某无人机导航控制系统模块化设计

某无人机导航控制系统模块化设计
某无人机导航控制系统模块化设计

无人机地面站

无人机地面站 地面站作为整个无人机系统的作战指挥中心,其控制内容包括 :飞行器的飞行过程,飞 行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收。 中文名:无人机地面站 外文名: UAV ground station 目录 概述 地面站的配置和功能概述 ?地面站的典型配置 ?地面站的典型功能 关键技术及典型解决方案 ?友好的人机界面 ?操作员的培训 ?一站多机的控制 ?开放性、互用性与公共性 ?地面站对总线的需求 ?可靠的数据链 无人机地面站发展的趋势 概述 近20 年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全 自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面 控制站 (GCS:Ground Control Station)将具有包括任务规划、数字地图、卫星数据链、图像处理 能力在内的,集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群。地面站系统具有开 放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的 功能模块实现功能扩展,相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程、飞行航迹、有效载荷的任务功能、通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素 的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据、接收指令,在网络化的现代作战环境中发挥独特作用。

无人机喷洒农药控制系统设计

无人机喷洒农药控制系统设计 陈爱国 (泰州学院,江苏泰州225300) 摘 要:农药喷洒采用无人机技术能减少环境污染、提高喷洒效率。现对无人机的控制量进行重点设计,使无人机能够精确跟踪无线指令,满足现代农业对农药喷洒的需求。 关键词:多旋翼无人机;农药喷洒;控制系统;设计 0 引言 我国是农业大国,其农药喷洒主要由人工完成,这种方式 已经严重威胁到工作人员的身心健康,且对农药的利用率低。无人驾驶飞机UAV(UnmannedAerialVehicle)是近年来发展比较快、在很多领域都有应用的一种新技术装备,在农业生产中使用多旋翼无人机技术进行农药喷洒作业有独特的优点,比如作业高度低、定点定向喷洒、解放人力、效率高、维修成本低等,特别是旋翼产生的涡流,可以使农药喷雾更好地附着在农作物上,提高农药防治病虫害的效率。 1 总体设计 无人机结构简单 、维修方便,其控制系统一般采用模块化设计,总体结构如图1所示。 图1 系统组成框图 多旋翼无人机的结构比较复杂,它需控制6个自由度,需 要利用精度高的传感器和精确的姿态数据。与无人机通讯采用无线方式,主要控制旋翼电机,控制电机的信号一般采用PWM波形即可,输出给电子调速器。 2 硬件设计 硬件的选择较为关键,在系统设计时需充分考虑微处理器的数据处理精度和浮点运算能力、传感器型号、各类芯片级联电平的匹配等问题。比如微处理器采用STM32F427VIT6,集成加速度和三轴陀螺仪的MPU6000芯片,电子罗盘采用HMC5843芯片,气压传感器采用MS5611芯片。在无线通讯时,直接采用PPM(PulsePositionModulation)方式对控制系统进行信号的控制,为了更好地控制无人机姿态,还需采用超声波测距模块,用来锁定无人机的高度。 硬件系统结构设计如图2所示,无人机运行时,旋翼电机产生的电流较大,且无人机姿势不断变化,其控制电流随之变化,会产生电磁干扰,造成通讯控制信号出错, 特别是超声波测距模块与控制芯片不能直接级联,需要进行电平转换, 如图3所示。 图2 硬件系统结构图 图3 电平转换电路 为了防止旋翼电机在姿态变化时,反向电压通过电子调速 器反馈给微处理器,可能造成电压过大烧毁器件,需要加接隔离电路。同时为了有效控制电机转速,采用高频PWM 信号控制电机转速,更需要隔离电路,如图4所示。 图4 隔离电路 3 软件设计 软件程序设计,必须满足无人机喷洒各种控制要求,主要 包含三大部分:第一,需要考虑无人机与遥控器之间的通讯联系,特别是各种姿态控制量发生变化时,无人机能及时响应,若发生通讯异常,一般采用中断程序来判断,执行中断后,无人机能执行既定程序并报警;第二,输入信号捕获,(下转第115页)

无人机地面站发展综述

无人机地面站发展综述 [摘要]主要介绍了无人机地面站的发展,包括无人机地面站典型的配置、功能及其关键技术。并展望了未来无人机地面站发展趋势。 1、概述 20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS: Ground Contrul Station) 将具有包括任务规划,数字地图,卫星数据链,图像处理能力在内的集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群:地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展;相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程,飞行航迹,有效载荷的任务功能,通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据,接收指令,在网络化的现代作战环境中发挥独特作用。 2典型地面站的配置和功能概述 2.1地面站的典型配置 目前,一个典型的地面站由一个或多个操作控制分站组成,主要实现对飞行器的控制、任务控制、载荷操作、载荷数据分析和系统维护等。其相互间的关系如图1所示。

(1)系统控制站。在线监视系统的具体参数,包括飞行期间飞行器的健康状况、显示飞行数据和告警信息。 (2)飞行器操作控制站。它提供良好的人机界面来控制无人机飞行,其组成包括命令控制台、飞行参数显示、无人机轨道显示和一个可选的载荷视频显示。 (3)任务载荷控制站。用于控制无人机所携带的传感器,它由一个或几个视频监视仪和视频记录仪组成。 (4)数据分发系统。用于分析和解释从无人机获得的图像。 (5)数据链路地面终端。包括发送上行链路信号的天线和发射机,捕获下行链路信号的天线和接收机。 数据链应用于不同的UAV系统,实现以下主要功能: —用于给飞行器发送命令和有效载荷; —接收来自飞行器的状态信息及有效载荷数据。 (6)中央处理单元:包括一台或多台计算机,主要功能如下: —获得并处理从UAV来的实时数据: —显示处理; —确认任务规划并上传给UAV; 一一电子地图处理; —数据分发: —飞行前分析; —系统诊断。 2.2地面站的典型功能 GCS也称为“任务规划与控制站”。任务规划主要是指在飞行过程中无人机的飞行航迹受到任务规划的影响;控制是指在飞行过程中对整个无人机系统的各个系统进行控制,按照操作者的要求执行相应的动作。地面站系统应具有以下几个典型的功能: (1)飞行器的姿态控制。在各机载传感器获得相应的飞行器飞行状态信息后,通过数据链路将这些数据以预定义的格式传输到地面站。在地面站由GCS计算机处理这些信息,根据控制律解算出控制要求,形成控制指令和控制参数,再通过数据链路将控制指令和控制参数传输到无人机上的飞控计算机,通过后者实现对飞行器的操控。 (2)有效载荷数据的显示和有效载荷的控制。有效载荷是无人机任务的执行单元。地面控制站根据任务要求实现对有效载荷的控制,并通过对有效载荷状态的显示来实现对任务执行情况的监管。 (3)任务规划、飞行器位置监控、及航线的地图显示。任务规划主要包括处理战术信息、研究任务区域地图、标定飞行路线及向操作员提供规划数据等。飞行器位置监控及航线的地图显示部分主要便于操作人员实时地监控飞行器和航迹的状态。 (4)导航和目标定位。无人机在执行任务过程中通过无线数据链路与地面控制站之间保持着联系。在遇到特殊情况时,需要地面控制站对其实现导航控制,使飞机按照安全的路线飞行。随着空间技术的发展,传统的惯性导航结合先进的GPS导航技术成为了无人机系统导航的主流导航技术。目标定位是指飞行器发送给地面的方位角,高度及距离数据需要附加时间标注,以便这些量可与正确的飞行器瞬时位置数据相结合来实现目标位置的最精确计算。为了精确确定目标的位置,必须通过导航技术掌握飞行器的

无人机飞行路线控制系统设计

无人机飞行路线控制系统设计 由于无人机是通过无线遥控的方式完成自动飞行和执行各种任务,具有安全零伤亡、低能耗、重复利用率高、控制方便等优点,因此得到了各个国家、各行各业的高度重视和广泛应用。尤其以美国为代表,无论是在军事、民用、环境保护还是科学研究中,都将无人机的使用发挥到淋漓尽致,其拥有全球最先进的“捕食者”和“全球鹰”战斗无人机、监测鸟类的“大乌鸦”无人机、民用用途的“伊哈纳”无人机等等。我国在无人机研制方面也取得了一定的成就,拥有技术卓越的“翔龙”和“暗箭”高空高速无人侦查机、多用途的“黔中”无人机、探测海洋的“天骄”无人机、中继通讯的“蜜蜂”无人机等等。在未来,随着现代化工业技术、信息技术、自动化技术、航天技术等高新技术的迅速发展,无人机技术将日趋成熟,性能日益完善,为此将拥有更为广阔的应用前景。为确保无人机能够有效地完成各种飞行任务,研发者开发了各种技术方式的飞行控制系统,完成对无人机的起飞、飞行控制、着陆以及相应目标任务等操作的控制。飞行路线控制是飞行控制系统中最基础也是最核心的功能控制部分,其它所有的飞行任务控制都是飞行路线控制的基础之上实现。目前对于无人机飞行路线的控制已有各种各样方式的系统,但大多数系统都存在一定缺陷,如有些系统操作过于繁杂,不够智能化;有些系统只能在视距范围遥 控无人机,严重限制了无人机的使用;有些系统过于专用化,不能适用于大多数类型的无人机;有些比较完善的系统,造价又过于昂贵,等等一系列问题。针对以上存在的这些问题,本课题提出了一种成本低、

遥控距离远、智能化、高效化、适用性广的无人机飞行路线控制系统设计方案。该系统方案包括两大部分,一部分是操作人员所处的地面监控系统,一部分是无人机端的受控系统,实现的机制主要是无人机不断地将自身的定位信息实时地传送给地面控制系统,地面控制系统将无人机位置信息通过电子地图可视化显示给操作人员,操作人员结合本次飞行任务,采用灵活的鼠标绘制方式在地图上绘制预定的飞行路线,地面控制系统对绘制路线进行自动处理生成可用的路线控制信息帧并发送给无人机受控系统,无人机受控系统接收到位置控制信息帧,不断结合实时的方位信息得到飞行控制信息,从而遥控无人机按照预定路线飞行。此外,为方便用户以后对历史数据的查看,以分析总结得到一些有价值的信息,地面监控系统还包含了对预定路线和无人机历史飞行路线的存储、查询和在地图中回放功能。基于GIS技术的地面监控系统的具体实现是在Windows操作系统上,采用Visual Basic作为系统开发环境并结合MSComm串口通信技术、Mapx二次开发组件技术、Winsock网络接口技术以及Access数据库技术完成软件设计,实现与无人机受控系统的无线通信、GIS系统操作和监控、历史数据存储和重现等,其中实验区域的电子地图采用Mapinfo Professional开发软件绘制完成,并创新性地设计并绘制了画面简洁的带高层信息的二点三维矢量地图,而对于绘制路线的优化和提取处理采用了垂距比值法和最小R值法。无人机端使用BDS-2/GPS双卫星系统对无人机实时位置进行高精度的定位,采用双串口单片机进行运算控制处理,实时的飞行控制信息采用了几何空间算法得到,另外采

无人机导航定位技术简介与分析

无人机导航定位技术简介与分析 无人机导航定位工作主要由组合定位定向导航系统完成,组合导航系统实时闭环输出位置和姿态信息,为飞机提供精确的方向基准和位置坐标,同时实时根据姿态信息对飞机飞行状态进行预测。组合导航系统由激光陀螺捷联惯性导航、卫星定位系统接收机、组合导航计算机、里程计、高度表和基站雷达系统等组成。结合了SAR 图像导航的定位精度、自主性和星敏感器的星光导航系统的姿态测定精度,从而保证了无人飞机的自主飞行。 无人机导航是按照要求的精度,沿着预定的航线在指定的时间内正确地引导无人机至目的地。要使无人机成功完成预定的航行任务,除了起始点和目标的位置之外,还必须知道无人机的实时位置、航行速度、航向等导航参数。目前在无人机上采用的导航技术主要包括惯性导航、卫星导航、多普勒导航、地形辅助导航以及地磁导航等。这些导航技术都有各自的优缺点,因此,在无人机导航中,要根据无人机担负的不同任务来选择合适的导航定位技术至关重要。 一、单一导航技术 1 惯性导航 惯性导航是以牛顿力学定律为基础,依靠安装在载体(飞机、舰船、火箭等)内部的加速度计测量载体在三个轴向运动加速度,经积分运算得出载体的瞬时速度和位置,以及测量载体姿态的一种导航方式。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪。三自由度陀螺仪用来测量飞行器的三个转动运动;三个加速度计用来测量飞行器的三个平移运动的加速度。 计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数。惯性导航完全依靠机载设备自主完成导航任务,工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰,不受气象条件限制,是一种自主式的导航系统,具有完全自主、抗干扰、隐蔽性好、全天候工作、输出导航信息多、数据更新率高等优点。实际的惯性导航可以完成空间的三维导航或地面上的二维导航。 2 定位卫星导航 定位卫星导航是通过不断对目标物体进行定位从而实现导航功能的。目前,全球范围内有影响的卫星定位系统有美国的GPS,欧洲的伽利略,俄罗斯的格拉纳斯。这里主要介绍现阶段应用较为广泛的GPS全球定位系统导航。

无人机控制系统核心硬件

2.1 ARM-Cortex M4架构 ARM-Cortex M4 架构: 无人机控制系统可以采用基于ARM系统架构的嵌入式处理器来实现,本次 重点基于ARM-Cortex M4架构的无人机飞控系统。 ARM是32位嵌入式微处理器的行业领先提供商,到目前为止,已推出各 种各样基于通用体系结构的处理器,这些处理器具有高性能和行业领先的功效,而且系统成本也有所降低。 基于ARMv7架构以上的Cortex系列主要分为A(应用处理器)、R(实时 处理器)、M(微控制器)三大应用系列。其中Cortex-M系列处理器主要是针 对微控制器领域开发的,在该领域中,既需进行快速且具有高确定性的中断管理,又需将逻辑门数和功耗控制在最低。Cortex-M处理器是一系列可向上兼容 的高能效、易于使用的处理器,这些处理器旨在帮助开发人员满足将来的嵌入 式应用的需要。这些需要包括以更低的成本提供更多功能、不断增加连接、改 善代码重用和提高能效 ARM-Cortex 的特点: 更低的功耗:以更低的 MHz 或更短的活动时段运行,基于架构的睡眠模式支持,比 8/16 位设备的工作方式更智能、睡眠时间更长 更小的代码(更低的硅成本):高密度指令集,比 8/16 位设备每字节完 成更多操作,更小的 RAM、ROM 或闪存要求 易于使用:多个供应商之间的全球标准,代码兼容性,统一的工具和操作 系统支持 更有竞争力的产品:Powerful Cortex-M processor,每MHz 提供更高的

?Cortex-M4是一个32位处理器内核 ?内部的数据路径是32位的,寄存器是32位的,存储器接口也是32 位的 ?采用哈佛架构 ?小端模式和大端模式都是支持的 ?Thumb指令集与32位性能相结合的高密度代码 ?针对成本敏感的设备Cortex-M4处理器实现紧耦合的系统组件,降低处理器的面积,减少开发成本 ?ROM系统更新的代码重载的能力 ?该处理器可提供卓越的电源效率 ?饱和算法进行信号处理 ?硬件除法和快速数字信号处理为导向的乘法累加 ?集成超低功耗的睡眠模式和一个可选的深度睡眠模式 ?快速执行代码会使用较慢的处理器时钟,或者增加睡眠模式的时间?为平台的安全性和稳固性,集成了MPU(存储器保护单元) ?Cortex-M4内部还附赠了好多调试组件,用于在硬件水平上支持调试操作,如指令断点,数据观察点等 ?有独立的指令总线和数据总线,可以让取指与数据访问并行不悖 2.1.3 基于ARM Cortex-M4 内核的微控制器 ARM Cortex-M4内核是微控制器的中央处理单元(CPU),配合外围设备模块和组件,形成完整的基于Cortex-M4的微控制器。在芯片制造商得到Cortex-M4处理器内核的使用授权后,它们可以将Cortex-M4内核用在自己的硅片设计中,添加存储器,外设,I/O以及其它功能块。不同厂家设计出的单片机会有不同的配置,包括存储器容量、类型、外设等都各具特色。由于基于统一的内核架构,事实上本书后面所介绍的飞控软件和算法虽然已ST的 STM32F407为基础,它们是很容易移植到其他公司的同内核平台芯片上的,很多与外设无关的代码部分不需要任何改变即可移到其他平台上,仅需要关注外围设备相关部分的驱动代码。 ?飞思卡尔(现并入恩智浦)基于ARM Cortex M4内核的Kinetis K60微控制器系列。Kinetis微控制器组合产品由多个基于ARM@CortexTM_M4内核且引脚、外设和软件均兼容的微控制器系列产品组成。 ?ST基于ARM Cortex-M4内核的STM32 F4微控制器系列,具有高达 168MHz的主频,以及在此主频工作下的基准测试功耗为38.6mA

美军无人机地面控制系统最新发展

美军无人机地面控制系统最新发展 对于无人机系统来说,设计焦点大多都是集中在飞机本身,包括有效载荷。但根据数据统计表明,地面系统所需成本非常高,往往是单架无人机成本的 0.5 ~ 4 倍之间。这说明研制一个能够控制多种类型无人机的通用地面控制系统,不仅可以极大地降低无人机系统的开发、后勤支持和训练费用,也可以较大程度地改进无人机系统作战的灵活性,从而实现无人机系统之间的互操作性。 地面控制站一般由三部分组成,包括:操作员工作站,用于操作无人机发射、回收和控制软件;飞行用传感器载荷;视距和卫星数据链路无线电终端,用于传输飞行指挥命令和接收来自无人机的监视图像。美军的主要无人机系统,如美国空军的 " 捕食者 " 、 " 全球鹰 " 和美国陆军的 " 影子 200" 都是由不同的军种独立开发的,通用性和互操作性能很差,甚至没有。它们的地面控制站尤其如此。因此,空军的 " 捕食者 "/" 捕食者 B" 地面站是无法控制空军的 " 全球鹰" 或海军陆战队的 " 先锋 " 无人机,也无法接收他们的图像。但是,美国海军和陆军已经采取措施着力解决无人机间的互操作问题。而促进无人机互操作性发展的强大驱动因素就是与北约的标准化协议 STANAG4586 相兼容。 1 战术控制系统 战术控制系统( TCS ),是美国海军的通用无人机地面控制站,由海军的无人空中系统项目办公室( PMA-263 )管理、雷声公司情报和信息系统部门从 2000 年开始进行开发的。其研制目标就是提供一个开放式体系结构软件,能够控制多种不同类型的海上 / 岸上计算机硬件,实现任务规划、指挥与控制以及情报数据接收和分发等功能。 TCS 在 2003 年之前是一个联合军种项目,后来由于陆军和空军抵制将 TCS 用于它们的无人机系统,国会将其削减为海军一家的研制项目。 目前, TCS 已经研制成功。 PMA-263 希望将其应用于海军未来所有的无人机系统,包括预计将于 2008 年在美海军的第一艘 " 濒海战斗舰 " 上使用的垂直起降无人机 --" 火力侦察兵 " 在内。 TCS 的运行依靠的是基于 Unix 的计算机。该计算机的操作系统是 Sun 微系统公司开发的 Solaris 8 网络操作系统,尽管雷声公司曾经也开发了一个应用于该计算机的基于 Linux 的操作系统。 TCS 软件的最新版本是于 2006 年 6 月份交付给 " 火力侦察兵 " 的制造商诺思罗普· 格鲁门公司的,软件中增加了一系列的新功能,包括可以容纳多种不同的 " 即插即用 " 传感器载荷、在指挥、控制和信息分发时执行 STANAG 4586 标准等。 为了与 STANAG4586 兼容,雷声公司开发了一个可以操作多种美军和 NATO 无人机的 TCS 核心系统。不同无人机制造商开发的与 STANAG 4586 协同的无人机专用模块,可以与该核心系统接口,提供 TCS 的所有控制能力,实现各无人机系统之间的互操作。(如果未来需要在不同的无人机系统之间完全实现互操作,则各数据链必须互相兼容) 海军的 " 宽域海上监视 " ( BAMS )无人机计划于 2011 年进入制造,是TCS 的下一个潜在用户。目前,美国海军在演习中使用的是两架从美国空军采购的 " 全球鹰海上演示型 "(GHMD) 高空长航时无人机来帮助 BAMS 无人机开发操作概念和作战战术。由于美国国会削减了美国海军在 2004 年的预算中计划给 " 全球鹰 " 开发 TCS 能力的费用,这两架 GHMD 飞机使用的是美国空军现有的 " 全球鹰 " 地面站硬件和软件,而不是 TCS 。 PMA-263 的负责人,海军上校 Paul Morgan 称,洛克希德· 马丁公司和诺思罗普· 格鲁门公司正在开展 BAMS" 持久无人海上空中监视 " ( PUMAS )能力研究,包括评估 TCS 对于 BAMS 在该能力方面的适应性。

解密无人机设计如何实现图传

解密无人机设计:如何实现图传? 如果说中国无人机制造商大疆创新的巨大估值和营收说明了什么,那就是无人机正日益变成一桩大生意。无人机现在已经引来众多资本竞相追逐,除此之外,各大半导体公司也都加快速度布局这一千亿级的市场,开发适合无人机应用的创新产品和技术。某知名无人机产品硬件供应商之一,世强的技术专家将在这一系列文章中独家阐述先进的无人机产品内部的硬件电路设计和相关方案技术。 当我们把目前主流的无人机的内部电路板拆解开来后,您会发现无人机的电路控制系统主要由三大部分组成:飞控系统、云台+相机、图像传输系统。而我们的这一无人机电路系统系列的三篇文章也将分别对应这三个部分。 图1.FPV无人机的内部电路系统结构图 无人机能够一跃进入大众视野并迅速升温,是很多人始料未及的。从刚开始的空中摄录,到后来的实时摄录,方便的图像传输功能无疑为无人机加足了筹码,赚足了眼球。在第一篇文章中,作者将为您分析无人机的图传实现技术。 2.4GHz全高清无人机图传系统是主流 在无人机的视频传输方面,高配的图传系统已经可实现5km/1080P30fps传输,但这是众多国内娱乐无人机厂商还没有做到的。一般的做法是在云台搭载相机,高空拍摄再飞回地面检查。这种方式由于不能即时看到拍摄画面,所以还不能满足航拍的要求。 “当然目前也有不少方案是采用5.8GHz频段传输模拟视频到地面,最远距离能达600多米。但这种方式需要在飞行器上将高清(1080P或4K)转码成720P,再转成数字信号传输到遥控器显示屏上,技术上也较复杂,并且画面会有马赛克、停顿或卡死。画面质量也不够好,用到专业航拍还有距离,适合普通爱好者娱乐。”世强产品总监阳忠介绍说。 2.4GHz是目前无人机市场比较主流采用的频段。在大疆最新发布的Phantom3上,就搭载了备受好评的DJI Lightbridg全高清数字图像传输系统,其内置了2.4G遥控链路,其高配方案实测有效传输距离高达5km,标配也达到了1.7Km。“图像传输系统的性能是区分无人机档次的一个关键因素。图像传输距离的远近,图像传输质量的好坏,图像传输的稳定性等是衡量无人机图传性能的关键因素。”阳忠说。 简而言之,无人机图像传输系统就是将天空中处于飞行状态的无人机所拍摄的画面实时稳定的发射给地面无线图传遥控接收设备。图像传输的实时性、稳定性是关键。如下图4所示为目前主流的无人机遥控器/高清图传线路框图。其组成部分主要由发射端、接收端和显示端三部分组成。

无人机数据传输系统-手册

1.概论: 无人机,即无人驾驶的飞机。是指在飞机上没有驾驶员,只是由程序控制自动飞行或者由人在地面或母机上进行遥控的飞机。它装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统可以实现远距离飞行并得以控制。无人机与有人驾驶的飞机相比而言,重量轻、体积小、造价低、隐蔽性好,特别宜于执行危险性大的任务,因此被广泛应用。 二、无人机的特点及技术要求 无人机没有飞行员,其飞行任务的完成是由无人飞行器、地面控制站和发射器组成的无人机系统在地面指挥小组的控制一下实现的。据此,无人机具有以下特点: (1)结构简单。没有常规驾驶舱,无人机结构尺寸比有人驾驶飞机小得多。有一种无尾无人机在结构上比常规飞机缩小40%以上。重量减轻,体积变小,有利于提高飞行性能和降低研制难度。 (2)安全性强。无人机在操纵人员培训和执行任务时对人员具有高度的安全性,保护有生力量和稀缺的人力资源。可以用来执行危险性大的任务。 (3)性能提高。无人机在设计时不用考虑飞行员的因素。许多受到人生理和心理所限的技术都可在无人机上使用,从而突破了有人在机的危险,保证了飞行的安全性。 (4)一机多用,稍作改进后发展为轻型近距离对地攻击机。

(5)采用成熟的发动机和主要机载设备,以减少研制风险与经费投入,加快研制进度。联合研制以减小投资风险、解决经费不足有利于扩大出口及扬长技术与设备优势。 (6)研制综合训练系统。技术要求有: (1)信息技术包括信息的收集和融合,信息的评估和表达,防御性的信息战、自动目标确定和识别等; (2)设备组成包括低成本结构、小型化及模块化电子设备、低可见性天线、小型精确武器、可储存的高性能发动机及电动作动器等; (3)性能实现包括先进的低可见性和维护性技术、任务管理和规划、组合模拟和训练环境等。 三、无人机系统按照功能划分,主要包括四部分: (1)飞行器系统 包括空中和地面两大部分。空中部分包括:无人机、机载电子设备和辅助设备等,主要完成飞行任务。地面部分包括:飞行器定位系统、飞行器控制系统、导航系统以及发射回收系统,主要完成对飞行器的遥控、遥测和导航任务,空中与地面系统通过数据链路建立起紧密联系。 (2)数据链系统 包括:遥控、遥测、跟踪测量设备、信息传输设备、数据中继设备等用以指挥操纵飞机飞行,并将飞机的状态参数及侦察信息数据传到控制站。 (3)任务设备系统 包括:为完成各种任务而需要在飞机上装载的任务设备。

八旋翼无人机系统

八旋翼无人机系统 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

八旋翼无人机系统技术文件 一、产品名称:X-8八旋翼无人机系统 X-8是全新研制的八旋翼无人机系统,具有载重量大、续航时间长、体积小、重量轻、目标特性小,使用快捷、机动灵活、操作使用及维修简便等特点,自成体系独立执行电力巡检任务。 简介: X-8 八旋翼是专业无人机技术研发团队经过多年研究、测试,最新推出的一款全球同类产品载重量最大、可垂直起降、拥有多项专利的无人飞行系统。 1)X-8选用自主驾驶设备,大大提高飞控稳定性。 2)可携带多种任务载荷。 3)可用于执行资料收集、测量、检测、侦查等多种空中任务,在电力巡检领域能发挥其高效、隐蔽性强的特点,能对目标物进行远距离监视。 产品特点: (1)飞行器具有遥控、自主飞行能力,可以实时修改飞行航路和任务设置;(2)测控与信息传输设备具有遥控、实时信息传输的功能,具有多机、多站兼容工作及一定的抗截获、抗干扰能力; (3)侦察任务设备能昼夜实时获取目标图像信息,具有手动、自动控制工作模式,可迅速发现、捕获、识别、跟踪目标; (4)飞行控制与信息处理站具有对飞行器进行遥控飞行和对机载任务设备进行操控的功能,具有飞行参数/航迹显示、航路规划和实时修改飞行计划、重新设置任务样式的能力;具有通过视频实现第一视角控制飞行的能力;具有接收标准视频信号、实时处理/存储图像、数据叠加等能力,具有目标定位和引导打击的能力,且能与上级指挥机关、情报处理中心和指挥系统相通连; (5)地面保障设备具有简易检测、维修与训练的能力,具有快速更换易 损件、备用动力电池组和双模态充电的功能; (6)全系统外场展开迅速,具有车载大范围机动和携行能力。 机体结构技术参数:

多旋翼无人机飞行控制系统设计研究

www?ele169?com | 27实验研究 0 引言 多旋翼无人机是集合多项现代高新科技的成果,无人机 行业的蓬勃发展是中国崛起、中国航空产业崛起的重要体现,多旋翼无人机具有系统安全性好、可靠性高、负载能力强等特点,具有非常广阔的应用前景。多旋翼无人机的作业方式相比于传统的人工作业方式,大大提高了作业效率、降低作业成本与风险。在无线通信技术与图像处理技术快速发 展的背景下,多旋翼无人机逐渐向智能化的方向发展,另外, 独特的机械结构使多旋翼无人机更加灵活。随着无人机在人们生活中的进一步普及,无人机故障的影响也会越来越大,在大多数故障中,主要是控制器故障后果最为严重,所以飞行控制器的结构健康管理始终受到人们高度重视。1 多旋翼无人机任务需求分析 多旋翼无人机飞行控制系统主要服务于公安消防、公共 安全、勘察搜救等领域,对无人机的飞行安全、可靠性等要求较高,针对多旋翼无人机所应用的特殊场合,其飞行控制 系统需要具备以下性能指标:首先要具备机载飞控系统与地面站两部分,由机载飞控 系统来进行控制律的运算,通过电机控制指令对地面站发送的信息进行接收。地面站会显示无人机当前的飞行状态以及 主控件的基本性能。其次要具有良好的传感器以及多种飞行模式,传感器主要对无人机飞行姿态、高度、位置等信息进行采集,通过机载计算机对相应数据进行处理,多旋翼无人机存在多种飞行模式,需要根据实际情况选择最佳飞行模 式。最后,多旋翼无人机飞行控制系统要具有多种读取遥控 信号的方式,实现多种多旋翼无人机的飞行控制。还要具有在线调整及保存相关的控制参数功能、在异常情况下应急处理功能等。根据多旋翼无人机飞控系统的要求指标,提出了飞控系统具体的设计要求: ■1.1 飞行控制处理器 飞行控制处理器需要对传感数据进行收集并处理,对控 制律进行运算,保持与地面站之间通信畅通。飞行控制处理器只有缩短调节电机转速的指令周期,才能更好的发挥控制性能。由于飞行控制处理器面临的任务众多,所以要求飞控处理器处理速度快、计算能力强。飞控处理器必须快速对传感器数据进行读取,第一时间与无线通信设备进行连接,实现与地面站之间的通信,另外飞控处理器必须具备存储空间大、低功耗、体积小等特点。 ■1.2 传感器传感器需要选择精度较高的传感器以及通信距离较远的无线通信设备,满足飞控系统的性能指标,确保传感器使用简单、通信接口通用。 ■1.3 软件开发多旋翼无人机的飞控软件系统要有很强的可靠性与稳定性,具备通信链路异常状况下的紧急处理,具备相应的备份程序,避免无人机在飞行过程中发生故障,另外地面站要具备故障报警功能。飞行控制系统的采样频率不易过小以免出现控制输出调节量滞后造成严重后果。2 多旋翼无人机飞行控制系统总体架构设计多旋翼无人机飞行控制系统总体架构由机载部分与地面站部分组成,机载部分主要由飞控处理模块、传感器模块、电源模块、执行机构构成。地面部分与机载部分之间的信息交互 主要通过无线通信模块来完成。飞控系统总体架构如图1所示。图1 飞控系统总体架构 ■2.1 飞控系统硬件平台设计当前的飞行控制系统控制芯片多采用ARM、DSP 等高 速处理器,单处理器的使用会抑制控制系统的进一步拓展,多旋翼无人机飞行控制系统设计研究张建学 (中国民航飞行学院计算机学院,四川广汉,618307)摘要:多旋翼无人机具有优良的操作性能、维护简单、成本较低等特点,已经成为微小型无人机的主流,获得了广大的消费群体。飞控系统作为无人机的核心技术,始终是无人机学术与工程领域研究的热点。本文以多旋翼无人机为研究对象,根据多旋翼无人机的结构特点,对飞行控制系统进行设计与研究,从硬件原理与软件原理对多旋翼无人机飞行控制系统的构建过程进行详细介绍。关键词:多旋翼;无人机;飞控系统

无人机的飞行控制与导航

无人机的飞行控制与导航 形形色色的无人机已经成为未来信息化、网络化战争基础性的作战装备,各国对于无人机系统的发展也不遗余力。然而很多人对于无人机系统及其技术全貌却并不一定有着清晰的了解。航空专家傅前哨将通过一系列文章,向你阐述无人机的相关技术及最新发展。 Q 无人驾驶飞行器系统都有些什么样的装备和设施? A 无人驾驶飞行器的使用需要一套专门的装置和设备。整个系统包括若干架无人驾驶飞机(或其它航空器)、地面控制系统(如遥控站)、地面支援保障设备以及起飞、回收装置等。例如,“猎人”军用无人机系统,共含8架可携带侦察设备的无人机、两个地面控制站、1个任务规划站、4个分离式接收站、1个发射回收装置等。无人驾驶的飞机、直升机、飞艇等主要由机体、动力装置、机载导航定位系统、飞行控制系统、起飞和回收装置以及有效载荷(如侦察设备、电子对抗设备、信息传输设备、机载武器等)组成。无人驾驶飞行器上没有乘员,因此领航员、驾驶员的任务需要由导航定位系统、飞行控制系统、自动驾驶仪等设备来完成。 Q 无人驾驶飞行器的控制方法有几种,各有什么优缺点? A 无人机的飞行控制方式较多,目前采用的主要有线控、有线电遥控、无线电遥控,程控等几种。 所谓线控,就是用手持的钢丝线对动力无人机进行操纵,此法多用于竞技航模。 有线电遥控是一种相对简单,且成本较低的操纵方式。地面站人员通过电缆或光缆将各种控制信号传输给无人机,操纵其飞行和工作,而无人机则通过电缆将侦测到的信息送回地面站。其缺点是受电缆长度,重量的限制,飞行器的航程和升限都不大,活动区域和观察范围较小。 一些小型的,微型的无人侦察机也采用目视遥控的方式进行操纵。这类无人机上大都安装有一部与手持式遥控器配套的小型多通道无线电接收机。机载接收机收到由地面遥控发射机发来的操纵指令后,将控制信号分配给各舵机,由其完成翼面,油门的控制,开启,关闭某些设备,完成对无人机的操纵。 超视距遥控的工作原理是,地面遥控站的人员通过目视、光学设备、雷达系统等,实时获取无人机的姿态,方位,距离,速度、高度等信息,并对其进行跟踪,定位和控制。当发现无人机偏离预定航线,空中姿态出现偏差或需要人为地改变其飞行状况时,地面站发出无线电遥控指令,操纵无人机恢复或调整其飞行轨迹,这种方式可称之为单向无线电遥控。某些无人机上装有机载数据采集与传输系统或专用的前视摄像装置,可通过数传电台或数据链向地面无线电测控站发送无人机自身的飞行数据等,并在地面站计算机上模拟显示出相关的仪表显示、飞机姿态、飞行航迹等。如果通过电视图像传输系统向地面遥控站发送现场的前视图像和座舱图像,地面站的人员还可根据无人机传回的图像和数据,监视、判断它的飞行情况,并通过遥控装置操纵其飞行,这种遥控方式被称为双向无线电遥控。现代无人机有许多机型都采用后一种遥控方式。而美国在20世纪70年代研制的F-15缩比自由飞模型和HiMAT无人驾驶研究机则采用了前一种遥控方式。 采用无线电遥控方式时,无人机的活动半径和飞行自由度主要受机载和地面遥控设备的发射功率、无线电波的传输距离以及飞行器本身性能的限制。受地球曲率、遥控设备发射功率等因素的影响,地面站的作用距离一般较短,往往只能用

无人机地面站

概述 近20年来,无人机己发展成集侦察、攻击于一体,而未来的无人机还将具有全自主完成远程打击甚至空空作战任务的攻击能力。同时,与无人机发展相匹配的地面控制站(GCS:Ground Control Station)将具有包括任务规划、数字地图、卫星数据链、图像处理能力在内的,集控制、瞄准、通信、处理于一体的综合能力。未来地面站的功能将更为强大:不仅能控制同一型号的无人机群,还能控制不同型号无人机的联合机群。地面站系统具有开放性和兼容性,即不必进行现有系统的重新设计和更换就可以在地面控制站中通过增加新的功能模块实现功能扩展,相同的硬件和软件模块可用于不同的地面站。 地面站作为整个无人机系统的作战指挥中心,其控制内容包括:飞行器的飞行过程、飞行航迹、有效载荷的任务功能、通讯链路的正常工作,以及飞行器的发射和回收。GCS除了完成基本的飞行与任务控制功能外,同时也要求能够灵活地克服各种未知的自然与人为因素的不利影响,适应各种复杂的环境,保证全系统整体功能的成功实现。未来的地面站系统还应实现与远距离的更高一级的指挥中心联网通讯,及时有效地传输数据、接收指令,在网络化的现代作战环境中发挥独特作用。 地面站的配置和功能概述 地面站的典型配置 目前,一个典型的地面站由一个或多个操作控制分站组成,主要实现对飞行器的控制、任务控制、载荷操作、载荷数据分析和系统维护等。 (1)系统控制站。在线监视系统的具体参数,包括飞行期间飞行器的健康状况、显示飞行数据和告警信息。 (2)飞行器操作控制站。它提供良好的人机界面来控制无人机飞行,其组成包括命令控制台、飞行参数显示、无人机轨道显示和一个可选的载荷视频显示。 (3)任务载荷控制站。用于控制无人机所携带的传感器,它由一个或几个视频监视仪和视频记录仪组成。 (4)数据分发系统。用于分析和解释从无人机获得的图像。 (5)数据链路地面终端。包括发送上行链路信号的天线和发射机,捕获下行链路信号的天线和接收机。 数据链应用于不同的UAV系统,实现以下主要功能:用于给飞行器发送命令和有效载荷;接收来自飞行器的状态信息及有效载荷数据。 (6)中央处理单元。包括一台或多台计算机,主要功能:获得并处理从UAV来的实时数据;显示处理;确认任务规划并上传给UAV;电子地图处理;数据分发;飞行前分析;系统诊断。 地面站的典型功能 GCS也称为“任务规划与控制站”。任务规划主要是指在飞行过程中无人机的飞行航迹受到任务规划的影响;控制是指在飞行过程中对整个无人机系统的各个系统进行控制,按照操作者的要求执行相应的动作。地面站系统应具有以下几个典型的功能: (1)飞行器的姿态控制。在各机载传感器获得相应的飞行器飞行状态信息后,通过数据链路将这些数据以预定义的格式传输到地面站。在地面站由GCS计算机处理这些信息,根据控制律解算出控制要求,形成控制指令和控制参数,再通过数据链路将控制指令和控制参数传输到无人机上的飞控计算机,通过后者实现对飞行器的操控。 (2)有效载荷数据的显示和有效载荷的控制。有效载荷是无人机任务的执行单元。地面

无人机设计手册及主要技术

无人机设计手册及主要技术 内容简介 独家《无人机设计手册》分上、下两册共十二章。 上册包括无人机系统总体设计,气动、强度、结构设计,动力装置,发射与回收系统,飞行控制与管理系统。 下册包括机载电气系统,指挥控制与任务规划,测控与信息传输,有人机改装无人机,综合保障设计,可靠性、维修性、安全性和环境适应性以及无人机飞行试验等。有关无人机任务设备、卫星中继通信的设计以及正在发展的无人机技术等内容,有待手册再版时编入,使无人机设计手册不断成熟和丰富。 适用人群 本手册是国内第一部较全面系统阐述无人机设计技术的工具书,不仅可作为无人机的设计参考,也可以作为院校无人机教学、无人机行业的工程技术人员和管理人员的参考书,并可供无人机部队试验人员使用。希望本手册的出版能对我国无人机研制工作的技术支持有所裨益。 作者简介 祝小平,现任西北工业大学无人机所总工程师,主要从事无人机总体设计、飞行控制与制导系统设计等研究工作。主持了工程型号、国防预研等国家重点项目多项,获国家和部级科学技术奖9项,其中国家科技进步一等奖1项,国防科技进步一等奖4项,获技术发明专利10项,荣立“国防科技工业武器装备型号研制”个人一等功,发表论著150多篇。先后入选国家级“新世纪百千万人才工程”、国防科技工业“511人才工程”和教育部“新世纪优秀人才支持计划”,获得“国防科技工业百名优秀博士、硕士”、“国防科技工业有突出贡献的中青年专家”、“陕西省有突出贡献专家”和“科学中国人(2009)年度人物”等荣誉称号。 无人机相关GJB标准-融融网 gjb 8265-2014 无人机机载电子测量设备通用规范 gjb 4108-2000 军用小型无人机系统部队试验规程 gjb 5190-2004 无人机载有源雷达假目标通用规范 gjb 7201-2011 舰载无人机雷达对抗载荷自动测试设备通用规范 gjb 5433-2005 无人机系统通用要求 gjb 2347-1995 无人机通用规范 gjb 6724-2009 通信干扰无人机通用规范 gjb 6703-2009 无人机测控系统通用要求无人机发射系统通用要求gjb 2018-1994

一种小型无人机飞控导航系统

一种小型智能化无人机飞控导航系统随着高新技术在武器装备上的广泛应用,无人机的研制正在取得突破性的进展。 世界上最近发生的几次局部战争,凸现出无人机在军事上的实用性。然而,飞控导航系统作为无人机的大脑和神经,在无人机的任务过程中扮演着关键角色。如何设计高可靠和智能化的飞控导航系统,是无人机设计师的终极目标。 目前,国内在起飞重量不超过300kg级的无人机上,飞行控制系统多采用PC104计算机结构或基于单片机两种分立式方案,重量重,体积大,集成化能力差。无人机的飞行控制主要采取两种形式:第一种是采取预先编制的控制程序,来自动控制飞行;第二种是由设置在地面、空中或舰船上的遥控指挥站来指挥。本文要给出了一种基于DSP集成式结构的小型智能型无人机导航飞控设计方案,将两种控制方式进行了有机结合,并已应用于某小型无人机上。经过试验,证明了该方法的可行性,为今后小型化、低成本无人机自动驾驶仪的设计提供了一种新的思路。 1. 系统设计原则 无人机系统应首先具备完整的惯性系统和定位系统,其次应当具有完备的飞行任务管理功能。为了增强飞行控制功能,应当保证不同飞行指令下的多模式的飞行控制能力,以便在人机交互的同时对飞机的稳定进行控制, 进行系统设计时,应当遵循在保证性能的同时尽量减小系统重量和缩小体积,硬件电路设计力求简捷和直接。要求性能与成本兼顾,并保证系统的可靠性。 2. 系统结构介绍 整个无人机系统由GPS/GLONASS接收天线及接收机、机载传感器、无线电接收系统、DSP机载计算机以及执行机构五部分组成。系统功能结构模块如图1所示。 其中GPS/GLONASS接收模块选用微小型接收装置;机载姿态传感器选用贴片式芯片;为了保证自主导航飞行时航向的精度,除了选取航向传感器外,还应用了一个光纤陀螺;无线电接收系统指的是无线电定位及与地面站(GCS)通讯时数据链路的机载接收装置;机载计算机包括3个DSP处理器:GPS接收解码DSP,导航DSP 和飞控DSP;舵机选用Futaba专用舵机。整个飞控导航系统体积仅为180×120×70 mm,总重量不超过1.5kg(包含安装壳体),如图2所示。

九天无人机-地面控制系统简介

九天创新地面控制系统简介 深圳市九天创新科技有限责任公司 二零一六年八月

地面控制系统 1)概述 九天自主研发《地面控制系统》,实现人机实时交互连接,可分别操控固定翼无人机、四旋翼无人机和多旋翼无人机等多种机型。 地面控制系统是无人机的飞行控制终端,拥有友好的操作界面,是给无人机发送各种控制指令、规划飞行任务、实时显示各项飞行指标参数的控制系统。 通过对地面控制系统的操作,能够精准控制无人机的飞行,实时对无人机的飞行状态进行监测,以确保无人机安全起飞和降落,最终顺利地完成航拍作业任务和进行数据管理。 地面控制系统界面 在地面站软件的操作界面中主要包含工具栏、地图视图窗口,侧

边栏等。 工具栏主要是对地图缩放、定位、切换地图类型及目标航点。地图视图窗口可浏览飞行区域的航迹规划状况、飞行区域的地理信息等。而侧边栏主要包含飞行数据、航迹规划和飞行记录三项,分别能够对无人机进行实时监控、规划航迹及飞行记录的下载等。 2)工具栏 目标航点切换:飞行过程中切换飞行目标航点。 地图定位:将地图缩放并定位到回家点或者飞机定位点。 地图缩放:地图放大缩小控制指令。 地图类型:地图类型切换,卫星影像与矢量地图。 3)飞行数据监控 飞行数据监控是通过查看地面站软件右侧的重要飞行数据,对无人机飞行状态进行实时监控。其包括飞行状态、飞行参数。

4)飞行参数 飞行参数包括无人机当前飞行姿态参数、气压高度、目标航点等信息. 屏幕上直观显示飞行状态(横滚俯仰),以及机头指向、当前航飞高度(相对起飞高度)、目标航点(无人机要飞向的航点,到达目标航点后飞向下一航点)。 指令发送 航线规划 在地图中找到规划区域进行航线规划。

相关文档
最新文档