出租车数学建模问题

出租车数学建模问题
出租车数学建模问题

五、模型建立与求解

5.1问题一模型的建立和求解

5.1.1问题的分析

随着社会的进步和时代的发展,人们对出行的要求也变得越来越高。由于出租车行业对社会的服务逐步体现为供少于求,一种新兴的打车方式正在逐步成为主流。多家公司使用网络工作平台实现了出租车司机和乘客在网络上的沟通,并且对出租车提供了多种补贴方案。现在需要得到不同时间在不同城市的出租车与乘客之间的供求匹配程度。供求匹配程度的关键是供和求,供体现为出租车对乘客的服务普及度主要体现为成功登车率,乘客等待时间,里程利用率和万人拥有量,求体现为乘客对出租车的需求量。从供与求之间选择合适的指标作为对供求匹配程度的做出综合评价。对于空间的选择,由于现在数据采集只能收集一些城市的有关数据,所以我们可以采用将各种拥有出租车服务的地区划分具有方位代表性的一级城市(反映中国一级城市在互联网平台打车方案下的出租车供求匹配程度)。从这些城市中选择代表该区域平均水平的城市,作为需要的评价的空间。对于时间的选择,由于需求量对应不同时间段的变化较明显,我们选择具有代表性的时间段对于需求量的不同时间段可以划分为工作日高峰期和低峰期和节假日。针对这些具有代表性的不同时间和不同地点的乘客在等车时间上的消耗,出租车的里程利用率,车辆的万人拥有量和乘客成功登车率根据综合评价函数对供求匹配程度做出综合评价。综合评价的方式采用灰色关联分析法和自己构造的综合评价函数。

5.1.2模型的准备

(1)指标的标准化:

(1)成本型指标的标准化:采用如下规则标准化:

1i i M x x M m

-=

-1,2,,i n =L 其中{}{}min ,max i i m x M x ==,1i x 为i x 的标准化指标。

(2)效益型指标的标准化:对于乘客的成功登车率和出租车的里程利用率,它们的值越大对供求匹配贡献也越大,所以它们属于效益型指标,并采用如下规则标准化:

1i i x m x M m

-=

-1,2,,i n =L 其中{}{}min ,max i i m x M x ==,1i x 为i x 的标准化指标。

(3)中间型指标的标准化:每万人对应的车辆如果过少则乘客需求会大于出租车的供给,过多则供给会大于需求,所以每万人对应的车辆拥有量会对

应一个最佳平衡点,使用供需平衡达到最佳。乘客的等待时间如果过短,那么说明在这个阶段空载的出租车辆较多,乘客较易打到车,情况为供过于求,等待时间过长,则说明此时车辆的满载率较高以至于供小于求,空车数量较少,乘客需等待一段较长的时间才能打到车。所以等待时间有一个最佳值,反应最佳供需平衡点。综上,车辆的万人拥有量和乘客的等待时间均为中间型指标,对于乘客的等待时间,采用如下规则标准化:

1

i i i i x x x x -=1,2,,i n =L 其中{}{}1(),min ,max 2

i i i x M m m x M x =-==,1i x 为i x 的标准化指标。

根据城市的级别不同对应的最佳万人拥有量也不同,对于一、二、三线城市我们用如下的标准化:

其中{}{}1(),min ,max 2

i i i x M m m x M x =-==,1i x 为i x 的标准化指标。

5.1.3模型的建立与求解

我们以乘客在节假日,工作日的上下班高峰期为研究对象根据对有关资料的收集,且以不同城市为样本。对不同时间,不同地区的乘车匹配度做出综合评价,评分越高供求匹配程度越好。

采用灰色关联分析法进行综合评价

1、基于灰色关联分析法的各个时间段对不同城市的评价模型:

模型的假设:所有的指标的重要性是一样的。

(1) 确定评价对象和评价指标:评价对象是北京、武汉、广州、济南和宁

波等5个城市,评价指标有4个:乘客的成功登车率、出租车的万人拥有量、出租车的里程利用率和乘客的等待时间。规定参考数列为

{}00()1,2,3,4x x k k ==,比较数列为 {}()1,2,3,4,1,2,,i i x x k k i n ===L

(2) 权重w 的处理原则是超标倍数越多权重越大,因此,

11111223344212112233443131122334441411223344////////////////////X k w X k X k X k X k X k w X k X k X k X k X k w X k X k X k X k X k w X k X k X k X k =

+++=

+++=

+++=

+++ 其中51

,1,2,3,4i ij j k k i ===∑,这里的ij k 是4个主要指标的标准限值。

1234(,,,)X X X X X =为某个时间在某个城市统计得到的数据。

(3) 计算灰色关联系数:

0000min min ()()max max ()()()()()max max ()()x s s t s t i i s s t

x t x t x t x t k x k x k x t x t ρξρ-+-=-+- 为比较比较数列i x 在参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数。其中,称0min min ()()x s t x t x t -,0max max ()()s s t

x t x t -分别为两级最小差和最大差

(4) 计算灰色加权关联度:1()n

i k i k r w k ξ==∑

k w 为第k 个评价指标对应的权重。

(5) 评价分析,根据灰色加权关联度的大小,对各评价对象进行排序,关

联度越大,评价结果越好。

评价结果如下:

2、基于Borda 计数法的计分评价模型:

(1)综合时间段对不同地区的总体评分

根据以上建立的灰色关联分析法模型对节假日,高峰期和低峰期三个特殊时间段的6个主要城市的打车的供求匹配程度进行评价,考虑要综合这三个特殊时间段的评价效果,并再进行综合评价,采用Borda 计数法,根据不同城市在不同时间段的出租车供求匹配程度的排序进行评分,并计算出3次评分后的总分,总分越大匹配程度越高,则第i 个地区(被评价对象)i S 的Borda 数为:

31()()(1,2,6)

i j i j B s B S i ===∑L ,

其中()j i B S 为在第j 个排序方案中排在第i 个被评价对象后的个数

对城市供求匹配程度的评分和排序:

(2)综合地区对不同时间段的总体评分

综合考虑在不同时段内的不同地区的供求匹配程度,根据不同城市在不同时期的供求匹配程度的排名,采用Borda 计数法,根据不同城市在不同时间段的出租车供求匹配程度的排序进行评分,总分越大匹配程度越高,则第i 个时期(被评价对象)i S 的Borda 数为:

6

1()()(1,23)i j i j B s B S i ===∑,

其中()j i B S 为在第j 个排序方案中排在第i 个被评价对象后的个数

对于时期供求匹配程度的评分和排序:

5.2问题二模型的建立和求解

5.2.1问题的分析

为了增加平台的下单数量,平台公司通过推出补贴政策对乘客和司机进行鼓励,刺激乘客消费和出租车保有量的增加。问题二是对各公司的补贴方案作出合理评价,补贴方案按照补贴对象的不同分为对出租车司机的补贴和对乘客的补贴。需要缓解打车难,我们以成功乘车率,乘客的等待时间和出租车的万人拥有量作为衡量打车难易程度的指标。且以实行补贴方案后的成功乘车率,乘客的等待时间和出租车的万人拥有量的变化量作为评价指标,做出对缓解程度大小的评价。对不同的方案在同一个城市之中对打车难的缓解程度做出评价,由于,方案在不同级别的城市中的对缓解打车难的效果不同,我们分别对这些方案在一线城市和三线城市推出后的效果做出评价。评分最高的方案,作为对打车难问题缓解最有效的方案。补贴方案按照补贴对象的不同分为对出租车司机的补贴和对乘客的补贴。乘车率指标反映了乘客能够打到出租车的概率,该指标能够较全面的反映打车的难易程度,我们认为出租车司机的补贴和对乘客的补贴对乘车率也有影响,采用多元回归的方式得出补贴金额和乘车率之间的关系。考虑到,金额大小对人们在心理因素上有所吸引,我们可以构造对出租车司机的平均补助资金一个对出租车司机的吸引程度的大小的相关函数,以及构造对乘客的平均补助资金对乘客的吸引程度的相关函数。从心理因素方面分析出补贴金额和乘车率之间的关系,与回归分析的结果进行比较。

5.2.2模型的建立和求解

(1)对一级城市与三级城市在不同方案下的打车难易度的缓解程度的评价:

1、指标的选取:

我们选择和打车难易度的相关指标,成功乘车率,乘客的等待时间和出租车的万人拥有量的变化量作为评价指标:

成功乘车率的变化量:

10ααα=-V

0α为方案实行前的成功乘车率,1α为方案实行后的成功乘车率,αV

为成功乘车率的变化量。

乘客等待时间的变化量:

01t t t =-V

0t 为方案实行前的乘客的等待时间,1t 为方案实行后的乘客的等待时间,t V 为等待时间的变化量。

出租车的万人拥有量的变化量:

10n n n =-V

0n 为方案实行前的出租车的万人拥有量,1n 为方案实行后的出租车的万人拥有量,n V 出租车的万人拥有量的变化量。

以上指标均为效益型指标,我们认为即使在供过于求的时刻,这些指标也是越大越好,因为我们只考虑缓解乘客方面的打车难问题。

在问题一的评价模型的基础上,分别对一线城市代表和三线城市代表在方案实行后的缓解程度做出综合评价:

2、结果如下:

(2)补贴金额对缓解打车难程度影响的研究:

乘车率指标反映了乘客能够打到出租车的概率,该指标能够较全面的反映打车的难易程度,我们认为出租车司机的补贴和对乘客的补贴对乘车率也有影响,所以在研究中我们只选择乘车率作为衡量打车难易程度的指标。

1、基于多元分析法的补贴金额和打车难度的关系分析

我们将乘车率作为衡量打车难的指标:

w x

ρ= ρ为乘车率,w 为运营出租车的保有量,x 为运营出租车的需求量。

我们假设1b 与ρV ,2b 和ρV 之间存在相关性,并进行相关性检验,结果如下:

目前需要得到的关系是对司机的补贴和对乘客的补贴对乘车率变化的影响,对于该模型的影响我们不能直接得出,我们通过多元回归的方法得出:

01122b b u ρβββ=+++V

ρV 为乘车率的增加量,1b 为对司机的补助金额,2b 为对乘客的补助金额。

得出理论上的最佳方案和现有最佳方案。

2、基于心理因素影响的补贴金额和打车难度的关系分析

同时,我们可以考虑对乘客的补助对潜在乘客数量(即运营出租车的保有量)的影响,车费越少,越能引起人们打车的消费。以及对司机的补助对现有运营车辆的影响,补助越多,越能吸引人们加入出租车司机的行业中。根据这些心理因素引起的不同补助金额对运营出租车的保有量和需求量影响的关系,我们同样也能得出补贴政策对乘车率的影响,并且利用该模型对多元回归模型的结果进行比较和检验。由心理学的相关知识和模糊数学隶属度的概念,根据人们对一件事物的心理变化遵循规律,定义

1)有意担任司机这个职位人的心理曲线为:

21

1()111()1, 0b b e λμλ-=->

1b 为对司机的补助金额,1 λ为常量(根据历史数据求得)

实行补贴政策后的出租车保有量1w 为

[]1111()w w b μ=+

w 为实行政策前的出租车保有量

2)乘客的心理曲线为:

22

2()222()1, 0b b e λμλ-=->

2b 为对司机的补助金额,2 λ为常量(根据历史数据求得)

实行补贴政策后的出租车需求量1x 为:

[]1221()x x b μ=+

x 为实行政策前的出租车需求量

由此,实行政策后的乘车率1ρ与补贴金额的关系为:

[][]111221()1()w b x b μρμ+=

+

5.2.2模型的分析和检验

5.3问题三模型的建立和求解

5.3.1问题的分析 问题三是为打车软件服务平台设置最佳的补贴方案,对于一个软件服务平台的合理性进行评价的因素为乘车率和平台的盈利。以这两个目标的作为需要优化的目

标函数,对于平台的利益我们需要考虑维护成本,补贴支出和下单收入。建立多目标优化模型:

对于平台收益:

12()S R b b n c =---

R 为下一笔订单的收入,

1b 为对顾客的补助金额,2b 为对出租车司机的补助金额,n 为订单的数量,c 为平台固有维护成本。

对于乘车率:

n x

ρ= x 为为运营出租车的需求量。

订单的数量也会受到对乘客补助影响,和原来价格高低的影响。

模型:

1212

max ().E S S R b b n c n s t x n b x b ρ

ρ=+=---???=???∝?∝?? 对于

数学建模出租车运营问题

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名):

(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

历年数学建模赛题题目

历年数学建模赛题题目 1992年 (A) 施肥效果分析问题(北京理工大学:叶其孝) (B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁) (B) 足球排名次问题(清华大学:蔡大用) 1994年 (A) 逢山开路问题(西安电子科技大学:何大可) (B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福) (B) 节水洗衣机问题(重庆大学:付鹂) 1997年 (A) 零件参数设计问题(清华大学:姜启源) (B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平) (B) 灾情巡视路线问题(上海海运学院:丁颂康) 1999年 (A) 自动化车床管理问题(北京大学:孙山泽) (B) 钻井布局问题(郑州大学:林诒勋) (C) 煤矸石堆积问题(太原理工大学:贾晓峰) (D) 钻井布局问题(郑州大学:林诒勋) 2000年 (A) DNA序列分类问题(北京工业大学:孟大志) (B) 钢管订购和运输问题(武汉大学:费甫生) (C) 飞越北极问题(复旦大学:谭永基) (D) 空洞探测问题(东北电力学院:关信) 2001年 (A) 血管的三维重建问题(浙江大学:汪国昭) (B) 公交车调度问题(清华大学:谭泽光) (C) 基金使用计划问题(东南大学:陈恩水) (D) 公交车调度问题(清华大学:谭泽光) 2002年

出租车数学建模问题

五、模型建立与求解 5.1问题一模型的建立和求解 5.1.1问题的分析 随着社会的进步和时代的发展,人们对出行的要求也变得越来越高。由于出租车行业对社会的服务逐步体现为供少于求,一种新兴的打车方式正在逐步成为主流。多家公司使用网络工作平台实现了出租车司机和乘客在网络上的沟通,并且对出租车提供了多种补贴方案。现在需要得到不同时间在不同城市的出租车与乘客之间的供求匹配程度。供求匹配程度的关键是供和求,供体现为出租车对乘客的服务普及度主要体现为成功登车率,乘客等待时间,里程利用率和万人拥有量,求体现为乘客对出租车的需求量。从供与求之间选择合适的指标作为对供求匹配程度的做出综合评价。对于空间的选择,由于现在数据采集只能收集一些城市的有关数据,所以我们可以采用将各种拥有出租车服务的地区划分具有方位代表性的一级城市(反映中国一级城市在互联网平台打车方案下的出租车供求匹配程度)。从这些城市中选择代表该区域平均水平的城市,作为需要的评价的空间。对于时间的选择,由于需求量对应不同时间段的变化较明显,我们选择具有代表性的时间段对于需求量的不同时间段可以划分为工作日高峰期和低峰期和节假日。针对这些具有代表性的不同时间和不同地点的乘客在等车时间上的消耗,出租车的里程利用率,车辆的万人拥有量和乘客成功登车率根据综合评价函数对供求匹配程度做出综合评价。综合评价的方式采用灰色关联分析法和自己构造的综合评价函数。 5.1.2模型的准备 (1)指标的标准化: (1)成本型指标的标准化:采用如下规则标准化: 1i i M x x M m -= -1,2,,i n = 其中{}{}min ,max i i m x M x ==,1i x 为i x 的标准化指标。 (2)效益型指标的标准化:对于乘客的成功登车率和出租车的里程利用率,它们的值越大对供求匹配贡献也越大,所以它们属于效益型指标,并采用如下规则标准化: 1i i x m x M m -= -1,2,,i n = 其中{}{}min ,max i i m x M x ==,1i x 为i x 的标准化指标。 (3)中间型指标的标准化:每万人对应的车辆如果过少则乘客需求会大于出租车的供给,过多则供给会大于需求,所以每万人对应的车辆拥有量会对

数学建模人口模型

摘要 以2010年11月1日零时为标准时点,中国大陆31个省、自治区、直辖市和现役军人的人口共13.397亿。13亿是一个忧虑的数字。13亿人要吃饭、要穿衣、要上学、要就业、要住房……,消费的需求乘以13亿,就是一个庞大的数目,而我国的耕地、水资源、森林以及矿产资源本来就稀缺,再除以13亿,就少得可怜。平均每人耕地面积只有1.4亩,水资源只相当于世界人均水平的1/4…….、 中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。 人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。 我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表: 有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。 长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。 我国人口问题已积重难返,对我国人口进行准确的预测是制定合理的社会经济发展规划

数学建模及全国历年竞赛题目

数学建模及全国历年竞赛题目 (2010-09-28 21:58:01) 标签: 分类:专业教学 数学建模 应用数学模型 教育 一、数学建模的涵 (一)数学建模的概念 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。使用数学语言描述的事物就称为数学模型,这个建立数学模型的全过程就称为数学建模。(二)应用数学模型 应用数学去解决各类实际问题,把错综复杂的实际问题简化、抽象为合理的数学结构。通过调查、收集数据资料,观察和研究实际对象的固有特征和在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。需要诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包如 Mathematica,Matlab,Lingo,Spss,Mapple的使用,甚至排版软件等知识的基础。

(三)数学建模的特点 数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点;数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。(四)数学建模的指导思想 数学建模的指导思想就是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。 (五)数学建模的意义 数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。 1.培养创新意识和创造能力; 2.训练快速获取信息和资料的能力; 3.锻炼快速了解和掌握新知识的技能; 4.培养团队合作意识和团队合作精神; 5.增强写作技能和排版技术;

城市出租车的规划管理系统-数学建模

城市出租车的规划管理 摘要 本文通过数学建模的方法解决了城市交通管理中的部分出租车的规划问题。 在问题一的解决上,运用拟合和样条插值的方法预测出2005-2009,2011-2019 +的城市市区人口规模。经检验,样条插值较贴近实际。在问题二的解决上,运用层次 分析法计算出影响出租车数量因素的权重,建立该市出租车数量的动态数学模型。 一、问题重述 城市中出租车的需求随着经济发展、城市规模扩大及居民生活方式改变而不断变化。 目前某城市中出租车行业管理存在一定的问题,城市居民普遍反映出租车价格偏高,另一 方面,出租车司机却抱怨劳动强度大,收入相对来说偏低,整个出租车行业不景气,长此 以往将影响社会稳定。 现为了配合该城市发展的战略目标,最大限度地满足城市中各类人口的出行需要,并协调市民、出租车司机和社会三者的关系,实现该城市交通规划可持续 发展,需解决以下的问题: (1)从该城市当前经济发展、城市规模及总体人口规划情况出发,类比国城市情 况,预测该城市居民的出行强度和出行总量,这里的居民指的是该城市的常住人口。同时 结合人口出行特征,进一步给出该城市当前与今后若干年乘坐出租车人口的预测模型。 (2)根据该城市的公共出行情况与出租车主要状况,建立出租车最佳数量预测模型。 (3)油价调整(3.87 元/升与4.30 元/升)会影响城市居民与出租车司机的 双方的利益关系,给出能够使双方都满意的价格调节最优方案。 (4)针对当前的数据采集情况,提出更合理且实际可行的数据采集方案。 (5)从公用事业管理部门的角度考虑出租车规划的问题,写一篇短文介绍自己的方

案。 二、模型假设 1.由于第一类人口和第二类人口都对乘出租车产生重大影响,故只考虑人口的总规模。2.由于城市地理状况和居民的生活习惯在短时期不易改变,所以在各交通小区之间采用的出行方式也相对固定,假定居民从A 地到B 地所习惯采用的出行方式在未来几年保持不变。 3.假设居民中出行人口占总人口数的比例不变。 4.假设对于出行人口而言,在出行方式选择方面的比例与出行人次的比例一样。 5.假设在未来几年,出租车固定营运成本不变。 6.由于每次一起打车的人数,与居民的生活习惯相关,所以假设出租车每趟载客人次不变,即不受出租车数目和收费方案的不同而改变。 7.基于题目给出的图表数据,假定出行与公交数据的统计口径只针对常住人口,不包括其他人口。 8.由于数据的采集统计等存在误差,本文假定所有计算数据在5%~10%误差围可以接受。 三、问题分析 题目中要求考虑城市的发展战略目标,人民群众的出行需要,减少环境污染和资源消耗,并结合该城市经济和自身特点,类比国外城市情况,预测该城市居民出行强度和出行总量。由于题目附录给出的历史数据几乎只有2004 年一年的数据,而做一次出行调查将耗费大量人力物力,所以对一个城市而言也无法得到太多出行特征的历史数据。为了更好地预测该城市居民的出行强度,必须通过对我国其他城市特别是规模相近城市的居民出行特征的分析,总结出规律并以此来预测。对于乘坐出租车人口的预测的问题,由于人们生活习惯相对固定,所以在各交通小区之间采用的出行方式也相对固定,又加上常住人口与流动人口都对乘出租车产生重大影响,故只考虑人口的总规模。对于如何预测该城市出租车的最佳数量,除了考虑乘坐出租车人口数量外,还必须考虑与城区面积,消费水平三者之间的关系,从而确定出租车的最佳拥有量和实际运营数量。

数学建模 人口模型

中国人口增长预测模型的建立与分析 摘要 针对我国人口发展过程中出现的老龄化进程加快,出生人口性别比持续升高,乡村人口城镇化的新特点,我们基于LESLIE 矩阵,着重考虑城镇与乡村间的人口迁移及女性人口比例变化对我国人口增长的影响,经过两次改进建立了便于计算机求解的差分方程模型,对我国2005年以后45年的人口增长进行了预测。随后利用时间段参数设置法,对差分方程模型又进行了一次改进。然后运用等维灰色系统预测法对该差分方程模型的中短期预测进行了检验,同时根据2001年人口基本数据运用此模型对2001年~2005年进行了预测,并用实际数据对预测结果进行了检验。 我们将预测区间分为2006~2020年、2021~2035年、2036~2050年三个区间,以量化短期、中期与长期。通过调整模型中相关参数及输入条件,定量地分析了男女性别比例、老龄化和乡村人口城镇化对我国人口增长的影响。预测结果表明,从短期来看,我国的出生性别比变化不明显,将在短期内维持基本不变,老龄化进程在15年内在上升了8个百分点,人口扶养比持续升高,这将加重我国的人口压力,乡村人口城镇化水平进展缓慢;从中期来看,总人口性别比将保持在1与1.1之间,老龄化进程将呈线性增加趋势,乡村人口城镇化水平将持续发展;从长期来看,老龄化进程将在2035到2045年经历老龄人口高峰平台,老龄人口比重在0.3以上,育龄妇女人数持续下降,总人口数将在2023年达到峰值14.05亿。 关键词:LESLIE矩阵,人口预测,性别比例,城镇化,老龄化,灰色系统预测

一、问题的重述 人口问题是中国社会发展的重要问题,对中国人口的中长期预测有助于政府制定相应的政策保持中国的长治久安。 现需要解决的问题如下: 1.主要根据2001~2005年的人口统计数据,对中国人口增长的中短期和长期趋势作出预测,特别要关注老龄化,出生人口性别比及乡村人口城镇化等因素。 2.指出所建模型的优点和不足之处。 二、模型假设 1.在未来50年人口生存的社会环境相对稳定(即没有战争及毁灭性灾难)。 2.国际人口迁入与迁出量相等。 3.在本世纪中叶前,我国计划生育政策稳定。 4.题目所给抽样数据是随机的,真实地反映了整体实际情况。 三、符号说明 123 d t d t d t分别表示乡村、镇、市第t年i岁人口的死亡率; (),(),() i i i 123 (),(),() x t x t x t分别表示乡村、镇、市第t年i岁的人口数; i i i 123 b t b t b t分别表示乡村、镇、市第t年i岁的女性生育率; (),(),() i i i 123 k t k t k t分别表示乡村、镇、市第t年i岁人口的女性比; (),(),() i i i 123 c t c t c t分别表示乡村、镇、市第t年的婴儿死亡率; (),(),() 123 f t f t f t分别表示乡村、镇、市第t年的出生人数; (),(),() 123 h t h t h t分别表示乡村、镇、市第t年i岁女性的生育模式; (),(),() i i i 123 βββ分别表示乡村、镇、市第t年的总和生育率; (),(),() t t t 123 t t t N N N分别表示乡村、镇、市第t年的总人数; (),(),() 123 w t w t w t分别表示乡村、镇、市第t年i岁女性的总人数; (),(),() i i i 123 (),(),() wd t wd t wd t分别表示乡村、镇、市第t年i岁女性的死亡率; i i i 123 m t m t m t分别表示乡村、镇、市第t年i岁男性的总人数; (),(),() i i i 123 md t md t md t分别表示乡村、镇、市第t年i岁男性的死亡率; (),(),() i i i r表示为迁移人口中女性所占比例; 123 z z z分别表示乡村、镇、市出生人口中女性所占的比例; ,, 四、问题的分析 人口发展过程的定量预测,需要预测出未来的人口发展趋势,包括人口总数、人口的性别、年龄和城乡构成,人口出生、死亡和自然增长率的变化以及在未来的人口构成中劳动力和抚养水平及老龄化水平等各项人口指数全部测算出来。人口增长的决定因素为出生率、死亡率和人口基数,但人口分布,人口素质,宏观政策和人口结构(如:年龄结构,性别比例等)等众多因素能够影响出生率与死亡率的波动,从而从根本上影响我国人口的增长。鉴于我国人口问题已有多方面的研究,我们针对近年来我国的人口发展出现的一些新特点,忽略国际人口流动,故可以认为我国人口为一个封闭的系统。对于封闭的系统来说,某时刻人口总量=人口基数+新生人口数—死亡人口数。为了提供更多关于市、镇、乡的人口增长分布趋势,我们对三者分别进行研

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

出租车数学建模问题

五、模型建立与求解 5、1问题一模型得建立与求解 5、1、1问题得分析 随着社会得进步与时代得发展,人们对出行得要求也变得越来越高.由于出租车行业对社会得服务逐步体现为供少于求,一种新兴得打车方式正在逐步成为主流。多家公司使用网络工作平台实现了出租车司机与乘客在网络上得沟通,并且对出租车提供了多种补贴方案。现在需要得到不同时间在不同城市得出租车与乘客之间得供求匹配程度.供求匹配程度得关键就是供与求,供体现为出租车对乘客得服务普及度主要体现为成功登车率,乘客等待时间,里程利用率与万人拥有量,求体现为乘客对出租车得需求量.从供与求之间选择合适得指标作为对供求匹配程度得做出综合评价。对于空间得选择,由于现在数据采集只能收集一些城市得有关数据,所以我们可以采用将各种拥有出租车服务得地区划分具有方位代表性得一级城市(反映中国一级城市在互联网平台打车方案下得出租车供求匹配程度)。从这些城市中选择代表该区域平均水平得城市,作为需要得评价得空间。对于时间得选择,由于需求量对应不同时间段得变化较明显,我们选择具有代表性得时间段对于需求量得不同时间段可以划分为工作日高峰期与低峰期与节假日。针对这些具有代表性得不同时间与不同地点得乘客在等车时间上得消耗,出租车得里程利用率,车辆得万人拥有量与乘客成功登车率根据综合评价函数对供求匹配程度做出综合评价。综合评价得方式采用灰色关联分析法与自己构造得综合评价函数。 5、1、2模型得准备 (1)指标得标准化: (1)成本型指标得标准化:采用如下规则标准化: 其中,为得标准化指标. (2)效益型指标得标准化:对于乘客得成功登车率与出租车得里程利用率,它们得值越大对供求匹配贡献也越大,所以它们属于效益型指标,并采用如 下规则标准化: 其中,为得标准化指标。 (3)中间型指标得标准化:每万人对应得车辆如果过少则乘客需求会大于出租车得供给,过多则供给会大于需求,所以每万人对应得车辆拥有量会对应一个最佳平衡点,使用供需平衡达到最佳。乘客得等待时间如果过短,那么说明在这个阶段空载得出租车辆较多,乘客较易打到车,情况为供过于求,等待时间过长,则说明此时车辆得满载率较高以至于供小于求,空车数量较少,乘客需等待一段较长得时间才能打到车。所以等待时间有一个最佳值,反应最佳供需平衡点。综上,车辆得万人拥有量与乘客得等待时间均为中间型指标,对于乘客得等待时间,采用如下规则标准化: 其中,为得标准化指标。 根据城市得级别不同对应得最佳万人拥有量也不同,对于一、二、三线城市我

数学建模 人口模型 人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究 【摘要】 本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。 对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。 首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历 史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。 然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。 对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。并做出了拟合函数 0.0419775(1)17255.816531.2t X t e ?+=?-。 对于新政策的实施,我们做出了两个假设。在假设只有出生率改变的情况,人口呈现一次函数线性增加。并拟合出一次函数0.032735617965.017372.5t Y e ?=?-;在假设人口增长率增长20%时,做出了预测如果单独二胎政策实施,到2021年,深圳市常住人口数将会到达1137.98千万人。 关键词:GM(1,1)灰色模型 Logistic 阻滞增长模型 线性拟合 非线性拟合

2015数学建模互联网时代的出租车资源配置

互联网+”时代的出租车资源配置 要解决“打车难”,第一要务是弄清楚打车难的原因。打车之所以难,不考虑管理等因素,主要因为以下三点: 一是出租车绝对数量供给不足,即出租车数量不满足国家标准。出租车数量的国家标准为“大城市每万人不宜少于20辆”。但实际上,在直辖市中,当前北京现有出租车6.6万辆,人均保有量约为33辆/万人,上海约为22辆/万人,天津约为27辆/万人,均超过国家标准。只有重庆约为10辆/万人,不够国家标准。二是出租车相对数量供给不足。这是个摩擦性问题,其根本原因在于信息不对称。通俗地说就是想打车的人不知道哪里有车,同时出租车不知道哪里有人打车。简言之就是人找不到车,车也找不到人。表现为空驶率高和打车难并存的怪现象。打车难的现象在北京非常突出,但北京的出租车空驶率又在40%左右。这充分说明,出租车相对数量供给不足是打车难的重要原因。三是出租车利益供给不足,部分司机选择性停运。通俗说就是出租车司机挣不到钱,不愿出车或选择性出车,导致道路上行驶的出租车数量少。出租车司机挣不到钱的原因主要有三个:1.份钱高,交出去的多,成本高;2.道路拥堵,时间成本高,出车效益低;3.因为出租车大多只上交强险,只保第三方,因此暴雨、暴雪等恶劣天气,出车风险大,相对收益低。出租车司机收益相对不高,是导致出租车选择性停运,引发打车难的根本原因。找到了病根,病愈才有希望。针对以上分析,需要因地制宜,具体问题具体分析,综合运用政策、技术、市场和社会动员等多种方式,缓解打车难。首先,依靠市场和政府两只手解决好出租车利益供给不足的问题,切实增加出租车司机收入,提高出车积极性。第一,通过浮动价格的机制解决拥堵期收入低的问题。可通过两种思路实行浮动价格。一是时间维度,可在高峰时段收取打车拥堵费,弥补出租车因拥堵造成的高昂的时间成本,即机会成本。美国纽约的出租车管理经验可资借鉴。二是空间维度,可将出租车根据城市道路状况对出租车进行分类,将城市划分为拥堵区域和非拥堵区域,拥堵区域运行的出租车价格是非拥堵区域的二到三倍,以此来提高出租车的拥堵收入。香港的出租车管理经验可资借鉴。第二,通过落实职工工资集体协商制度,适当降低份钱,促使出租车的份钱保持在合理范围。工资集体协商,是指用人单位与本单位职工以集体协商的方式,根据法律、法规、规章的规定,就劳动报酬、工作时间、休息休假、劳动安全卫生、职业培训、保险福利等事项,签订集体的书面协议。要对工资集体协商制度进行适度修改,确保出租车司机的议价权利和谈判权利。第三,探索设立出租车专用保险,适当高于交强险,但低于一般商业车险,保险费用由出租车公司和司机按比例分摊,从而解决恶劣天气出车风险大,出租车不愿出车,导致打车难的问题。其次,要依靠技术解决打车信息不对称,出租车相对数量不足的问题。当前,网络技术和定位技术已经非常发达,微信、微博的定位技术已经非常成熟,因此,通过运用网络技术和定位技术,设计简单好用的招车软件完全可行。有了类似的这种软件,打车就相对容易多了。针对出租车绝对数量不足的问题,需要根据国家标准进行配套建设,量力而行,少则补之。最后,解决打车难,还不能仅仅考虑出租车供给的问题,还要考虑需求的问题。要通过优化公交优先战略,分流部分出租车客源到公交系统。还可以借鉴欧美等发达国家的做法,允许市民自愿无偿拼车出行,减少对出租车的需求。总之,除了对出租车进行依法依规的严格监管之外,解决打车难要靠对难点、难度、难为的深入分析,要靠创新思路和因地制宜,要靠政策、市场、技术和社会的协同配合。唯有如此,解决“打车难”才能破题。

中国研究生数学建模竞赛历届竞赛题目截止

中国研究生数学建模竞赛历届竞赛题目 第一届2004年题目 A题发现黄球并定位 B题实用下料问题 C题售后服务数据的运用 D题研究生录取问题 第二届2005年题目 A题HighwayTravelingtimeEstimateandOptimalRouting B题空中加油 C题城市交通管理中的出租车规划 D题仓库容量有限条件下的随机存贮管理 第三届2006年题目 A题AdHoc网络中的区域划分和资源分配问题 B题确定高精度参数问题 C题维修线性流量阀时的内筒设计问题 D题学生面试问题 第四届2007年题目 A题建立食品卫生安全保障体系数学模型及改进模型的若干理论问题 B题械臂运动路径设计问题 C题探讨提高高速公路路面质量的改进方案 D题邮政运输网络中的邮路规划和邮车调运 第五届2008年题目 A题汶川地震中唐家山堪塞湖泄洪问题 B题城市道路交通信号实时控制问题 C题货运列车的编组调度问题 D题中央空调系统节能设计问题 第六届2009年题目 A题我国就业人数或城镇登记失业率的数学建模 B题枪弹头痕迹自动比对方法的研究 C题多传感器数据融合与航迹预测 D题110警车配置及巡逻方案 第七届2010年题目 A题确定肿瘤的重要基因信息 B题与封堵渍口有关的重物落水后运动过程的数学建模 C题神经元的形态分类和识别 D题特殊工件磨削加工的数学建模 第八届2011年题目 A题基于光的波粒二象性一种猜想的数学仿真 B题吸波材料与微波暗室问题的数学建模 C题小麦发育后期茎轩抗倒性的数学模型 D题房地产行业的数学建模

第九届2012年题目 A题基因识别问题及其算法实现 B题基于卫星无源探测的空间飞行器主动段轨道估计与误差分析C题有杆抽油系统的数学建模及诊断 D题基于卫星云图的风矢场(云导风)度量模型与算法探讨 第十届2013年题目 A题变循环发动机部件法建模及优化 B题功率放大器非线性特性及预失真建模 C题微蜂窝环境中无线接收信号的特性分析 D题空气中PM2.5问题的研究attachment E题中等收入定位与人口度量模型研究 F题可持续的中国城乡居民养老保险体系的数学模型研究 第十一届2014年题目 A题小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究B题机动目标的跟踪与反跟踪 C题无线通信中的快时变信道建模 D题人体营养健康角度的中国果蔬发展战略研究 E题乘用车物流运输计划问题 第十二届2015年题目 A题水面舰艇编队防空和信息化战争评估模型 B题数据的多流形结构分析 C题移动通信中的无线信道“指纹”特征建模 D题面向节能的单/多列车优化决策问题 E题数控加工刀具运动的优化控制 F题旅游路线规划问题 第十三届2016年题目 A题多无人机协同任务规划 B题具有遗传性疾病和性状的遗传位点分析 C题基于无线通信基站的室内三维定位问题 D题军事行动避空侦察的时机和路线选择 E题粮食最低收购价政策问题研究 数据来源:

数学建模logistic人口增长模型

Logistic 人口发展模型 一、题目描述 建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进 二、建立模型 阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: 0)0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增 长,即增长率0)(=m x r ,代入(2)式得 m x r s = ,于是(2)式为 )1()(m x x r x r - = (3)

将(3)代入方程(1)得: ?? ???=-=0 )0() 1(x x x x rx dt dx m (4) 解得: rt m m e x x x t x --+= )1( 1)(0 (5) 三、模型求解 用Matlab 求解,程序如下: t=1954:1:2005; x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988]; x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2; a=polyfit(x2,dx,1); r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5; f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b'); title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0) 解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5 得到1954-2005实际人口与理论值的结果: 根据《国家人口发展战略研究报告》 我国人口在未来30年还将净增2亿人左右。过去曾有专家预测(按照总和生育率2.0),我国的人口峰值在2045年

历年全国数学建模试题及其解法归纳

历年全国数学建模试题及解法归纳 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工 神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建

赛题解法 01B 公交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划 06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析 07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图 论、0-1规划 08A 照相机问题非线性方程组、优化 08B 大学学费问题数据收集和处理、统计分 析、回归分析 2009年A题制动器试验台的控制方法分析工程控制 2009年B题眼科病床的合理安排排队论,优化,仿真,综 合评价 2009年C题卫星监控几何问题,搜集数据

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

相关文档
最新文档