人教版七年级上册数学找规律精选题汇总.pdf

七年级上数学找规律题专题

七年级上数学找规律题 专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

归纳—猜想---找规律 一、数字排列规律题 1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24…按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值? (2) (2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21 4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、 5、4、5、 6、……聪明的你猜猜第100个() 5、有一串数字 3 6 10 15 21 ___ 第6个是什么数? 6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是 (). 7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题 1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个. 2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102; 由此规律知,第⑤个等式是. 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…

七年级上数学找规律题专题

归 纳—猜想---找规律 一、数字排列规律题 1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24…按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值? (2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ? 2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21 4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、 5、4、5、 6、……聪明的你猜猜第100个( ) 5、有一串数字 3 6 10 15 21 ___ 第6个是什么数? 6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). 7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题 1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个. 2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()12 1 +=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ?

初一数学找规律题及答案

归纳—猜想——找规律 具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题 1、观察下列各算式: 1+3=4=22,1+3+5=9=32,1+3+5+7=16=42 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值? (2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ? 2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21 4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、 5、4、5、 6、……聪明的你猜猜第100个数是什么? 5、有一串数字 3 6 10 15 21 ___ 第6个是什么数? 6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .4 7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题 1、观察下列球的排列规律(其中●是实心球,○是空心球): ●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个. 2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()12 1+=n n n ,其中n是正整数.

初一上册数学找规律练习题

找规律专题练习 1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条 次后可拉出64根细面条。 第一次捏合第二次捏合第三 次捏合 2、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表: 剪的 次数 1 2 3 4 5 正方 形个 数 (2)如果剪n次,共剪出多少个小正方形?(3)如果剪了100次,共剪出多少个小正方形? (4)观察图形,你还能得出什么规律? 3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是. –6 –4 –3 –2 -1 0 1 2 4 5 x 1 10 100 1000 2 100 1 x (1)根据上表结果,描述所求得的一列数的变化规律 (2)当x非常大时, 2 100 x 的值接近于什么数? 5、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲▲△△▲△▲▲△△▲△▲▲…… 则黑色三角形有个,白色三角形有个。6、仔细观察下列图形.当梯形的个数是n时,图形的周长是. 1 1 7、用火柴棒按如下方式搭三角形: (1)填写下表: 1

2 (2) 照这样的规律搭下去,搭n 个这样的三角形需要______ 根火柴棒 8、把编号为1,2,3,4,…的若干盆花按右图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6盆花的颜色为___________色. 9、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式: 第1行 1 第2行 -2 3 第3行 -4 5 -6 第4行 7 -8 9 -10 第5行 11 -12 13 -14 15 … … 按照上述规律排下去,那么第10行从左边数第5个数等于 . 10、观察下列算式:2 3451=+? ,2 4462=+?,2 5473=+?, 24846?+=,请你在察规律之后并用你得到的规律填空: 250___________=+?, 第n 个式子呢? ___________________ 11、一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。 ①张桌子拼在一起可坐______人。3张桌子拼在一起可坐____人, n 张桌子拼在一起可坐______人。 ②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。 ③若在②中,改成每8张桌子拼成1张大桌子,则共可坐_________人。 12、用计算器计算下列各式,并将结果填写在横线上。 ① 1×7×15873= ② 2×7×15873= ③ 3×7×15873= ④ 4×7×15873= 你发现了什么规律?把你发现的规律用简练的语言写出来; 13、观察下列顺序排列的等式:9×0+1=1 9×1+2=11 9×2+3=21 9×3+4=31 9×4+5=41 …… 猜想:第n 个等式(n 为正整数)应为 . 14、 一个两位数的个位数是a ,十位数字是b ,请用代数式表示这个两位数是__________________。

七年级上册数学规律题题目

一、数字排列规律题 1、观察下列各算式: 1+3=4=22,1+3+5=9=32,1+3+5+7=16=42 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值? (2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少? 2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21 4、有一串数字3 6 10 15 21 ___ 第6个是什么数? 6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个 数是(). A.1 B.2 C.3 D.4 7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题 1、观察下列球的排列规律(其中●是实心球,○是空心球): ●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球个. 2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称). 三、数、式计算规律题 1、已知下列等式: ①13=12;

② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()12 1 +=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式 ()21032131 21??-??=? ()32143231 32??-??=? ()4325433 1 43??-??=? 将这三个等式的两边相加,可以得到1×2+2×3+3×4=205433 1 =??? 读完这段材料,请你思考后回答: ⑴=?++?+?1011003221 ⑵()()=++++??+??21432321n n n ⑶()()=++++??+??21432321n n n 4、,,,,已知: 245 52455154415448338333223222222?=+?=+?=+?=+ =+?=+b a a b a b 则符合前面式子的规律,,若 (21010) 参考答案: 一、1、(1)1004的平方(2)n+1的平方

七年级数学(上)探索规律类-问题及答案

1、一组按规律排列的数:,, (学习必备欢迎下载 七年级数学(上)探索规律类问题 班级七(8)姓名袁野成绩 一、数字规律类: 1371321 ,,,……请你推断第9个数是31/49. 49162536 2、(20XX年山东日照)已知下列等式:①13=12;②13+23=32;③13+23+33=62; ④13+23+33+43=102;…………由此规律知,第⑤个等式是1^3+2^3+3^3+4^3+5^3=15^2. 3、(20XX年内蒙古乌兰察布)观察下列各式;①、12+1=1×2;②、22+2=2×3; ③、32+3=3×4;………请把你猜想到的规律用自然数n表示出来n^2+n=n*(n+1)。 4、(20XX年辽宁锦州)观察下面的几个算式:①、1+2+1=4;②、1+2+3+2+1=9; ③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接 写出第n个式子1+2+3+…+n+(n-1)+(n-2)+…+1=n^2 5、20XX年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是(A) A.1B.2C.3D.4 6、(20XX年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为_41___。 第1行1 第2行-23 第3行-45-6 第4行7-89-10 (第6题图)第5行11-1213-1415 ………………(第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,…将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于-50. 二、图形规律类: 8、(20XX年云南玉溪)一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA 的中点A处,第二次从A点跳动到O A的中点A处,第三次从A点跳动到O A的中点A 1112223处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为An。 9、(20XX年江苏泰州)如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴6n+2根. …… 1条2条3条

(完整版)北师大版七年级上找规律试题几道经典题目(含答案)

数学试题分类汇编——找规律 1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________ 个小圆圈. (1) (2) (3) 2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形, 则第4 幅图中有 个菱形,第n 幅图中有 个菱形. 3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第 n 个图形需棋子 枚(用 含n 的代数式表示). 4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________. 5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22?的正方形图案(如图②),其中完整的圆共 有5个,如果铺成一个33?的正方形图案(如图③),其 中完整的圆共有13个,如果铺成一个44?的正方形图案(如图④),其中完整的圆共 有25个.若这样铺成一个1010?的正方形图案, 则其中完整的圆共有 个. 1 2 3 n … … 第1个图 第2个图 第3个图 …

6、如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子 枚(用含有n的代数式表示,并写成最简形式). ○○○○○○○○○ ○○○○●●○○●●●○ ○●○○●●○○●●●○ ○○○○○○○○●●●○ ○○○○○ 7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形 需根火柴棒。 8、将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是. 9、如图2,用n表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n的关系是 10、观察图4的三角形数阵,则第50行的最后一个数是() 1 -2 3 -4 5 -6 7 -8 9 -10 。。。。。。 11、下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第n个图案中白色正方形的个数为___________. 12、观察下列各式: 32 11 =332 123 +=3322 1236 ++=33332 123410 +++=…… 猜想:3333 12310 ++++= L L. 第一个第二个第三个 ……第n个 第一排 第二排 第三排 第四排 6 ┅┅ 10 9 8 7 3 2 1 5 4

七年级上册数学找规律试题

初一数学找规律: 1 .(2013山东滨州,18,4分)观察下列各式的计算过程: 5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …… …… 请猜测,第n 个算式(n 为正整数)应表示为____________________________. 【答案】 [10(n -1)+5]×[10(n -1)+5]=100n(n -1)+25. 2. (2013山东莱芜,17,4分)已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数种从左往右数第2013位上的数字为 . 【答案】7 3.(3分)(2013?青岛)要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只 有三个面是现成的.其他三个面必须用三刀切3次才能切出来.那么,要把一个正方体分割成27个小正方 体,至少需用刀切 6 次;分割成64个小正方体,至少需要用刀切 9 次. 4.(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34…+32013的末位数字是( ) A .0 B .1 C .3 D .7 考点:尾数特征. 分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字. 解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187… ∴末尾数,每4个一循环, ∵2013÷4=503…1, ∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3, 故选:C . 点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键. 5.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=?? ????+x ,则x 的取值可以是( ). A.40 B.45 C.51 D.56 答案:C . 考点:新定义问题. 点评:本题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题,分析问题,解决问题的能力. 6.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数) 答案:n 2+4n 考点:本题是一道规律探索题,考查了学生分析探索规律的能力. 点评:解决此类问题是应先观察图案的变化趋势,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出黑白正方形个数增加的变化规律,最后含有n 的代数式进行表示.

2018年秋人教版七年级数学上册期末复习专题:找规律(含答案)

2018年七年级数学上册期末复习专题找规律一、选择题 1.观察下列各数:1,1,5 7, 7 15 , 9 31 ,…按你发现的规律计算这列数的第7个数为( ) A.15 255 B. 13 127 C. 11 127 D. 11 63 2.观察下列关于x的单项式,探究其规律:2x,-4x2,6x3,-8x4,10x5,-12x6,…,按照上述规律,第2018个单项式是() A.2018x2018B.-2019x2018C.-4032x2018D.4032x2018 3.用棋子摆出下列一组图形(如图): 按照这种规律摆下去,第n个图形用的棋子个数为( ) A.3n B.6n C.3n+6 D.3n+3 4.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式: 按照上述规律排下去,那么第100行从左边数第5个数是( ) A.-4955 B.4955 C.-4950 D.4950 5.计算:,,,,,归纳各计算结果中的个位数字规 律,猜测的个位数字是() A.1 B.3 C.7 D.5 6.根据图中箭头的指向规律,从2 017到2 018再到2 019,箭头的方向是下列选项中的 ( ) 7.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为( ) A.1 B.2 C.3 D.4

8.如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6cm 2 ,第②个图形 的面积为18cm 2,第③个图形的面积为36cm 2 ,…,那么第⑥个图形的面积为( ) A .84cm 2 B .90cm 2 C .126cm 2 D .168cm 2 9.如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2018次输出的结果为( ) A .3 B .6 C .4 D .2 10.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是 ( ) A .2018 B .1036 C .518 D .259 二、填空题 11.有一列数, (17) 4 ,103,52,21-- ,那么第9个数是 . 12.如图是用棋子摆成的“T ”字图案: 从图案中可以看出,第一个“T ”字图案需要5枚棋子,第二个“T ”字图案需要8枚棋子,第三个“T ”字图案需要11枚棋子.则摆成第n 个图案需要 枚棋子. 13.按一定的规律排列的一列数为 则第n 个数为 . 14.按一定规律排列的一列数:,1,1,□,, , ,…请你仔细观察,按照此规律方框内的数字 应为 . 15. 计算: …,归纳计算结果中的个位数字的 规律,猜测32018-1的个位数字是 .

(完整版)七年级数学找规律题

归纳—猜想~~~找规律 给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题 1、观察下列各算式: 1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值? (2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ? 2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21 4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、 5、4、5、 6、……聪明的你猜猜第100个数是什么? 5、有一串数字 3 6 10 15 21 ___ 第6个是什么数? 6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .4 7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题 1、观察下列球的排列规律(其中●是实心球,○是空心球): ●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个. 2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()12 1 += n n n ,其中n是正整数.

七年级数学上册《第一章-有理数》有理数找规律专题练习题-(新版)新人教版

有理数找规律专题 1.观察下面的每列数,按某种规律在横线上适当的数。 (1)-23,-18,-13,______,________; ; (2)2345,,,8163264 --,_______,_________; 2.有一组数:1,2,5,10,17,26,.....,请观察这组数的构成规律,用你发现的规律确定第8个数为__________. 3.观察下列算式:21=2,22 =4,23 =8,24=16,25 =32,26=64,27=128,通过观察,用你所发现的规 律确定22011的个位数字是( ) A. 2 B. 4 C. 6 D. 8 4.一根lm 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( ) A.31()2m B. 51()2m C. 61()2m D. 121()2m 5.下面一组按规律排列的数:1,2,4,8,1 6.......,第2011个数应是( ) A. 22011 B. 22011-1 C.22010 D .以上答案不对 6.观察,寻找规律 (1) 0.12=________,12=_________,102=__________,1002=___________; (2)0.13=_________,13=_________,103=__________,1003=___________; 观察结果,你发现什么了? 7.观察下列三行数: 第一行:-1,2,-3,4,-5…… 第二行:1,4,9,16,25,…… 第三行:0,3,8,15,24,…… (1)第一行数按什么规律排列? (2)第二行、第三行分别与第一行数有什么关系? (3)取每行的第10个数,计算这三个数的和. 变式: 8.有规律排列的一列数:2,4,6,8,10,12,……它的每一项可用式子2n(n 是正整数)表示. 有规律排列的一列数:1,-2,3,-4,5,-6,7,-8...... (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少? (3)2012是不是这列数中的数?如果是,是第几个数? 9.如果对于任意非零有理数a,b 定义运算如下:a △b=ab +1,那么(-5)△(+4)△(-3)的值是多少? 10.如果规定符号※的意义是a ※b=ab a b +,求:2※(-3)※4的值. 11.先完成下列计算: 1×9+2=11;12×9+3=________;123×9 + 4=__________;……你能说出得数的规律吗?请你根据发现的算式的规律求出1234567×9 + 8的值.

七年级数学找规律题

中考数学探索题训练—找规律 1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。在电子数字计算机中用的是二进制,只要两个数码:0和1。如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数。 2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42; 1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是。 3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入…12345… 输出… 2 1 5 2 10 3 17 4 26 5 … 那么,当输入数据是8时,输出的数据是() A、 61 8 B、 63 8 C、 65 8 D、 67 8 4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子, 则摆第30个“小屋子”要枚棋子. 5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n个小房子用了 块石子。 6、如下图是用棋子摆成的“上”字: (1)(2)(3) 第4题

第一个“上”字第二个“上”字第三个“上”字 如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需 用和 枚棋子;( 2)第 n 个“上”字需用 枚棋子。 7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗. 8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有个点,第n 个图形中有个点。 9、下面是按照一定规律画出的一列“树型”图: 经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”。 10、观察下面的点阵图和相应的等式,探究其中的规律: (1)在④和⑤后面的横线上分别写出相应的等式; (2)通过猜想写出与第n个点阵相对应的等式_____________________。 11、用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是_______________cm(用含 n 的代数式表示)。 12、如图,都是由边长为1的正方体叠成的图形。例如第(1)个图形的表面积为6个平方单位,第(2) …… …… ①1=12;②1+3=22;③1+3+5=32④;⑤; 第1次第2次第3次第4次··· ··· 第7题图

七年级数学上探索规律类问题及答案

1条 2条 3条 七年级数学(上)探索规律类 问题 班级 七(8) 姓名 袁野 成绩 一、数字规律类: 1、一组按规律排列的数:41,93, 167,2513,36 21 ,…… 请你推断第9个数是 31/49 . 2、(2005年山东日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是1^3+2^3+3^3+4^3+5^3=15^2. 3、(2005年内蒙古乌兰察布)观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 n^2+n=n*(n+1) 。 4、(2005年辽宁锦州)观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9; ③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 1+2+3+…+n+(n-1)+(n-2)+…+1=n^2 5、(2005年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( A ) A .1 B . 2 C .3 D .4 6、(2005年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为_41___。 第1行 1 第2行 -2 3 第3行 -4 5 -6 第4行 7 -8 9 -10 (第6题图) 第5行 11 -12 13 -14 15 ……………… (第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 -50 . 二、图形规律类: 8、(2005年云南玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 An 。 9、(2005年江苏泰州)如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 6n+2 根. ……

七年级上册数学找规律专题练习

找规律专题练习 1、你喜欢吃拉面吗拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,到第次后可拉出64根细面条。 》 第一次捏合第二次捏合第三次捏合 2、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去; (1)填表: 剪的次数 1 ] 2 345 正方形个数# ^ # (2)如果剪n次,共剪出多少个小正方形 (3)如果剪了100次,共剪出多少个小正方形 (4)观察图形,你还能得出什么规律 \ 3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是. –6 –4 –3 –2 -1 0 1 2 4 5 4、填表并回答下列问题 x| 110100} 1000 2 100 1 x -— (1)根据上表结果,描述所求得的一列数的变化规律 (2)当x非常大时, 2 100 x 的值接近于什么数 ~ 5、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下: ▲▲△△▲△▲▲△△▲△▲▲…… 则黑色三角形有个,白色三角形有个。 6、仔细观察下列图形.当梯形的个数是n时,图形的周长是. 1 1 1 ! 7、用火柴棒按如下方式搭三角形: (1)填写下表: (2)照这样的规律搭下去,搭n个这样的三角形需要______根火柴棒 ~ 8、把编号为1,2,3,4,…的若干盆花按右图所示摆放,花盆中的 花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6 盆花的颜色为___________色. 9、已知一列数:1,―2,3,―4,5,―6,7,…将这列数排成下 列形式: 第1行1 、 第2行-23 第3行-45-6 第4行7-89-10 第5行11 -1213-1415 … … ! 按照上述规律排下去,那么第10行从左边数第5个数等于. 10、观察下列算式:23 4 5 1= + ?,24 4 6 2= + ?,25 4 7 3= + ?,2 4846 ?+=,请你在察规律之 &

七年级数学(上)探索规律类问题及答案

1条 2条 3条 七年级数学(上)探索规律类 问题 班级 七(8) 姓名 袁野 成绩 一、数字规律类: 1、一组按规律排列的数:41,93, 167,2513,36 21 ,…… 请你推断第9个数是 31/49 . 2、(2005年山东日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是1^3+2^3+3^3+4^3+5^3=15^2. 3、(2005年内蒙古乌兰察布)观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 n^2+n=n*(n+1) 。 4、(2005年辽宁锦州)观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9; ③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 1+2+3+…+n+(n-1)+(n-2)+…+1=n^2 5、(2005年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( A ) A .1 B . 2 C .3 D .4 6、(2005年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为_41___。 第1行 1 第2行 -2 3 第3行 -4 5 -6 第4行 7 -8 9 -10 (第6题图) 第5行 11 -12 13 -14 15 ……………… (第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 -50 . 二、图形规律类: 8、(2005年云南玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 An 。 9、(2005年江苏泰州)如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴 6n+2 根. ……

北师大版七年级数学上册《探索与表达规律》典型例题(含答案)

《探索与表达规律》典型例题 例1 观察下列数表: 1 2 3 4 ……第一行 2 3 4 5 ……第二行 3 4 5 6 ……第三行 4 5 6 7 ……第四行 第 第 第 第 一 二 三 四 列 列 列 列 根据数表所反映的规律,猜想第六行第六列的交叉点上的数是多少?第n 行第n 列交叉点上的数是多少? 例2 用含n (n 为自然数)的等式表示你对下列等式隐含的规律性的估计: 13=1 13+23=9 13+23+33=36 13+23+33+43=100 … … … … 例3 计算:1+2-3-4+5+6-7-8+9+10-11-12+…+1993+1994-1995-1996+1997. 例4 (江西省中考题) 如图用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案: (1)第4个图案中有白色地面砖__________块; (2)第n 个图案中有白色地面砖__________块. 例5 下表为杨辉三角系数表,它的作用是指导读者按规律写出形如n b a )(+(其中n 为正整数)展开式的系数,请你仔细观察下表中的规律,填出4)(b a +展开

式中所缺的系数. b a b a +=+)( 2222)(b ab a b a ++=+ 3223333)(b ab b a a b a +++=+ 则432234446____)(b ab b a b a a b a ++++=+ 例6 (广西中考试题) 阅读下列一段话,并解决后面的问题. 观察下面一列数: 1,2,4,8,…… 我们发现,这一列数从第2项起,每一项与它前一项的比都等于2. 一般地,如果一列数从第2项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比. (1)等比数列5,-15,45,……的第4项是________; (2)如果一列数4321,,,a a a a ,……是等比数列,且公比为q ,那么根据上述的规定,有 q a a q a a q a a ===3 42312,,,…… 所以 q a a 12=, 21123)(q a q q a q a a ===, 312134)(q a q q a q a a ===, …… ._____ _=n a (用1a 与q 的代数式表示) (3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.

七年级数学找规律练习题和答案

1 / 5 …… 找规律练习题 1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案 中有白色..地砖 块。 2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”如图,在一个边长为1的正方形纸版上,依次贴上面积为21,41 ,81,…,n 21的矩形彩色纸片(n 为大于1的整数)。请你用“数形结合”的思想,依数形变化的 规律,计算n 2 1814121++++ = 。 3.有一列数:第一个数为x 1=1,第二个数为x 2=3,第三个数开始依次记为x 3,x 4,…,x n ;从第二个数开始,每个数是它相邻两个数和的一半。(如:x 2=2 31x x +) (1)求第三、第四、第五个数,并写出计算过程; (2)根据(1)的结果,推测x 8= ; (3)探索这一列数的规律,猜想第k 个数x k = .(k 是大于2的整数) 4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线). 继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕 .如果对折n 次,可以得到 条折痕 . 5. 观察下面一列有规律的数 ,48 6,355,244,153,82,31, 根据这个规律可知第n 个数是 (n 是正整数) 6.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 。 7. 按照一定顺序排列的一列数叫数列,一般用a 1,a 2,a 3,…,a n 表示一个数列,可简记为{a n }.现有数列{a n }满足一个关系式: a n +1=2n a -na n +1,(n =1,2,3,…,n ),且a 1=2.根据已知条件计算a 2,a 3,a 4的值,然后进行归纳猜想a n =_________.(用含n 的代数式表示) 8.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列 数排成下列形式 按照上述规律排下去,那么第10行从左边第9个数是 . 第3题 (16) -1514-1312-1110-9 -76-54-32-1第8题

相关文档
最新文档