二次函数与折叠问题

二次函数与折叠问题
二次函数与折叠问题

数学专题:二次函数与折叠问题

例题1:(07宁德)已知:矩形纸片ABCD 中,26AB =厘米,18.5BC =厘米,点E 在AD 上,且6AE =厘米,点P 是AB 边上一动点.按如下操作:

步骤一,折叠纸片,使点P 与点E 重合,展开纸片得折痕MN (如图1所示); 步骤二,过点P 作PT AB ⊥,交MN 所在的直线于点Q ,连接QE (如图2所示)

(1)无论点P 在AB 边上任何位置,都有PQ _________QE (填“>”、“=”、“<”号);

(2)如图3所示,将纸片ABCD 放在直角坐标系中,按上述步骤一、二进行操作:

①当点P 在A 点时,PT 与MN 交于点11Q Q ,点的坐标是(_______,_________); ②当6PA =厘米时,PT 与MN 交于点22Q Q ,点的坐标是(_______,_________); ③当12PA =厘米时,在图3中画出MN PT ,(不要求写画法),并求出MN 与PT 的交点3Q 的坐标;

(3)点P 在运动过程,PT 与MN 形成一系列的交点123Q Q Q ,,,…观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.

C B

图1

图3

C E 图2

例题2(06广西钦州卷)如图,在平面直角坐标系中,矩形OABC 的顶点O 为原点,E 为

AB 上一点,把CBE △沿CE 折叠,使点B 恰好落在OA 边上的点D 处,点A D ,的坐标分别为(50),和(30),.

(1)求点C 的坐标;

(2)求DE 所在直线的解析式;

(3)设过点C

的抛物线2

2(0)y x c b =+<与直线BC 的另一个交点为M ,问在该抛物线上是否存在点G ,使得CMG △为等边三角形.若存在,求出点G 的坐标;若不存

在,请说明理由.

例题3:(2009浙江湖州)已知抛物线2

2y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线1

2

y x a =

-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N . (1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ; (2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;

(3)在抛物线2

2y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.

第(2)题

备用图

例题4:(2010湖北恩施自治州) 如图,在平面直角坐标系中,二次函数c bx x y ++=2

的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于

C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.

(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /

C , 那么是否存在点P ,使四边形POP /

C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.

二次函数(旋转-折叠)

二次函数综合训练(折叠,旋转,对称,平移) 1、已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D. (1)求抛物线的解析式; (2)将△OAB绕点A顺时针旋转90°后,将B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式. (3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△ND D1面积的2倍,求点N的坐标.

2、如图,已知点A(-2,4)和点B(1,0)都在抛物线y=m x2+2mx+n上. (1)求m、n; (2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形AA′B′B为菱形,求平移后抛物线的表达式; (3)试求出菱形AA′B′B的对称中心点M的坐标.

3、把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a 角,旋转后的矩形记为矩形EDCF.在旋转过程中, (1)如图①,当点E在射线CB上时,E点坐标为; (2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时); (3)如图②,设EF与BC交于点C,当EC=CG时,求点G的坐标; (4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.

4、如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=a x2+bx+c的图象经过点C′、M、N.解答下列问题: (1)求出该抛物线所表示的函数解析式; (2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由; (3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求的新抛物线的解析式.

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

二次函数翻折问题

二次函数专题 ——之体会翻折之美 投石问路: 已知函数 y x 24x3 (1)试写出分段函数的解析式 (2)求出 y 随 x 增大而增大的自变量取值范围。 1.已知,二次函数y - x2bx c 的图像过点A(1,0)和C(0,2) (1)求二次函数的表达式及对称轴 (2)将二次函数 y - x 2bx c 的图像在直线y=1 上方的部分沿直线y=1 翻折,图像其余的部分保持不变,得到的新函数图象记为G,点 M (m,y1)在图像 G 上,且 y1≥0,求m的取值范围。 y O X

2.抛物线y x22mx m2 4 与x轴交于A,B两点(A点在B点的左侧),与y轴交于 点C,抛物线的对称轴为 x=1. (1)求抛物线的表达式 (2)若 CD ∥x 轴,点 D 在点 C 的左侧, CD= 1 AB, 求点 D 的坐标 2 ( 3)在( 2)的条件下,将抛物线在直线x=t 右侧的部分沿直线 x=t 翻折后的图像记为 G,若图像 G 与线段 CD 有公共点,请直接写出t 的取值范围 y y O X O X

3.在平面直角坐标系xoy 中,抛物线C1 : y x 2bx c 经过点C(2,-3),且与x轴的一个交点为 B ( 3, 0) ( 4)求抛物线C1的表达式 ( 5) D 是抛物线C1与 x 轴的另一个交点,点 E 的坐标为( m, 0),其中 m> 0,△ ADE 的面积为21 。4 ①求m的值 ②将抛物线C1向上平移n 个单位,得到抛物线C2,若当0≤x≤m时,抛物线 C2与 x 轴只有一个公共点,结合函数的图像,求n 的取值范围。 y y O X O X

二次函数的几何最值问题

二次函数与几何图形结合 ---探究面积最值问题 〖方法总结〗: 在解答面积最值存在性问题时,具体方法如下: ①根据题意,结合函数关系式设出所求点的坐标,用其表示出所求图形的线段长; ②观察所求图形的面积能不能直接利用面积公式求出,若能,根据几何图形面积公式得到点的坐标或线段长关于面积的二次函数关系式,若所求图形的面积不能直接利用面积公式求出时,则需将所求图形分割成几个可直接利用面积公式计算的图形,进行求解; ③结合已知条件和函数图象性质求出面积取最大值时的点坐标或字母范围。 (2014?达州)如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式. (2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标. (3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

(2014自贡)如图,已知抛物线c x ax y +- =232与x 轴相交于A 、B 两点,并与直线221-=x y 交于B 、C 两点,其中点C 是直线22 1-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.

(2014黔西南州)(16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE. (1)求抛物线的函数解析式,并写出顶点D的坐标; (2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值; (3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.

二次函数顶点式图像特点

二次函数顶点式图像及其特点教学设计 【教材】人教版九年级 22.1 二次函数的图象及其特点 (第4课时) 【教学对象】九年级学生 【授课教师】珠海市斗门区城南学校 孔志坚 【教材分析】 本节的学习内容是在前面学过二次函数的概念和二次函数y=ax 2、y=ax 2+h 的图像和性质的基础上,运用图像变换的观点把二次函数y=ax 2的图像经过一定的平移变换,而得到二次函数y=a(x-h)2+k (h ≠0,k ≠0)的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意 “类比”前几节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。 【教学目标】 ◇ 知识技能 (1)会用描点法画出二次函数 ()2 h x a y -= 、()k h x a y +-=2 的图象, 通过图象了解它们的 图象特征和性质. (2)观察图象,得出上述二次函数的图象特征和性质,通过对比发现它们之间的关系。 ◇过程与方法 (1)在用描点法画出二次函数的图象过程中,体会数形结合的思想; (2)通过观察图象,得出上述二次函数的图象特征和性质,通过对比发现图像之间的关系,发展数学的化归思维; (3)在探究活动中,学会与人合作并能与他人交流思想的过程和探究的结果。 ◇情感态度与价值观 (1)通过画二次函数的图象,感受数学美,激发学习热情; (2)在探究活动中,培养学生的合作交流意识和探索精神。 【教学重点】观察图象,得出上述二次函数的图象特征和性质 【教学难点】观察对比图象发现它们之间的关系 【教学方法】引导探索、讨论交流 【教学手段】PPT 、几何画板 【教学过程设计】 一、教学流程安排

中考试题研究:二次函数与折叠问题

数学专题:二次函数与折叠问题 一﹑中考热点展望: 二次函数是中学数学中的重要内容,也是中考的必考内容,确定二次函数解析式以及顶点坐标及其他最值问题、开口方向问题、与其有关的存在型探究性问题是中考考查的“热点”;利用二次函数图象的性质求最值问题则是近几年我市的“高频”考点.近年来,平面直角坐标系中的折叠问题作为各地市中考压轴题的比重逐年增加.对折叠问题,学生并不陌生,但在直角坐标系中讨论,势必涉及函数的解析式和点的坐标,难度加大了,综合性增强了,凸显数形结合的思想,故而受到青睐.由此我们认为二次函数与折叠问题有可能成为我市今年中考的一个命题方向。 二﹑考点动向: 折叠问题在教材中有所体现,符合中考试题源于课本高于课本的基本命题理念,同时,折叠问题既可以考查学生的空间想象能力,也考查学生的动手能力及比较等思维方式。折叠问题与二次函数结合命题,既能使两者的知识点有机的柔和,又能提升试题档次,考察学生综合应用知识的能力。通过我们对近几年各地市此类试题的解读,我们认为从设计意图上来看,试题类型可以分为两类:⑴是以折叠为背景渗透柔和二次函数的知识,⑵以二次函数为背景渗透柔和折叠的知识 三﹑解题技巧与应考策略: 解决这类问题首先应对往年真题做出一些实质性的解读,真正感悟中考数学怎样考?考什么?要应用哪些知识点?怎样应用?以便我们指导学生如何解答此类题目,使学生不殊头,不怯考。用到的知识点主要有轴对称性质﹑勾股定理﹑特殊图形的性质﹑相似﹑函数性质等。 这类问题解决的思考应突出以下几点:①把背景图形研究清楚;②充分注意折叠的两部分全等,对称轴是任意对称两点连线的垂直平分线;③充分利用轴对称的性质和勾股定理;④动手折叠与想象相结合;⑤找准特殊图形,用好特殊图形的性质;⑥能发现图形中的一些特殊量,如特殊角,特殊关系等。 四﹑典例解读: ㈠以折叠为背景渗透柔和二次函数的知识: 例题1:对称轴不明确:(07宁德)已知:矩形纸片ABCD 中,26AB =厘米,18.5BC =厘米,点E 在AD 上,且6AE =厘米,点P 是AB 边上一动点.按如下操作: 步骤一,折叠纸片,使点P 与点E 重合,展开纸片得折痕MN (如图1所示); 步骤二,过点P 作PT AB ⊥,交MN 所在的直线于点Q ,连接QE (如图2所示) (1)无论点P 在AB 边上任何位置,都有PQ _________QE (填“>”、“=”、“<”号); (2)如图3所示,将纸片ABCD 放在直角坐标系中,按上述步骤一、二进行操作: ①当点P 在A 点时,PT 与MN 交于点11Q Q ,点的坐标是(_______,_________); ②当6PA =厘米时,PT 与MN 交于点22Q Q ,点的坐标是(_______,_________); ③当12PA =厘米时,在图3中画出MN PT ,(不要求写画法),并求出MN 与PT 的交点3Q 的坐标;

(完整版)二次函数的最值问题

典型中考题(有关二次函数的最值) 屠园实验周前猛 一、选择题 1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( ) A. ab D不能确定 答案:C 2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为() A、- 7 4 B、3或-3 C、2或-3D2或-3或- 7 4 答案:C ∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m. 当x=-2时,由y=-(x-m)2+m2+1解得m= - 7 4 , 2 765 y x 416 ?? =-++ ? ?? 此时,它 在-2≤x≤l的最大值是65 16 ,与题意不符. 当x=1时,由y=-(x-m)2+m2+1解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符. 当x= m时,由4=-(x-m)2+m2+1解得m=3m=3y=-(x+3)2+4.它在-2≤x≤l的最大值是4,与题意相符;当3,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m的值为2或-3. 故选C. 3.已知0≤x≤1 2 ,那么函数y=-2x2+8x-6的最大值是() A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

二次函数线段、周长、面积最值问题

二次函数线段、周长、面积最值问题 1.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C 点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. (变式)如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x 轴交于点H. (1)求该抛物线的解析式; (2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值; (3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S. ①求S与m的函数关系式; ②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

2.已知:抛物线l1:y=-x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,- 5/2). (1)求抛物线l2的函数表达式; (2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标; (3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.

与二次函数有关的动点问题

与二次函数有关的动点问题 1. 已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x1,0).与y轴交于点C,且O,C两点之间的距离为3,x1?x2<0,|x1|+|x2|=4,点A,C在直线y2=-3x2+t上. (1)求点C的坐标; (2)当y1随着x的增大而增大时,求自变量x的取值范围; (3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n 个单位,当平移后的直线与P有公共点时,求2n2-5n的最小值. 2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式; (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标); (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积. 1

3.如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B 以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒. (1)求抛物线的解析式; (2)问:当t为何值时,△APQ为直角三角形; (3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标; (4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由. 4.(14分)如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称. (1)求抛物线的解析式,并直接写出点D的坐标; (2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式; (3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标. 2

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

二次函数练习顶点式练习题.doc

二次函数图像和性质练习 1、二次函数y=2x1 2-4的顶点坐标为,对称轴为。 2、二次函数y = -2(x + 3尸—1 由y = -2(x-1)2+1 向平移 个单位,再向平移个单位得到。 3、抛物线y = 3(x + 2)2—3可由抛物线y = 3(x + 2)2 +2向平移 个单位得到. 4、将抛物线y = -(x-3)2+2向右平移3个单位,再向上平移2个单位, 6 得到的抛物线是 5、把抛物线y = —3 — 1)2 —1向平移个单位,再向平移 个单位得到抛物线y = -(x + 2)2-3. 6、抛物线y = l(x + 4)2-7的顶点坐标是_________________ ,对称轴是直 2 线,它的开口向,在对称轴的左侧,即当XV 时, y随x的增大而;在对称轴的右侧,即当x>时,y随x的增大而; 当x=时,y 的值最, 最值 是。 7、将抛物线y=3x2向左平移6个单位,再向下平移7个单位所得新抛物线的解析式为。 8、若一抛物线形状与y=-5x2+2相同,顶点坐标是(4, 一2),则其解析式是. 9、两个数的和为8,则这两个数的积最大可以为,若设其中一个数为x,积 为y,则y与x的函数表达式为. 10、一根长为100m的铁丝围成一个矩形的框子,要想使铁丝框的面积 最大, 边长分别为 . 11、若两个数的差为3,若其中较大的数为x,则它们的积y与x的函数表 达式为,它有最值,即当x= 时,y=_ 12、边长为12cm的正方形铁片,中间剪去一个边长为x的小正方形铁片, 剩下的四方框铁片的面积y (cm2)与x (cm)之间的函数表达式为 13、等边三角形的边长2x与面积y之间的函数表达式为

二次函数与线段问题 专题1

二次函数与线段问题 例1、 如图1-1,抛物线y =x 2-2x -3与x 轴交于A 、B 两点,与y 轴交于点C ,点P 是抛物线对称轴上的一个动点,如果△P AC 的周长最小,求点P 的坐标. 图1-1 例2、如图,抛物线21442y x x =-+与y 轴交于点A ,B 是OA 的中点.一个动点G 从点B 出发,先经过x 轴上的点M ,再经过抛物线对称轴上的点N ,然后返回到点A .如果动点G 走过的路程最短,请找出点M 、N 的位置,并求最短路程. 图2-1 例3、如图3-1,抛物线248293y x x =-++与y 轴交于点A , 顶点为B .点P 是x 轴上的一个动点,求线段P A 与PB 中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P 的坐标.

图3-1 例4、如图4-1,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,求PK +QK的最小值. 图4-1 例5、如图5-1,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙B和⊙A上的动点,求PE+PF的最小值.

图5-1 例6、如图6-1,已知A(0, 2)、B(6, 4)、E(a, 0)、F(a+1, 0),求a为何值时,四边形ABEF周长最小?请说明理由. 图6-1 例7、如图7-1,△ABC中,∠ACB=90°,AC=2,BC =1.点A、C分别在x轴和y轴的正半轴上,当点A在x轴上运动时,点C也随之在y轴上运动.在整个运动过程中,求点B到原点的最大距离. 图7-1

折叠问题与二次函数

几何专题——折叠问题 折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质。轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。 题型一:根据折叠的性质求角度 例1如图1,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠ABE =20°,那么∠EFC′的度数为 度. 例2 (2011山东泰安)如图2,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则∠ACD= 。 例3 (2009湖北省荆门市)如图3,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( ) A 、40° B 、30° C 、20° D 、10° 图1 图2 总结:(1)注意折叠前后的对应角相等;(2)注意折叠图形本身的性质。 题型二:根据折叠的性质求线段长度 例4 (2012武汉)如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠, 点A 恰好落在边BC 的点F 处.若AE=5,BF=3,则CD 的长是( ) A 、7 B 、8 C 、9 D 、10 例5 (2012遵义)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为( ) A 、 B 、 C 、 D 、 例6 (2009年日照市)将三角形纸片(△ABC )按如图9所示的方式折叠,使点B 落在边 AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点 的三角形与△ABC 相似,那么BF 的长度是 . 图4 图5 图6 总结:注意勾股定理和三角形相似与折叠问题的结合。 图3 A ' B D A C

【精品讲义】二次函数一般式、顶点式、交点式

二次函数一般式、顶点式、交点式 这节课我们学什么 1. 会用待定系数法求二次函数的解析式; 2. 会平移二次函数2(0)y ax a =≠的图象得到二次函数2()y a x h k =-+的图象; 了解特殊与一般相互联系和转化的思想; 3. 根据交点求解解析式.

知识点梳理 1、顶点式:()2y a x h k =-+的图像与性质 2、交点式:12()()y a x x x x =--的图像与性质 1x 、2x 分别是二次函数与x 轴的两个交点坐标,如果二次函数与x 轴的交点坐标已知,则我们可以设解析式为12()()y a x x x x =--,然后再根据条件求出a 即可; 3、一般式2y ax bx c =++的性质 对于一般式:2(0)y ax bx c a =++≠,我们怎么能知道二次函数的对称轴以及顶点坐标呢? 将一般式配方成顶点式: 2y ax bx c =++=2 ()b c a x x a a ++=22222()44b b b c a x x a a a a ++-+ =222(())()22b b c b a x x a a a a +++- =222424b b ac a x a a -??+= ?? ? 所以,任意二次函数,其对称轴方程为:直线2b x a =-;顶点坐标为2424b ac b a a ??-- ??? , 1. 当0a >时,抛物线开口向上,对称轴为直线2b x a =-,顶点坐标为2424b ac b a a ??-- ???,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 2. 当0a <时,抛物线开口向下,对称轴为直线2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;

中考数学题型专项训练:二次函数与线段问题(含答案)

二次函数与线段问题 1.已知抛物线经过点A(-1,0)、B(3,0)、C(0,-3). (Ⅰ)求抛物线的解析式及其顶点D的坐标; (Ⅱ)直线CD交x轴于点E,过抛物线上在对称轴右边的点P,作y轴的平行线交x轴于点F,交直线CD于点M,使PM=2 EF, 5 请求出点P的坐标; (Ⅲ)将抛物线沿对称轴平移,要使抛物线与(Ⅱ)中的线段EM 总有交点,那么抛物线向上最多平移多少个单位长度?向下最多平移多少个单位长度? 解:(Ⅰ)设抛物线解析式为y=a(x+1)(x-3), 把点C(0,-3)代入得:a×1×(-3)=-3, 解得a=1, ∴抛物线解析式为y=(x+1)(x-3),

即y =x 2-2x -3, ∵y =x 2-2x -3=(x -1)2-4, ∴顶点D 的坐标为(1,-4); (Ⅱ)如解图,设直线CD 的解析式为y =kx +b , 把点C (0,-3),D (1,-4)代入得 34b k b =-??+=-?,解得13 k b =??=?--, ∴直线CD 的解析式为y =-x -3, 当y =0时,-x -3=0, 解得x =-3, 则E (-3,0), 设P (t ,t 2-2t -3)(t >1), 则M (t ,-t -3),F(t ,0), ∴EF =t +3,PM =t 2-2t -3-(-t -3)=t 2-t ,

而PM =25 EF , ∴t 2-t =25 (t +3), 整理得5t 2-7t -6=0, 解得t 1=-35 (舍去),t 2=2, 当t =2时,t 2-2t -3=22-2×2-3=-3, ∴点P 坐标为(2,- 3); 第1题解图 (Ⅲ)当t =2时,点M 的坐标为(2,-5),

次函数中的翻折问题

备用图 二次函数中的翻折问题 1、.已知关于x 的一元二次方程210x mx m -+-=. (1)求证:无论m 取任何实数时,方程总有实数根; (2)关于x 的二次函数211y x mx m =-+-的图象1C 经过2(168)k k k --+,和 2(568)k k k -+-+,两点. ①求这个二次函数的解析式; ②把①中的抛物线1C 沿x 轴翻折后,再向左平移2个单位,向上平移8个单位得到抛物线2C .设抛物线2C 交x 轴于M 、N 两点(点M 在点N 的左侧),点P (a ,b )为抛物线2C 在x 轴上方部分图象上的一个动点.当∠MPN ≤45°时,直接写出a 的取值范围. 2、 已知关于x 的一元二次方程0132=-+-k x x 有实数根,k 为正整数. (1)求k 的值; (2)当此方程有两个不为0的整数根时,将关于x 的二次函数132-+-=k x x y 的图象向下平移2个单位,求平移后的函数图象的解析式; (3)在(2)的条件下,将平移后的二次函数图象位于y 轴左侧的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象G .当直线5y x b =+与图象G 有3个公共点时,请你直接写出b 的取值范围.

3、关于x 的一元二次方程023)1(32=+++-m x m x . (1)求证:无论m 为何值时,方程总有一个根大于0; (2)若函数23)1(32+++-=m x m x y 与x 轴有且只有一个交点,求m 的 值; (3)在(2)的条件下,将函数23)1(32+++-=m x m x y 的图象沿直线2=x 翻折, 得到新的函数图象G .在x y ,轴上分别有点P (t ,0),Q (0,2t ),其中0t >,当线段PQ 与函数图象G 只有一个公共点时,求t 的值.

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

最新《二次函数顶点式》教学设计汇编

二次函数y =(x -h)2 +k 的图象 学习目标: 1.会画二次函数的顶点式y =a (x -h)2+k 的图象; 2.掌握二次函数y =a (x -h)2+k 的性质; 3.会应用二次函数y =a (x -h)2+k 的性质解题. 重点:会画二次函数的顶点式y =a (x -h)2+k 的图象. 难点:掌握二次函数a (x -h)2+k 的性质。 一、课前小测 1.函数24(2)y x =-的图象开口向______,顶点是_________,对称轴是_______, 当x =_________时,有最_________值是_________. 2.写出一个顶点坐标为(0,-3),开口向下抛物线解析式__________________. 写出一个顶点坐标为(-3,0),开口向下抛物线解析式__________________. 二、探索新知 1、问题一:提出问题,创设情境 画出函数y =-12 (x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值 观察图象得: (1)函数y =-12 (x +1)2-1的图象开口向______,顶点是_________,对称轴

是_______,当x=_________时,有最_________值是_________. (2)把抛物线y=-1 2x 2向_______平移______个单位,再向_______平移_______ 个单位,就得到抛物线y=-1 2(x+1) 2-1. 3、问题二:应用法则探索解题. 例1.顶点坐标为(-2,3),开口方向和大小与抛物线y=1 2x 2相同的解析式为 () A.y=1 2(x-2) 2+3 B.y= 1 2(x+2) 2-3 C.y=1 2(x+2) 2+3 D.y=- 1 2(x+2) 2+3 三、作业:A组: 1.填表 2 3.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________. B组: 1.抛物线y=-3 (x+4)2+1中,的图象开口向______,顶点是_________,对称轴是_______,当x=_______时,y有最________值是________. 2.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________。 3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示() A B C D 4.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为___________________________.(任写一个)

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

用顶点式求二次函数解析式

一、 用顶点式求二次函数解析式。 例题:已知抛物线的顶点为(1,3)经过点(3,0) 解:设抛物线的解析式为k h x a y +-=2 )( 把顶点(1,3)代入得:3)1(2+-=x a y 把点(3,0)代入得:03)13(2 =+-a 解得:43 - =a ∴抛物线解析式为:3)1(4 32 +--=x y 练习1:已知抛物线的顶点为(-1,4)经过点(2,-5) 2.已知抛物线y =ax 2 经过点A (1,1).(1)求这个函数的解析式; 3.已知二次函数的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式. 4.抛物线y =ax 2 +bx +c 的顶点坐标为(2,4),且过原点,求抛 物线的解析式. 5.已知二次函数为x =4时有最小值 -3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式. 6.抛物线y =ax 2 +bx +c 经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式. 7.把抛物线y =(x -1)2 沿y 轴向上或向下平移后所得抛物线经过点Q (3,0),求平移后的抛物线的解析式. 8.已知二次函数m x x y +-=62 的最小值为1,求m 的值. 9.已知抛物线经过A (0,3),B (4,6)两点,对称轴为x=5 3 , 求这条抛物线的解析式; 10. 若一抛物线与x 轴两个交点间的距离为8,且顶点坐标为(1, 5),则它们的解析式为 。 二、 用三个点求二次函数解析式 例题:二次函数的图象经过(-1,10),(1,4),(2,7) 解:设二次函数的解析式为:c bx ax y ++=2 把点(-1,10),(1,4),(2,7)代入得: ???? ?=++=++=+-724410c b a c b a c b a 解得:??? ??=-==5 32c b a ∴抛物线解析式为:5322 +-=x x y 练习11:二次函数的图象经过(0,0),(-1,-1),(1,9) 12.已知二次函数y=ax 2 +bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式

二次函数线段最值问题

次函数线段最值问题 —几何类 “最短距离”经典问题汇总 一、 “两点之间线段最短”. 【基本问题】在直线I 上找一点P ,使得其到直线异侧两点A 、B 的距离之和最小,如图所示?作点 A (或B )关于直线I 的对称点,再连接另一点与对称点,与I 的交点即为P 点. 【变式1】直线爪I 2交于O ,P 是两直线间的一点,在直线11、12上分别找一点 A 、B ,使得PAB 的周长最短?如图所示,作P 点关于h 、J 的对称点P 、P 2,连 接PP ,与h 、J 分别交于A 、B 两点,即为所求. 【变式2】直线l i 、I 2交于O ,A 、B 是两直线间的两点,从点A 出发,先到I i 上 一点P ,再从P 点到I 2上一点Q ,再回至U B 点,求作P 、Q 两点,使AP PQ QB 最小?如图所示,作A 、B 两点分别关于直线h 、I 2的对称点A 、B :连接AB 分 别交I i 、12于P 、Q ,即为所求. 【变式3】从A 点出发,先到直线I 上的一点P ,再在I 上移动一段固定的距离PQ ,再回到点B , 求作P 点使移动的距离最短, 轴交于点C,顶点为D. E (1, 2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别 交于F 、G. 在直线EF 上求一点H ,使A CDH 的周长最小,并求出最小周长; 【探究2】已知在平面直角坐标xOy 系抛物线y x 2 2x 3与x 轴交于 A 、 B 两点(点A 在点B 的左侧),与y 轴交于点 C 。若一个动点 P 自点C 出发,先到达x 轴上某点(设为点E ),再到达抛物线 的对称轴上某点(设为点F ),最后运动到点C .求使点P 运动 的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长. 【探究3】 已知在平面直角坐标xOy 系抛物线y x 2 2x 3与x 轴 交于A B 两点(点A 在点B 的左侧),与y 轴交于点C ,在 线段 BC 上是否存在一点P ,使得B 、C 两点到直线AP 的距 离之和最 大?若存在,请求出P 点的坐标;若不存在,请说 明理由。 【探究4】已知在平面直角坐标xOy 系抛物线y x 2 2x 3与x 轴交于A B 两点 (点A 在点B 的左 侧),与y 轴交于点C 。若一个动点P 自OC 的中点M 出发,先到达x 轴上某点(设为点E ), 再到达抛物线 的对称轴上某点(设为点 F ),最后运动到点C .求使点P 运动 的总路径最 短的点E 、点F 的坐标,并求出这个最短总路径的 如图所示?先将A 点向右平移到A ,点,使AA 等于PQ 的长,作点B 关 于I 的对称点B ,,连接AB ,与直线I 的交点即为Q 点,将Q 点向左平移线段PQ 的长,即得到P 点. 【变式4】下面这个题与对称无关,但涉及到了平移的内容,与【变式 4】的作 法有点类似,因此放在这里,共享一下. A 、 B 是位于河两岸的两个村庄,要在这条宽度为d 的河上垂直建一座桥,使得从 A 村庄经过桥到B 村庄 所走的路程最短.如图所示,将点 A 向垂直于河岸的方向 向下平移距离d ,到A ,点,连接AB 交河岸于Q 点,过Q 点作PQ 垂直于河岸,交 河岸的另一端为P ,即为所求. 【变式5】在直线I 上找一点P ,使得其到直线异侧两点 A 、B 的距离之差的绝对 值最大,如图所示.作点A 交点即为P 点. 二、 “垂线段最短”. 例题探究: 【探究1】 如图,抛物线y (或B ) 关于直线I 的对称点,再连接另一点与对称点, 'P A' d Q 卄 B 其延长线与I 的 x 4与x 轴的两个交点分别为 A (-4, 0)、B (2, 0),与y 2 F O B x

相关文档
最新文档