秀课观摩大赛-导数的概念教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

说课课题:导数的概念(第三课时) 一、【教材分析】 1. 本节内容: 《导数的概念》这一小节分“曲线的切线”,“瞬时速度”,“导数的概念”,“导数的几何意义”四个部分展开,大约需要4个课时.第一、二课时学习“曲线的切线”,“瞬时速度”,今天说的是第三课时的内容导数概念的形成. 2. 导数在高中数学中的地位与作用: 导数作为微积分的核心概念之一,在高中数学中具有相当重要的地位和作用. 从横向看,导数处于一种特殊的地位.它是解决函数、不等式、数列、几何等多章节相关问题的重要工具,它以更高的观点和更简捷的方法简化中学数学的许多问题. 从纵向看,导数是对函数知识的深化,对极限知识的发展,同时为以后研究导数的几何意义及应用打下必备的基础,具有承前启后的重要作用. 二、【学情分析】 1. 有利因素:学生已较好地掌握了函数极限的知识,又刚刚学过曲线的切线、瞬时速度,并积累了大量的关于函数变化率的经验;另外,我班学生思维比较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础. 2. 不利因素:导数概念建立在极限基础之上,超乎学生的直观经验,抽象度高; 再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度. 三、【目标分析】 1. 教学目标 (1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法. (2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力. (3)情感、态度与价值观目标: ①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度. ②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观. 2. 教学重、难点 【确定依据】依据教学大纲的要求,结合本节内容和本班学生的实际

高中数学优秀说课稿 等差数列之欧阳学创编

高中数学优秀说课稿等差数列 本节课讲述的是人教版高一数学(上)§3.2等差数列(第一课时)的内容。 一、教材分析 1、教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 2、教学目标 根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标 a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想

方法并能运用。 b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。 c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。 3、教学重点和难点 根据教学大纲的要求我确定本节课的教学重点为: ①等差数列的概念。 ②等差数列的通项公式的推导过程及应用。 由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。 二、学情分析 对于高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的

全国高中青年数学教师优秀课 精品

课题:3.2 独立性检验的基本思想及其初步应用 长沙市第一中学李谦 教材:普通高中课程标准试验教科书《数学 选修2-3》3.2(人民教育出版社A版) 一、教学内容解析 1.本节课是高中数学(选修2-3)第三章统计案例的第二节独立性检验的基本思想及初步应用的第二课时,是在学习了相互独立事件概率、掌握了分类变量的概念,学会了用列联表和等高条形图直观判断两个分类变量是否有关系之后进行教学的.这节课的学习任务包括的知识类型主要有:事实性知识:数据统计分析、2×2列联表、独立性检验基本原理; 程序性知识:独立性检验的操作步骤; 元认知知识:独立性检验的基本思想及其初步应用. 2.独立性检验的基本思想及初步应用是高中数学教材的新增内容,也是一种重要的假设检验方法.本节内容将反证法与独立性检验的思想有机融合,将假设检验的思想应用到实际生活中去.3.独立性检验在选修2-3的第三章和选修1-2的第一章中都有设置,分别供理科选修和文科选修的学生学习,两部分的区别主要是在构造随机变量K2的过程中理科学生可以利用相互独立事件概率的乘法原理进行理解,而文科的学生没有学习相互独立事件概率这一内容.不过对于独立性检验思想的形成过程,教材的设计均还原了数学的本质,是对“观察发现、抽象概括、感性到理性”等数学认知规律的提炼与总结,能让学生充分体会数学的发生、发展. 二、教学目标设置 1.知识与技能 结合生活实例对分类变量进行简单的数据处理,运用2×2列联表、等高条形图直观判断两个分类变量是否有关系,了解独立性检验的基本思想、方法及初步应用. 2.过程与方法 让学生通过数据统计、分析和计算过程,从具体实例中学会用样本来估计总体的统计思想.通过主动探究、自主学习、小组合作交流,从具体实例“学科选择与性别是否相关”中抽象、概括、总结出独立性检验的基本原理和基本步骤,同时让学生充分体会知识的发现过程.3.情感、态度与价值观 通过本节课的学习,初步培养学生从生活中发现数学问题、解决数学问题的能力及抽象概括、数学建模、数据分析等数学素养.通过学生分析问题、解决问题的学习过程,激发学习兴趣,培养

年全国高中数学优质课:1.1-正弦定理-教学设计(人教A版必修5)

正 弦 定 理 ?《正弦定理》教学设计一、教学内容分析

本节课《正弦定理》第一课时,出自新人教A版必修5第一章第一节《正弦定理和余弦定理》。课程安排在“三角、向量”知识之后,是三角函数知识在三角形中的具体运用,更是初中“三角形边角关系”和“解直角三角形”内容的直接延续和拓展,同时更是处理可转化为三角形计算的其他数学问题及生产生活实际问题的重要工具。 本节课的内容共分为三个层次:第一,从实际问题导入,在解直角三角形的边角关系的基础上,触碰解斜三角形的思维困惑点,形成疑问,激发学生探究欲望,提出斜三角形的边角关系的猜想;第二,带着疑问,对猜想进行验证,首先对特殊的斜三角形边角关系进行验证和实验探究验证,其次是严密的数学推导证明;第三,得到正弦定理,解决引例,首尾呼应,并学以致用,简单应用。 正弦定理其实是把“大边对大角、小边对小角”这一几何关系的解析化,从三角学的历史发展来看,三角函数其实就是有关三角形、圆的性质的解析表达。这样在悄无声息中,渗透了学科发展中研究观点和研究方法的嬗变。这其实是一个推陈出新的过程。 通过这三个层次,探索——发现——证明,从实际中来,到实际中去。通过课堂,体会直观感知、大胆猜想、实验探究、理论验证、实际应用的学习过程。 二、教学目标设置 1、从已有三角形知识出发,通过观察、实验、猜想、验证、证明,从特殊到一般得到正弦定理,掌握正弦定理,了解正弦定理的一些推导方法,并学会应用正弦定理解决斜三角形的两类基本问题; 2、通过对实际问题的探索,培养学生发现问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养学生的缜密思维; 3、通过自主探究、合作交流,亲身体验数学规律的发现过程,培养学生勇于探索、善于发现、不畏艰难的思维品质和个人素养;

全国高中数学优质课:数学建模教学设计说明

全国高中数学优质课 《函数模型的应用实例--数学建模》教学设计说明本节课是数学建模的入门课.数学建模是高中数学新课程中新增的研究性学习的内容,《课程标准》中没有对数学建模的内容做具体安排,只是建议将数学建模穿插在相关模块的教学中,要求通过数学建模,了解和经历解决实际问题的全过程,体验数学与日常生活的联系.而以函数为模型的应用题是中学数学中最重要的内容之一,从应用题中抽象出问题的数学特征,找出函数关系,解决实际问题也是中学数学教学的重要任务之一.所以本节课从“3.2 函数模型应用实例”中选取一道生活中的建模实例,借助图形计算器,综合分析对比一次函数、二次函数、指数函数、对数函数、幂函数在实际生活中应用的优缺点,为以后的数学建模打基础,但未能使学生全面认识数学建模的全过程,于是又在本题的基础上有所改编,从实际问题出发,通过分析探究、交流合作、小组展示、总结归纳、深化反思等数学活动引导学生建立完整的数学模型解决实际问题,从而深化数学建模思想.因此本节课是从函数出发,综合运用数学知识、思想和方法,尝试数学建模,让学生从不同的角度理解数学的魅力. 高一下学期的学生学习过一次函数、二次函数、指数函数、对数函数、幂函数各自的函数特点,基于学校的支持,学生对于图形计算器已经有一定的基础,知道数形结合、转化化归、由特殊到一般的思想方法,但对于如何建立数学模型尚不明确.从数学活动经验上来说,学生具备了一定的数学活动经验,有主动参与数学活动的意识和小组合作学习的经验,好奇心强,学习比较积极主动. 本节课是数学建模的基础课,对学生来说是一个全新的认识,在认知方式和思维难度上对学生有较高的要求,而学生的抽象概括能力比较薄弱,学生在建立数学模型及优化数学模型的过程中会比较困难. 在领会以上精神后,我在设计本节课时注意了以下问题:

高中数学优质课一等奖作品:函数的单调性与导数教学设计

教学设计 普通高中课程标准实验教科书《数学》选修1-1 (人教A版) 函数的单调性与导数 (第一课时)

《函数的单调性与导数》教学设计 【课题】函数的单调性与导数 【教材】人教A版《数学》选修1-1 【课时】1课时 【教材分析】 函数的单调性与导数是人教A版选修1-1第三章第三课第一节的内容.在学习本节课之前学生已经学习了函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备. 函数的单调性是高中数学中极为重要的一个知识点.以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.同时,在本课第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助.因此,学习本节内容具有承上启下的作用. 【学生学情分析】 课堂学生为高二年级的的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点. 在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性. 【教学目标】 知识点:1.探索函数的单调性与导数的关系; 2.会利用导数判断函数的单调性并求函数的单调区间. 能力点:1.通过本节的学习,掌握用导数研究单调性的方法. 2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想. 教育点:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯. 自主探究点:通过问题的探究,体会知识的类比迁移.以已知探求未知,从特殊到一般的数学思想方法. 【教学重点】 利用导数研究函数的单调性,会求函数的单调区间. 【教学难点】 ⒈探究函数的单调性与导数的关系; ⒉如何用导数判断函数的单调性. 【教学方法】 启发式教学 【课时安排】 1 课时 【教学准备】

相关文档
最新文档