高中数学三角函数中辅助角公式的应用

高中数学三角函数中辅助角公式的应用
高中数学三角函数中辅助角公式的应用

辅助角公式在高考三角题中得应用

对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx=bcosx =

++++a b x a a b

x b a b 222

2

22

(sin cos )·

·

上式中的

a a b

2

2

+与

b a b

2

2

+的平方和为1,故可记a a b

2

2

+=cos θ,

b a b

2

2

+=sin θ,

)x sin(b a )sin x cos cos x (sin b a y 2

2

22θ++=θ+θ+=

由此我们得到结论:asinx+bcosx=

a b x 22++sin()θ,(*)其中θ由

a a b

b a b

2

2

2

2

+=+=cos ,

sin θθ来确定。通常称式子(*)为辅助角公式,它可以将多

个三角式的函数问题,最终化为y=Asin(?+ωx )+k 的形式。下面结合近年高考三角题,就辅助角公式的应用,举例分类简析。 一. 求周期

例1 求函数y x x x =+

-+244

32cos()cos()sin π

π

的最小正周期。 解:

)

6

x 2sin(2x 2cos x 2sin 3x

2sin 3)2

x 2sin(x

2sin 3)4x sin()4x cos(2y π

+=+=+π

+=+π

+π+= 所以函数y 的最小正周期T=π。

评注:将三角式化为y=Asin(?+ωx )+k 的形式,是求周期的主要途径。 二. 求最值

例2. 已知函数f(x)=cos 4x-2sinxcosx-sin 4x 。若x ∈[,

]02

π

,求f(x)的最大值和最小值。

解:f(x)=(cos 2x+sin 2x)(cos 2x-sin 2x)-sin2x=cos2x-sin2x=--224

sin()x π

由02

4

24

34

≤≤

≤≤

x x π

π

π

π?-

-

。 当24

4

x -

=-

π

π

,即x=0时,sin()24

x -

π

最小值-

22

; 当24

23

8

x x -

=

π

π,即时sin()24x -π取最大值1。

从而f(x)在[,

]02

π

上的最大值是1,最小值是-2。

三. 求单调区间

例 3. 已知向量→,→a

x x b

x =+=+(cos

,tan())(sin()2224224ππ,tan())x 24-π

,令b

a )x (f →→?=,求函数f(x)在[0,π]上的单调区间。

解:f x a

b

()=→·→

)4

x sin(2x cos x sin 12x cos 22x cos 2x sin 22

x tan

11

2x tan 2x tan 12x tan 1)2

x cos 222x sin 22(2x cos 22)4

2x tan()42x tan()42x sin(2x cos 222π

+=+=-+=+--++

+=π-π++π+=·

先由04

4

54

≤≤≤≤

x x ππ

π

π?

+。 反之再由

π

π

π

π

π

π

ππ

π4

4

2

04

2

4

544

≤≤

≤≤

≤≤

≤≤x x x x +

?+

?。 所以f(x)在[]04

π

上单调递增,在[]π

π4,上单调递减。

评注:以向量的形式给出条件或结论,是近两年来三角命题的新趋势,但最终仍要归结

为三角式的变形问题。而化为y=Asin(ωx+?)+k 的形式,是求单调区间的通法。 四. 求值域

例4. 求函数f x k x k x x ()cos(

)cos()sin()=+++--++61326132233

2πππ

(,)x R k Z ∈∈的值域。

解:

)2

x 2sin(4]

6

sin )x 23cos(6cos )x 23[sin(4)

x 23sin(32)x 23cos(2)x 23

sin(32)x 23k 2cos()x 23k 2cos()x (f π

+=π

+π+π+π=+π

++π=+π

+-π-π++π+

π= 所以函数f(x)的值域是[-4,4]。 五. 图象对称问题

例6. 如果函数y=sin2x+acos2x 的图象关于直线x=-

π

8

对称,那么a=( ) (A )2 (B )-2 (C )1 (D )-1

解:可化为y a x =++122sin()θ。 知x =-

π

8

时,y 取得最值±12+a ,即

sin ()cos ()()()2828122111

2

1121012

2

22

2-+-=+?-+=+?-+=+?++=?=-ππ

a a a a a a a a a D ±±选()。

六. 图象变换 例7 已知函数。

R x ,1x cos x sin 2

3

cos 21y 2∈++=

该函数的图象可由y x x R =∈sin ()的图象经过怎样的平移和伸缩变换得到?

解:y x x =

+++141234

21(cos )sin =

++=++12262654122654(sin cos cos sin )sin()x x x πππ。

可将函数y=sinx 的图象依次进行下述变换: (1)向左平移

π6

,得到y=sin(x+6π

)的图象;

(2)将(1)中所得图象上各点横坐标变为原来的21倍,纵坐标不变,得y=)6x 2sin(π

+的图象;

(3)将(2)中所得图象上各点纵坐标变为原来的21倍,横坐标不变,得y=21sin(2x+6

π)的图象;

(4)将(3)中所得图象向上平移

45个单位长度,得到y=21sin(2x+6π)+45

的图象。 综上,依次经过四步变换,可得y=1x cos x sin 2

3x cos 212++的图象。 七. 求值

例8. 已知函数f(x)=x sin 32-+sinxcosx 。设α∈(0,π),f(

2α)=2

341

-,求sin α的值。 解:f(x)=x 2sin 2

1

)x 2cos 1(23+--

=sin 23)3x 2(-

π+。 由f(

2

α

)=sin(3π+α)-

=-412323, 得sin(3π+

α)=41。 又α∈(0,π))3

4,3(3π

π∈π+α?。 而sin

41>233=π, 故α+),2

(3ππ∈π,则 cos(α+3π

)=415-。 sin α=sin[3)3(π-

π

+α] =sin 3

sin )3cos(3cos )3(ππ+α-ππ+α =

2

3)415(2141?

--? =8531+。

评注:化为一种角的一次式形式,可使三角式明晰规范。在求sin α时,巧用凑角法:α

=(α+3π)-3π,并且判断出α+3π的范围,进而求出cos(α+3

π

)的确切值,使整个求值过程方向明确,计算简捷。

八. 求系数 例9. 若函数f(x)=

)2x

cos(2x sin a )

x 2

sin(4x 2cos 1-π-+π+的最大值为2,试确定常数a 的值。 解:f(x)=cos 2x sin a x cos 4x cos 22+2

x

=x sin 2

a

x cos 21+

=

)x sin(4

a 412?++, 其中角?由sin ?=

2

2

a

1a cos ,a

11+=

?+来确定。

由已知有44

a 412

=+,解得a=15±。

九. 解三角不等式

例10. 已知函数f(x)=sin 2x+sin2x ,x ]2,0[π∈,求使f(x)为正值的x 的集合。 解:f(x)=1-cos2x+sin2x =1+)4

x 2sin(2π-。

由f(x)>0,有sin (2x-,2

2

)>4-π

则得2k π-4

5k 2<4x 2<4π

+

ππ-π

, 故k π<x <k π+

)Z k (4

3∈π

。 再由x ∈[0,2π],可取k=0,1,得所求集合是 ?

??π

ππ47<x<,43<<x 0x 或。

高中数学公式大全(完整版)

高中数学常用公式及常用结论 1.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 2.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2 个. 3.充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.函数的单调性 (1)设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->? []b a x f x x x f x f ,)(0) ()(2 121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函 数. 5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数 )(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2 b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2 b a x += 对称. 8.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2),)0)(()(1 )(≠=+x f x f a x f ,或1()() f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 9.分数指数幂 (1)m n n m a a = (0,,a m n N * >∈,且1n >).(2)1m n m n a a - = (0,,a m n N * >∈,且1n >). 10.根式的性质 (1))n n a a =.(2)当n n n a a =;当n ,0||,0n n a a a a a a ≥?==?-∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r a b a b a b r Q =>>∈. 12.指数式与对数式的互化式 log b a N b a N =?=(0,1,0)a a N >≠>. ①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a , ④.积的对数:N M MN a a a log log )(log +=,商的对数:N M N M a a a log log log -=,

三角函数辅助角公式化简(1)

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π??=-+ ???, x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34π π?? -????上的单调性. 2.已知函数()4sin cos 33f x x x π? ? =++ ???. (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ?? -????上的最大值和最小值及取得最值时x 的值. 3.已知函数()4tan sin cos 323f x x x x π π???? =--- ? ?????. (1)求()f x 的最小正周期; (2)求()f x 在区间,44π π?? -????上的单调递增区间及最大值与最小值. 4.设函数()23 3cos sin cos 2f x x x x =+-. (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ?? ?? ?? =-+-+ ? ? ??????? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122?? -????上的值域. 6.已知函数()21 3sin cos cos 2f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[]0,π上的单调区间. 7.已知函数()4cos sin 16f x x x π??=+- ???,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ??-????上的最大值和最小值. 8.设函数()()sin 3cos ?cos 2tan x x x f x x π??+- ???=. (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ???上的单调性. 9.已知函数()223sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在上有两个不同的实根,求实数 的取值范围. 11.设()2sin cos cos 4f x x x x π??=-+ ???. (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ??= ???, 1a =, 3bc =,求b c +的值. 12.已知函数.

任意角的三角函数知识点复习

任意角的三角函数 任意点到原点的距离公式:d = x 2+y 2 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐 标为(,)x y ,它与原点的距离为(0)r r ==>,那么 sin y r α= ;cos x r α=;tan y x α=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。 求解三角函数值 一般角:利用三角函数的定义 特殊角:先化为0至360度之间的角 ) Z (tan )2tan()Z (cos )2cos() Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 例1已知角α的终边经过点(2,3)P -,求α的三角函数值。 练:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。 例2.求下列三角函数的值: (1)9cos 4π (2)11tan()6 π - ,

练: .____________tan600o 的值是 D 3.D 3.C 3 3 .B 33.A -- 例3.确定下列三角函数值的符号: (1)cos 250 ; (2)sin()4π-; (3)tan(672)- ; (4)11tan 3 π . 练: 确定下列三角函数值的符号 (1)cos250?; (2)sin()4 π -; (3)tan(672)?-; (4)tan 3π. 例4 若θ是第二象限角,则( ) A.sin 2 θ >0 B.cos 2 θ <0 C.tan 2 θ >0 D.cot 2 θ<0 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交 与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .

《任意角的三角函数一》 教案苏教版

数学:1.2.1《任意角的三角函数(一)》教案(苏教版必修4) 第 3 课时:§1.2.1 任意角的三角函数(一) 【三维目标】: 一、知识与技能 1.掌握任意角的正弦、余弦、正切的定义; 2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号。 3.树立映射观点,正确理解三角函数是以实数为自变量的函数; 二、过程与方法 1.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神; 2.在学习过程中通过相互讨论培养学生的团结协作精神; 3.通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。 三、情感、态度与价值观 1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式; 2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;

3.让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。 【教学重点与难点】: 重点:任意角三角函数的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。 难点:任意角的三角函数概念的建构过程 【学法与教学用具】: 1. 学法: 2. 教学用具:多媒体、实物投影仪. 3. 教学模式:启发、诱导发现教学. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 用与用坐标均可表示圆周上点,那么,这两种表示有什么内在的联系?确切地说, ● 用怎样的数学模型刻画与之间的关系? 二、研探新知 1.三角函数的定义 【提问】:初中锐角的三角函数是如何定义的? 在平面直角坐标系中,设的终边上任意一点的坐标是,它与原点的距离是。当为锐角时,过作轴,垂足为,在中,,,

(完整版)必修4之《辅助角公式》

高一数学期末复习————必修4之《辅助角公式》 一.知识点回顾 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx+bcosx =++++a b x a a b x b a b 222222(sin cos )··。记a a b 22+=cos θ,b a b 22+=sin θ,则cos cos sin ))y x x x θθθ+=+ 由此我们得到结论:asinx+bcosx=a b x 22++sin()θ,(* cos ,θ= sin θ=来确定。通常称式子(*)为辅助角公式,它可以将多个三角式的函数问 题,最终化为y=Asin(?+ωx )+k 的形式。 二.训练 1.化下列代数式为一个角的三角函数 (1 ) 1sin 2αα+; (2 cos αα+; (3)sin cos αα- (4 ) sin()cos()6363 ππαα-+-. (5)5sin 12cos αα+ (6)sin cos a x b x +

2.函数y =2sin ? ????π3-x -cos ? ???? π6+x (x ∈R)的最小值等于 ( ) A .-3 B .-2 C .-1 D .- 5 3.若函数()(1)cos f x x x =,02x π≤< ,则()f x 的最大值为 ( ) A .1 B .2 C 1 D 2 4.(2009安徽卷理)已知函数()cos (0)f x x x ωωω=+>,()y f x =的图像与直线2 y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是( )A.5[,],1212 k k k Z ππππ-+∈ B.511[,],1212k k k Z ππππ++∈C.[,],36k k k Z ππππ-+∈ D.2[,],63 k k k Z ππππ++∈5. 如果函数y=sin2x+acos2x 的图象关于直线x=- π8 对称,那么a= ( ) (A )2 (B )-2 (C )1 (D )-1 6.函数y =cos x +cos ? ????x +π3的最大值是________. 7.已知向量(cos(),1)3a x π=+r ,1(cos(),)32 b x π=+-r , (sin(),0)3 c x π=+r ,求函数()h x =2a b b c ?-?+r r r r 的最大值及相应的x 的值. (本题中可以选用的公式有21cos 21cos ,sin cos sin 222a αααα+= =)

三角函数最全知识点总结

三角函数、解三角形 一、任意角和弧度制及任意角的三角函数 1.任意角的概念 (1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按__逆时针__方向旋转形成的角. ②负角:按__顺时针__方向旋转形成的角. ③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}. (3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限. 象限角 轴线角 2.弧度制 (1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__. (2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__. (3)角度与弧度的换算: 360°=__2π__rad,1°=__π 180__rad,1rad=(__180 π__)≈57°18′. (4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__, 面积S=__1 2|α|r 2__=__1 2lr__.

3.任意角的三角函数定义 (1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与 原点的距离为r,则sinα=__y r__,cosα=__ x r__,tanα=__ y x__. (2)三角函数在各象限的符号是: (3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线. 4.终边相同的角的三角函数 sin(α+k·2π)=__sinα__, cos(α+k·2π)=__cosα__, tan(α+k·2π)=__tanα__(其中k∈Z), 即终边相同的角的同一三角函数的值相等.

辅助角公式的推导

辅助角公式sin cos )a b θθθ?+=+的推导 在三角函数中,有一种常见而重要的题型,即化sin cos a b θ θ+为一个角的 一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记 忆和掌握这种题型的解答方法,教师们总结出公式sin cos a b θ θ+ = )θ?+或sin cos a b θθ+ cos()θ?-,让 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1 求证 α+cos α=2sin(α+6π)=2cos(α-3 π ). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出 结论: 可见 , α+cos α可以化为一个角的三角函数形式. 一般地,a sin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导 例2 化sin cos a b θ θ+为一个角的一个三角函数的形式. 解: asin θ+bc osθ sin θ cos θ), ① =cos ? =s in ?, 则asin θ+bco sθ in θco s?+cos θsi n?) n(θ+?),(其中tan ?=b a ) ② =sin ? =c os?,则asin θ+b co s θ sin θs in ?+c osθcos ?) o s(θ-?),(其中tan ?=a b )

其中?的大小可以由sin ?、co s?的符号确定?的象限,再由tan ?的 值求出.或由tan ?=b a 和(a ,b)所在的象限来确定. 推导之后,是配套的例题和大量的练习. =co s ? =s in??让学生费解.二是这种 “规定”式的推导,学生难记 易忘、易错! 二.让辅助角公式sin cos a b θ θ+ )θ?+来得更自然 能否让让辅助角公式来得更自然些?这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法. 首先要说明,若a=0或b=0时,sin cos a b θ θ+已经是一个角的一个三角函 数的形式,无需化简.故有ab ≠0. 1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b )如图1所示,则总有一个角?,它的终边经过点P.设OP=r 由三角函数的定义知 sin ?=b r co s? =a r = . 所以as in θ+bco sθ ? si nθ in ?c os θ )θ?+.(其中tan ?=b a ) 2.若在平面直角坐标系中,以b 为横坐标,以a 为纵坐标可以描点P (b,a),如图2所示,则总有一个角?的终边经过点P(b ,a),设OP=r,则 由

(完整版)三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=2 1 ,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 2、列表法: 说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 1 22 23 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 30? 1 2 3 1 45? 1 2 1 2 60? 3

3知识讲解_任意角的三角函数_基础

任意角的三角函数 【学习目标】 1.理解任意角的三角函数(正弦、余弦、正切)的定义,能由三角函数的定义求其定义域、函数值的符号. 2.理解单位圆、正弦线、余弦线、正切线的概念及意义. 3.会应用三角函数的定义解决相关问题。 【要点梳理】 要点一:三角函数定义 设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=; (3)y x 叫做α的正切,记做tan α,即tan (0)y x x α= ≠. 要点诠释: 三角函数的值与点P 在终边上的位置无关,仅与角的大小有关. 我们只需计算点到原点的距离r = 那么sin α= ,cos α=,tan y x α=。 要点二:三角函数在各象限的符号 三角函数在各象限的符号: 正切、余切 余弦、正割 正弦、余割 在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦。 要点诠释: 口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正。 要点三:诱导公式一 终边相同的角的同一三角函数的值相等 sin(2)sin k απα+?=,其中k Z ∈ cos(2)cos k απα+?=,其中k Z ∈ tan(2)tan k απα+?=,其中k Z ∈ 要点诠释: 该组公式说明了终边相同的角的同一三角函数的值相等这个结论。要注意在三角函数中,角和三角函

数值的对应关系是多值对应关系,即给定一个角,它的三角函数值是唯一确定的(除不存在的情况);反之,给定一个三角函数值,有无穷多个角和它对应. 要点四:单位圆中的三角函数线 圆心在原点,半径等于1的圆为单位圆.设角α的顶点在圆心O ,始边与x 轴正半轴重合,终边交单位圆于P ,过P 作PM 垂直x 轴于M ,作PN 垂直y 轴于点N.以A 为原点建立y '轴与y 轴同向,与α的终边(或其反向延长线)相交于点T (或T '),则有向线段0M 、0N 、AT(或AT ')分别叫作α的余弦线、正弦线、正切线,统称为三角函数线.有向线段:既有大小又有方向的线段. 要点诠释: 三条有向线段的位置: 正弦线为α的终边与单位圆的交点到x 轴的垂直线段; 余弦线在x 轴上; 正切线在过单位圆与x 轴的正方向的交点的切线上; 三条有向线段中两条在单位圆内,一条在单位圆外. 【典型例题】 类型一:三角函数的定义 例1.已知角α的终边经过点P (-4a ,3a )(a ≠0),求sin α,cos α,tan α的值。 【思路点拨】先根据点P (-4a ,3a )求出OP 的长;再分a >0,a <0两种情况结合任意角的三角函数的定义即可求出结论 【答案】35,45-,34-或35-,45,34 - 【解析】 5||r a ==。 若a >0,则r=5a ,α是第二象限角,则 33sin 55 y a r a α= ==, 44cos 55 x a r a α-===-, 33tan 44 y a x a α===--, 若a <0,则r=-5a ,α是第四象限角,则 3sin 5α=-,4cos 5α=,3tan 4α=-。 【总结升华】 本题主要考查三角函数的定义和分类讨论的思想。三角函数值的大小与点在角的终边上的位置无关,只与角的大小有关。要善于利用三角函数的定义及三角函数的符号规律解题。 举一反三: 【变式1】已知角α的终边在直线y =上,求sin α,cos α,tan α的值。 【答案】1221,22 --

最新初高中数学公式大全

初中数学公式表

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

三角函数辅助角公式化简

三角函数辅助角公式化简

8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? + - ? ?? = . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2 π?? ?? ? 上的单调性. 9.已知函数()22 3sin cos 2cos 1 f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。 10.已知函数 . (1)求 的最小正周期; (2)若关于 的方程在上有两个不同的实根,求 实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π? ?=-+ ? ? ?. (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02 A f ?? = ??? , 1a =, 3 bc =b c +的值.

12.已知函数. (1)求函数的单调增区间; (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使取最大值时的集合;(2)已知中,角的边分别为,若,求的最小值. 14.已知()()1 3sin cos cos 2 f x x x x ωωω =+-,其中0 ω>,若() f x的最小正周期为4π. (1)求函数() f x的单调递增区间; (2)锐角三角形ABC中,() 2cos cos a c B b C -=,求() f A的取值范围. 15.已知a r=(sinx,cosx),b r=(cosφ,sinφ)(|φ|<).函数 f(x)=a r ?b r 且f( 3 π -x)=f(x). (Ⅰ)求f(x)的解析式及单调递增区间;

任意角的三角函数知识点

2.1任意角的三角函数 课前复习: 1. 特殊角的三角函数值记忆 新课讲解: 任意点到原点的距离公式: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y , 它与原点的距离为(0)r r == >,那么 (1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x 叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α 的大小,只表明与α的终边相同的角所在的位置; ②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等 于0,所以tan y x α= 无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值 y r 、x r 、y x 、x y 分别是一个确定的实数。 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。 有向线段: 坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。 规定:与坐标轴方向一致时为正,与坐标方向相反时为负。 有向线段:带有方向的线段。 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点 P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T . 由四个图看出: 当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。 (Ⅳ) (Ⅲ)

高中数学公式一览表

高中所用重点公式汇总

公式口诀: 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。 函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

知识讲解_任意角的三角函数_基础

任意角的三角函数 编稿:丁会敏 审稿:王静伟 【学习目标】 1.理解任意角的三角函数(正弦、余弦、正切)的定义,能由三角函数的定义求其定义域、函数值的符号. 2.理解单位圆、正弦线、余弦线、正切线的概念及意义. 3.会应用三角函数的定义解决相关问题. 【要点梳理】 要点一:三角函数定义 设α是一个任意角,它的终边与半径是r 的圆交于点(,)P x y , 则r =: (1) y r 做α的正弦,记做sin α,即sin y r α=; (2) x r 叫做α的余弦,记做cos α,即cos x r α=; (3)y x 叫做α的正切,记做tan α,即tan (0)y x x α=≠. 要点诠释: (1)三角函数的值与点P 在终边上的位置无关,仅与角的大小有关. 我们只需计算点到原点的距离r = 那么sin α= ,cos α=,tan y x α=. (2)三角函数符号是一个整体,离开α的sin 、cos 、tan 等是没有意义的,它们表示的是一个比值,而不是sin 、cos 、tan 与α的积. 要点二:三角函数在各象限的符号 三角函数在各象限的符号: 正切、余切 余弦、正割 正弦、余割 在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦. 要点诠释: 口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正. 要点三:单位圆中的三角函数线 圆心在原点,半径等于1的圆为单位圆.设角α的顶点在圆心O ,始边与x 轴正半轴重合,终边交单位圆于P ,过P 作PM 垂直x 轴于M ,作PN 垂直y 轴于点N.以A 为原点建立y '轴与y 轴同向,与α的终边

高中数学公式大全完整版

高中数学常用公式及常用结论 1. 包含关系 A B A A B B A B C U B C U A A C U B C U ABR 2 .集合 { a 1, a 2 , , a n } 的子集个数共有 2n 个;真子集有 2n – 1 个;非空子集有 2n – 1 个;非空的真子集有 2n – 2 个 . 3.充要条件 ( 1)充分条件:若 ( 2)必要条件:若 ( 3)充要条件:若 p q ,则 p 是 q 充分条件 . q p ,则 p 是 q 必要条件 . p q ,且 q p ,则 p 是 q 充要条件 . 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然 . 4. 函数的单调性 (1) 设 x 1 x 2 a,b , x 1 x 2 那么 (x 1 x 2 ) f ( x 1 ) f ( x 2 ) f ( x 1 ) f ( x 2 ) 0 f (x)在 a,b 上是增函数; x 2 x 1 (x x ) f ( x ) f ( x ) f ( x 1 ) f ( x 2 ) f ( x)在 a, b 上是减函数 . 1 2 1 2 x 1 x 2 (2) 设函数 y f ( x) 在某个区间内可导,如果 f (x) 0 ,则 f (x) 为增函数;如果 f ( x) 0 ,则 f ( x) 为减函 数 . f ( x) 和 g( x) 都是减函数 , , 和函数 f ( x) g( x) 也是减函数 ; 5. 如果函数 则在公共定义域内 如果函数 y f (u) 和 u g (x) 在其对应的定义域上都是减函数 , 则复合函数 y f [ g( x)] 是增函数 . 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称 ; 反过来,如果一个函数的图象关于原点对称,那么 这个函数是奇函数;如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数. 7. 对于函数 y f (x) ( x R ), f (x a) f (b x) 恒成立 , 则函数 f ( x) 的对称轴是函数 a b x ; 两个函 a b 2 数 y f (x a) 与 y f (b x) 的图象关于直线 x 对称 . 2 8. 几个函数方程的周期 ( 约定 a>0) ( 1) f (x) f (x a) ,则 f (x) 的周期 T=a ; ( 2), f ( x a) 1 ( f ( x) 0) ,或 f (x a) 1 f ( x) ( f (x) 0) , 则 f ( x) 的周期 T=2a ; f (x) 9. 分数指数幂 m 1 m 1 (1) a n ( a 0, m, n N ,且 n 1 ) .(2) a n 0, m, n N ,且 n 1) . n a m m ( a a n 10.根式的性质 ( ) ( n a )n a . ( 2)当 n 为奇数时, n n a ;当 n 为偶数时, n a n | a | a, a 0 . 1 a a, a 0 11.有理指数幂的运算性质 (1) a r a s a r s ( a 0, r , s Q ) .(2) (a r ) s a rs (a 0, r , s Q) .(3) (ab)r a r b r (a 0, b 0, r Q) . 12. 指数式与对数式的互化式log a N b a b N (a 0, a 1, N 0) . ①.负数和零没有对数,② .1 的对数等于 0: log a 1 0 ,③ .底的对数等于 1: log a a 1 , ④ .积的对数: log a (MN ) log a M log a N ,商的对数: log a M log a M log a N , N n log a b 幂的对数: log a M n nlog a M ; log a m b n m

任意角的三角函数说课稿

任意角的三角函数说课稿 各位老师你们好!今天我要说的课题是《任意角的三角函数》。 一、说教材 1、地位和作用: 本节课是人教版数学(必修)4第一章三角函数的第一节任意角的三角函数第一课时。它是本章教学内容的基本概念, 也是学好全章内容的关键,对三角内容的整体学习至关重要,同时它又为平面向量、解析几何等内容的学习作必要的准备,也是今后高考的必考内容之一。 根据本教材的结构和内容分析,结合学生的认知特点和心理特征,我制定了如下的教学目标: 2、教学目标: 知识与技能方面: 掌握任意角的三角函数的定义,会求角α的各三角函数值;理解并掌握三角函数在各象限的符号及终边相同角的诱导公式,最后要理解三角函数的两域。 方法与过程上: 体验三角函数概念的产生、发展过程,通过对三角函数值的符号,诱导公式(一)的推导,提高学生分析、探究、解决问题的能力;领悟直角坐标系的工具功能,丰富数形结合的思想. 情感态度与价值观方面: 培养学生通过现象看本质的唯物主义观,培养学生实事求是的科学态度. 本着高一新课程标准,在吃透教材基础上,我确定了以下教学重难点: 3、重点、难点: 重点是正确理解任意角三角函数的定义及分别在各个象限的符号判断法,终边相同角的诱导公式(一) 难点是把三角函数理解为以实数为自变量的函数,以及单位圆的应用。 为了讲清教材的重难点,使学生能够达到既定的教学目标,在重点上有所掌握,难点上有所突破,我再从教法和学法上谈谈: 二、说教、学方法 一方面,我们都知道数学是集抽象与实践为一体的重要学科,因此在教学过程中,不仅要使学生“知其然”还要使学生“知其所以然”。考虑到学生的现状,我主要采取“温故知新,逐步拓展”的形式让学生真正参与到教学,在学习中,得到体验。通过复习锐角三角函数的定义结合前面角的概念的推广提出问题:如何修正三角函数的定义?进一步扩展所学内容,发展新知识,从而激起学生探求新知的欲望,调动学生参与学习的积极性。 教学中运用多媒体工具提高直观性增强趣味性,并注意用新课程理念处理传统教材,使学生在学习活动自主探索、动手实践、合作交流,教师发挥引导者、合作者的作用,引导学生主动参与、揭示本质、经历过程、收获成果。 根据本节课内容以及学生认知特点和我自己的教学风格,主要以“教师主导、学生主体”的原则,采用“启发、引导发现式”教学方法组织教学. 另一方面,人们常说:“现代的文盲不是不懂字的人,而是没有掌握学习方法的人”,因而,我在教学过程中特别重视学法的指导。让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:分析归纳

高三数学辅助角公式在高考三角题中的应用专题辅导

高三数学辅助角公式在高考三角题中的应用 柳毓 对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx=bcosx =++++a b x a a b x b a b 222 2 2 2 (sin cos )· ·。 由于上式中的 a a b 22 +与 b a b 2 2 +的平方和为1,故可记a a b 2 2 +=cos θ, b a b 2 2 +=sin θ,则 。 )x sin(b a )sin x cos cos x (sin b a y 2222θ++=θ+θ+= 由此我们得到结论: asinx+bcosx=a b x 22++sin()θ,(*)其中θ由 a a b b a b 2 2 2 2 +=+=cos , sin θθ来 确定。 通常称式子(*)为辅助角公式,它可以将多个三角式的函数问题,最终化为y=Asin(?+ωx )+k 的形式。 下面结合近年高考三角题,就辅助角公式的应用,举例分类简析。 一. 求周期 例1 (2020年上海卷选)求函数y x x x =+-+244 32cos()cos()sin π π 的最小正周期。 解: ) 6 x 2sin(2x 2cos x 2sin 3x 2sin 3)2x 2sin(x 2sin 3)4x sin()4x cos(2y π +=+=+π +=+π +π+= 所以函数y 的最小正周期T=π。 评注:将三角式化为y=Asin(?+ωx )+k 的形式,是求周期的主要途径。 二. 求最值 例2. (2020年北京市)已知函数f(x)=cos 4x-2sinxcosx-sin 4x 。若x ∈[,]02 π ,求f(x)的 最大值和最小值。

三角函数辅助角公式化简修订版

三角函数辅助角公式化 简修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π? ?=-+ ???, x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34ππ?? -???? 上的单调性. 2.已知函数( )4sin cos 3f x x x π? ?=++ ?? ? (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ?? -???? 上的最大值和最小值及取得最值时x 的值. 3.已知函数( )4tan sin cos 23f x x x x ππ??? ?=--- ? ????? (1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ?? -???? 上的单调递增区间及最大值与最小值. 4.设函数( )2sin cos f x x x x =+- . (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ??? ???=-+-+ ? ? ???? ??? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程;

(Ⅱ)求函数()f x 在区间ππ,122?? -???? 上的值域. 6.已知函数( )21cos cos 2 f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[]0,π上的单调区间. 7.已知函数()4cos sin 16f x x x π? ?=+- ???,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -???? 上的最大值和最小值. 8.设函数( )() sin ?cos 2tan x x x f x x π?? + - ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ??? 上的单调性. 9.已知函数( )2cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。

相关文档
最新文档