《计算机动画技术》上机实验报告(1)

《计算机动画技术》上机实验报告(1)
《计算机动画技术》上机实验报告(1)

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

单片机第一次实验报告

单片机第一次实验报告 姓名: 学号: 班级:

实验报告 课程名称:微机原理与接口技术指导老师:学生姓名:学号:专业:自动化日期:20140327 地点: 实验一实验名称 1. 实验目的和要求 1.掌握keil软件和STC-ISP 软件的使用方法 2.点亮第一个发光管. 3.点亮1,3,5,7发光管 4.尝试让第一个发光管闪烁. 2. 主要仪器设备 1.一台pc机 2.一个单片机开发板 点亮第一个发光管. #include void main () { P1 &=0xFE; while(1) } 点亮1,3,5,7发光管 void main () { P1 &=0xAA;

while(1) } 尝试让第一个发光管闪烁. #include #define uint unsigned int #define uchar unsigned char void delay_ms(uint timer) { uchar j = 0; while(timer--) { for(j = 124;j>0;j--) { ; } } } void main (void) { while(1) { P1 &=0xFE; delay_ms(100); P1 |=0x01; delay_ms(100); } }

实验心得:这第一次试验,没准备,所以这次实验一上机啥都不会,也不知道该做啥,在同学的帮助下安装了程序和驱动,代码也是问同学才明白的。第一个代码,通过很顺利,但是测试第二个代码的时候电脑无法连接板子,后来重新安装了驱动才就能连接了。虽然感觉还是好多不懂的,不过还是学到了一些东西,有一点成就感。

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

操作系统上机实验报告(西电)

操作系统上机题目 一、题目 实验1:LINUX/UNIX Shell部分 (一)系统基本命令 1.登陆系统,输入whoami 和pwd ,确定自己的登录名和当前目录; 登录名yuanye ,当前目录/home/yuanye 2.显示自己的注册目录?命令在哪里? a.键入echo $HOME,确认自己的主目录;主目录为/home/yuanye b.键入echo $PA TH,记下自己看到的目录表;/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games c.键入which abcd,看看得到的错误信息; 再键入which ls 和which vi,对比刚刚得到的结果的目录是否在a.、b. 两题看到的目录表中; /bin/ls /usr/bin/vi 3.ls 和cd 的使用: a.键入ls,ls -l ,ls -a ,ls -al 四条命令,观察输出,说明四种不同使用方式的区别。 1. examples.desktop 公共的模板视频图片文档音乐桌面; 总计32 2.-rw-r--r-- 1 yuanye yuanye 357 2011-03-22 22:15 examples.desktop drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 公共的 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 模板 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 视频 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 图片 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 文档 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 音乐 drwxr-xr-x 2 yuanye yuanye 4096 2011-03-22 23:25 桌面 3. . .fontconfig .local .Xauthority .. .gconf .mozilla .xsession-errors .bash_logout .gconfd .nautilus 公共的 .bashrc .gksu.lock .profile 模板 .cache .gnome2 .pulse 视频 .chewing .gnome2_private .pulse-cookie 图片 .config .gnupg .recently-used.xbel 文档 .dbus .gstreamer-0.10 .scim 音乐 .dmrc .gtk-bookmarks .sudo_as_admin_successful 桌面 .esd_auth .gvfs .update-manager-core

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

《MATLAB与数值分析》第一次上机实验报告

电子科技大学电子工程学院标准实验报告(实验)课程名称MATLAB与数值分析 学生姓名:李培睿 学号:2013020904026 指导教师:程建

一、实验名称 《MATLAB与数值分析》第一次上机实验 二、实验目的 1. 熟练掌握矩阵的生成、加、减、乘、除、转置、行列式、逆、范数等运算 操作。(用.m文件和Matlab函数编写一个对给定矩阵进行运算操作的程序) 2. 熟练掌握算术符号操作和基本运算操作,包括矩阵合并、向量合并、符号 转换、展开符号表达式、符号因式分解、符号表达式的化简、代数方程的符号解析解、特征多项式、函数的反函数、函数计算器、微积分、常微分方程的符号解、符号函数的画图等。(用.m文件编写进行符号因式分解和函数求反的程序) 3. 掌握Matlab函数的编写规范。 4、掌握Matlab常用的绘图处理操作,包括:基本平面图、图形注释命令、 三维曲线和面的填充、三维等高线等。(用.m文件编写在一个图形窗口上绘制正弦和余弦函数的图形,并给出充分的图形注释) 5. 熟练操作MATLAB软件平台,能利用M文件完成MATLAB的程序设计。 三、实验内容 1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。并以x, y为坐标显示图像 x(n+1) = a*x(n)-b*(y(n)-x(n)^2); y(n+1) = b*x(n)+a*(y(n)-x(n)^2) 2. 编程实现奥运5环图,允许用户输入环的直径。 3. 实现对输入任意长度向量元素的冒泡排序的升序排列。不允许使用sort 函数。 四、实验数据及结果分析 题目一: ①在Editor窗口编写函数代码如下:

《 Windows7 操作系统》实验报告

实验(一) Windows 7基本操作 一、实验目的 1.掌握文件和文件夹基本操作。 2.掌握“资源管理器”和“计算机”基本操作。 二、实验要求 1.请将操作结果用Alt+Print Screen组合键截图粘贴在题目之后。 2.实验完成后,请将实验报告保存并提交。 三、实验内容 1.文件或文件夹的管理(提示:此题自行操作一遍即可,无需抓图)★期末机试必考题★ (1) 在D:盘根目录上创建一个名为“上机实验”的文件夹,在“上机实验”文件夹中创建1个名为“操作系统上机实验”的空白文件夹和2个分别名为“2.xlsx”和“3.pptx”的空白文件,在“操作系统上机实验”文件夹中创建一个名为“1.docx”的空白文件。 (2) 将“1.docx”改名为“介绍信.docx”;将“上机实验”改名为“作业”。 (3) 在“作业”文件夹中分别尝试选择一个文件、同时选择两个文件、一次同时选择所有文件和文件夹。 (4) 将“介绍信.docx”复制到C:盘根目录。 (5) 将D:盘根目录中的“作业”文件夹移动到C:盘根目录。 (6) 将“作业”文件夹中的“2.xlsx”文件删除放入“回收站”。 (7) 还原被删除的“2.xlsx”文件到原位置。 2.搜索文件或文件夹,要求如下: 查找C盘上所有以大写字母“A”开头,文件大小在10KB以上的文本文件。(提示:搜索时,可以使用“?”和“*”。“?”表示任意一个字符,“*”表示任意多个字符。)

3. 在桌面上为C:盘根目录下的“作业”文件夹创建一个桌面快捷方式。★期末机试必考题★ 3.“计算机”或“资源管理器”的使用 (1) 在“资源管理器”窗口,设置以详细信息方式显示C:\WINDOWS中所有文件和文件夹,使所有图标按类型排列显示,并不显示文件扩展名。(提示:三步操作全部做完后,将窗口中显示的最终设置结果抓一张图片即可) (2) 将C:盘根目录中“介绍信.docx”的文件属性设置为“只读”和“隐藏”,并设置在窗口中显示“隐藏属性”的文件或文件夹。(提示:请将“文件夹”对话框中选项设置效果与C:盘根目录中该文件图标呈现的半透明显示效果截取在一整张桌面图片中即可) 4.回收站的设置 设置删除文件后,不将其移入回收站中,而是直接彻底删除功能。

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

matlab第一次实验报告

Matlab第一次实验报告 2012029010010 尹康 1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。并以x,y为坐标显示图像 x(n+1) = a*x(n)-b*(y(n)-x(n)^2); y(n+1) = b*x(n)+a*(y(n)-x(n)^2) 程序代码: n=input('input the number of pionts:'); a=input('input a:'); b=input('input b:'); x=[]; y=[]; x(1)=input('input x1:'); y(1)=input('input y1:'); %输入点数、初始值以及系数for i=2:n x(i)=a*x(i-1)-b*(y(i-1)-x(i-1)^2); y(i)=a*x(i-1)+b*(y(i-1)-x(i-1)^2); %根据已输入的数据进行迭代end figure;plot(x,y,'linewidth',2) axis equal %横纵坐标等比例 text(x(1),y(1),'1st point') %标记初始点 运行结果:

心得体会及改进:在输入某些数据时,所绘曲线可能是一条折线(如:n=5,a=b=x1=1,y1=2)甚至只有一个点(如:n=5,a=b=x1=y1=1),此时可能出现曲线与坐标轴重合或无法看到点的情况,为了更清晰地展现曲线,可以使线宽适当加宽并标记初始点。 2.编程实现奥运5环图,允许用户输入环的直径。 程序代码: 函数circle: %在指定的圆心坐标处,用指定颜色、宽度的线条绘出指定半径、圆心角的弧 function f=circle(r,x,y,color,linw,alp1,alp2) alp=linspace(alp1,alp2); X=r*cos(alp)+x; Y=r*sin(alp)+y; plot(X,Y,color,'linewidth',linw) end 主程序代码: r=input('input r:');

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

操作系统上机实验报告

大连理工大学实验报告 学院(系):专业:班级: 姓名:学号:组:___ 实验时间:实验室:实验台: 指导教师签字:成绩: 实验名称:进程控制 一、实验目的和要求 (1)进一步加强对进程概念的理解,明确进程和程序的区别 (2)进一步认识并发执行的实质 二、实验环境 在windows平台上,cygwin模拟UNIX运行环境 三、实验内容 (1) getpid()---获取进程的pid 每个进程都执行自己独立的程序,打印自己的pid; (2) getpid()---获取进程的pid 每个进程都执行自己独立的程序,打印自己的pid; 父进程打印两个子进程的pid;

(3)写一个命令处理程序,能处理max(m,n), min(m,n),average(m,n,l)这几个命令(使用exec函数族)。 Max函数 Min函数 Average函数 Exec函数族调用 四、程序代码 五、运行结果 六、实验结果与分析 七、体会 通过这次上机,我了解了fork函数的运行方法,同时更深刻的了解了进程的并行执行的本质,印证了在课堂上学习的理论知识。同时通过编写实验内容(3)的命令处理程序,学会了exec函数族工作原理和使用方法。通过这次上机实验让我加深了对课堂上学习的理论知识的理解,收获很多。

大连理工大学实验报告 学院(系):专业:班级: 姓名:学号:组:___ 实验时间:实验室:实验台: 指导教师签字:成绩: 实验名称:进程通讯 一、实验目的和要求 了解和熟悉UNIX支持的共享存储区机制 二、实验环境 在windows平台上,cygwin模拟UNIX运行环境 三.实验内容 编写一段程序, 使其用共享存储区来实现两个进程之间的进程通讯。进程A创建一个长度为512字节的共享内存,并显示写入该共享内存的数据;进程B将共享内存附加到自己的地址空间,并向共享内存中写入数据。 四、程序代码 五、运行结果 六、实验结果与分析 七、体会

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

操作系统实验报告生产者与消费者问题模拟

操作系统上机实验报告 实验名称: 生产者与消费者问题模拟 实验目的: 通过模拟生产者消费者问题理解进程或线程之间的同步与互斥。 实验内容: 1、设计一个环形缓冲区,大小为10,生产者依次向其中写入1到20,每个缓冲区中存放一个数字,消费者从中依次读取数字。 2、相应的信号量; 3、生产者和消费者可按如下两种方式之一设计; (1)设计成两个进程; (2)设计成一个进程内的两个线程。 4、根据实验结果理解信号量的工作原理,进程或线程的同步\互斥关系。 实验步骤及分析: 一.管道 (一)管道定义 所谓管道,是指能够连接一个写进程和一个读进程的、并允许它们以生产者—消费者方式进行通信的一个共享文件,又称为pipe文件。由写进程从管道的写入端(句柄1)将数据写入管道,而读进程则从管道的读出端(句柄0)读出数据。(二)所涉及的系统调用 1、pipe( ) 建立一无名管道。 系统调用格式 pipe(filedes) 参数定义 int pipe(filedes); int filedes[2]; 其中,filedes[1]是写入端,filedes[0]是读出端。 该函数使用头文件如下: #include #inlcude #include 2、read( ) : 系统调用格式 read(fd,buf,nbyte) 功能:从fd所指示的文件中读出nbyte个字节的数据,并将它们送至由指针buf 所指示的缓冲区中。如该文件被加锁,等待,直到锁打开为止。 参数定义:

int read(fd,buf,nbyte); int fd; char *buf; unsigned nbyte; 3、write( ) 系统调用格式 read(fd,buf,nbyte) 功能:把nbyte 个字节的数据,从buf所指向的缓冲区写到由fd所指向的文件中。如文件加锁,暂停写入,直至开锁。 参数定义同read( )。 (三)参考程序 #include #include #include int pid1,pid2; main( ) { int fd[2]; char outpipe[100],inpipe[100]; pipe(fd); /*创建一个管道*/ while ((pid1=fork( ))==-1); if(pid1==0) { lockf(fd[1],1,0); /*把串放入数组outpipe中*/ sprintf(outpipe,child 1 is using pipe!); /* 向管道写长为50字节的串*/ write(fd[1],outpipe,50); sleep(5); /*自我阻塞5秒*/ lockf(fd[1],0,0); exit(0); } else { while((pid2=fork( ))==-1); if(pid2==0) { lockf(fd[1],1,0); /*互斥*/ sprintf(outpipe,child 2 is using pipe!); write(fd[1],outpipe,50); sleep(5); lockf(fd[1],0,0);

并行计算第一次实验报告

并行计算上机实验报告题目:多线程计算Pi值 学生姓名 学院名称计算机学院 专业计算机科学与技术时间

一. 实验目的 1、掌握集群任务提交方式; 2、掌握多线程编程。 二.实验内容 1、通过下图中的近似公式,使用多线程编程实现pi的计算; 2、通过控制变量N的数值以及线程的数量,观察程序的执行效率。 三.实现方法 1. 下载配置SSH客户端 2. 用多线程编写pi代码 3. 通过文件传输界面,将文件上传到集群上 4.将命令行目录切换至data,对.c文件进行编译 5.编写PBS脚本,提交作业 6.实验代码如下: #include

#include #include #include #include #include static double PI=0; static int N=0; static int numOfThread=0; static int length=0; static int timeUsed=0; static int numOfThreadArray[]={1,2,4,6,8,10,12,14,16,20,24,30}; static int threadArraySize=12; static int nTime=4; static int repeatTime=30; static double totalTime=0; struct timeval tvpre, tvafter; pthread_mutex_t mut; clockid_t startTime,endTime;

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

计算机组成原理上机实验报告

《计算机组成原理实验》课程实验报告 实验题目组成原理上机实验 班级1237-小 姓名 学号 时间2014年5月 成绩

实验一基本运算器实验 1.实验目的 (1)了解运算器的组成原理 (2)掌握运算器的工作原理 2.实验内容 输入数据,根据运算器逻辑功能表1-1进行逻辑、移位、算术运算,将运算结果填入表1-2。 表 1-1运算器逻辑功能表 运算类 A B S3 S2 S1 S0 CN 结果 逻辑运算65 A7 0 0 0 0 X F=( 65 ) FC=( ) FZ=( ) 65 A7 0 0 0 1 X F=( A7 ) FC=( ) FZ=( ) 0 0 1 0 X F=( ) FC=( ) FZ=( ) 0 0 1 1 X F=( ) FC=( ) FZ=( ) 0 1 0 0 X F=( ) FC=( ) FZ=( ) 移位运算0 1 0 1 X F=( ) FC=( ) FZ=( ) 0 1 1 0 0 F=( ) FC=( ) FZ=( ) 1 F=( ) FC=( ) FZ=( ) 0 1 1 1 0 F=( ) FC=( ) FZ=( ) 1 F=( ) FC=( ) FZ=( ) 算术运算 1 0 0 0 X F=( ) FC=( ) FZ=( ) 1 0 0 1 X F=( ) FC=( ) FZ=( ) 1 0 1 0X F=( ) FC=( ) FZ=( ) 1 0 1 0X F=( ) FC=( ) FZ=( ) 1 0 1 1 X F=( ) FC=( ) FZ=( ) 1 1 0 0 X F=( ) FC=( ) FZ=( ) 1 1 0 1 X F=( ) FC=( ) FZ=( ) 表1-2运算结果表

计算方法实验报告册

实验一——插值方法 实验学时:4 实验类型:设计 实验要求:必修 一 实验目的 通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。 二 实验内容 通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。取点越密集,所得折线就越逼近理论上的插值曲线。本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放 于动态数组[]Y n 中。 以Visual C++.Net 2005为例。 本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。CInterpolation 类为 class CInterpolation { public : CInterpolation();//构造函数 CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… ………… int n, N;//结点下标上限,采样点下标上限 float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标 float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放 i h ,i α,i β,i a ,i b ,i c ,i d 和i m }; 其中,有参数的构造函数为 CInterpolation(float *x1, float *y1, int n1) { //动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1; N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];

操作系统实验报告18038

福州大学数学与计算机科学(软件)学院 实验报告 课程名称:计算机操作系统 学号:221100218 姓名: 专业:软件工程 年级:2011级 学期:2012学年第2学期 2013年10 月24 日

实验一 Linux操作系统的使用和分析 一、实验目的 本实验主要学习和掌握Linux操作系统的基本应用。通过本实验,学生能够熟练掌握Linux环境下各种基本操作命令接口的应用。从系统安全角度出发,学习掌握系统的基本安全优化和配置,在操作系统层次进行有效安全加固,提高Linux系统的安全性能。通过本次实验,有助于学生进一步理解操作系统原理中的相关内容,加深认识。 二、实验要求 1、熟练掌握Linux系统的基本操作命令。 2、熟悉Linux 系统的基本配置。 3、实现Linux系统的安全加固。 4、掌握一种以上的网络应用软件的安装、配置与应用。 三、实验内容 系统的启动,如图: 关闭使用shutdowm 还有列出文件夹内的信息ls,cp复制拷贝,touch创建文件命令等等 ①下载文件压缩包pro.gz,解压如图:

②然后修改安装路径: ③之后用make编译文件 ④在安装路径/home/liaoenrui/11里的etc中修改文件的组名和用户名: 将groud 命名也命名为ftp,然后用groudadd和useradd命令将这两个添加在该目录的sbin目录下:

⑤最后运行文件,./profile即可 四、实验总结 通过本次的操作系统的上机实验,我熟练了Linux系统的基本操作命令,并且对安装文件有更深入的了解,比如在上述安装过程中对于通过froftpd来架构linux的ftp,由于之前都是用window系统,所以对于这些非常的生疏,因此在请教了多人和上网查询之后,终于有所了解,并且成功的将此实验顺利完成。在本次实验中,我发现自己的动手能力又有很大的提高,相信以后继续努力的话会有更大的进步,当然这也要归功于老师的教导。 参考文献 [1] Neil Maththew Richard Stones Linux 程序设计第四版人民邮电出版社 [2] 周茜,赵明生.中文文本分类中的特征选择研究[J].中文信息学报,2003,Vol.18 No.3

相关文档
最新文档