气 质 联 用 参 考 手 册

气 质 联 用 参 考 手 册
气 质 联 用 参 考 手 册

气 质 联 用 参 考 手 册

色谱、质谱基础知识

一、气相色谱

二、液相色谱

三、质谱

Trace DSQ操作流程

一、开机、关机观看视频

二、质谱检测观看视频

三、方法设置观看视频

四、测试样品

Useful Manual

质谱

一、DSQ Users Guide

DSQ安装、操作流程

二、Hardware Manual

DSQ 结构说明、清洗方法、部件更换、部件号查询三、DSQ Preinstall

DSQ 安装调节、工作环境要求

气相

一、Xcal_TRACE 2006

Xcalibur中Trace GC的配置、方法设置、操作流程二、Operating Manual

Trace GC结构与维护

开机与硬件检测与调谐

一、 开机、关机

开气(氮气、氧气、空气、氦气为0.5-0.6MPa ,氢气和甲烷气1-1.2MPa)―― 打开稳压电源,并稳定1 min――打开电脑――开气相色谱仪―― 开质谱仪

连网。

关机:

关质谱:

等待跳出可以关机的提示,关闭质谱电源。

关GC:

关闭OVEN、INLET和传输线温度(GC面板 AUX-TEMPERATURE ZONE),待温度降低后关闭电源。

二、 硬件配置与方法设置

参见说明书、帮助文件。在需要帮助的页面点击

三、 气相色谱的检测

通过气相面板察看Oven、Inlet、Carrier情况

四、 质谱的检测和调谐

点击联机--查看真空和源温--查看水图和校正气图

1.查看真空和源温

在DSQ TUNE窗口的右下角

前级压力在100mTorr以下时可以升高源温和传输线温度,60mTorr以下时方可点亮灯丝。

2.查看水图和校正气图

点亮灯丝

2.1一般28的峰高应为18的一半以下,总离子流应(TIC)在六次方左右。如

28的峰强度在3×E6以上,可能有漏气,在autotune中选择leak check 确定是否漏气(见AUTOTUNE)。

2.2在DSQ tune中设扫描范围为50-650(experiment-full scan),

2.

3打开灯丝(fil-mult-dyn on),查看背景值,TIC一般小于五次方,开机时间较短时可能在2~3E5左右。

2.4打开校正气,TIC应在六次方以上,69峰最高,100附近无毛刺,414、502

可见。通常69峰大于5×E5。

EI和负CI源选择EI/NICI,正CI选PICI。

注意左边1.7e+7 为TIC,即总离子强度,右边4.4e+6为图中最高峰强度。 器状态正常可开始测试样品,如有必要可运行以下内容。 、 Diagnostics

要求全通过,RF DIP CALIBRATION 两值相差<0.3 ,0.4

六、

Autotune

1. 通常选择当灵敏度与以前相比有明显降低时可采用Full Automatic Tune

测试样品

alibur/ Instrument Setup(设定方法)--Sequence Setup(创建序列)-)

Maintenance 模式,Xc

-Qual Browser(分析结果

一、 设定方法INSTRUMENT SETUP 见教学录像

二、 Sequence Setup(创建序列)

1、可更改栏目显示内容

2、发送单个试样或序列

点击发送单个样品或发送整个序列

当要启用或停用自动进样器时,点击CHANGE INSTRUMENT

图中的“YES”决定是否启用自动进样器,以及是否用自动进样器发出开始命下

令。

三、 进样

在这里察看发出的序列

注意此时气相、质谱状态的变化

此时可以进样了

左侧的状态栏可以察看DSQ和

GC的状态。

注意DSQ真空度的变化

四、 查看数据

这里察看实时数据

或者由定性浏览察看数据

点击右键增加提取离子色谱图

选定并放大目标峰

扣除背景

谱库检索

[多氯联苯,化合物,高分]高分辨气质联用法测定环境空气中的12种多氯联苯类化合物

高分辨气质联用法测定环境空气中的12种多氯联苯类化合物 1 前言 多氯联苯(PCBs)又称氯化联苯,由德国H.施米特和G.舒尔茨于1881年首次合成。PCBs 属于人工合成的氯代芳香烃类化合物,化学式为C12H10-nCln(n10)[1]。PCBs物理化学性质极为稳定,具有良好的电绝缘性和耐热性,曾在工业上广泛使用。但由于PCBs的污染具有广泛性、残留持久,以及通过生物链浓缩对人体的潜在危害等原因,成为社会公害,是公认的全球性污染物之一[2]。其中的12种被世界卫生组织(WHO)认定为具备毒性的PCBs,包括PCB 77,PCB 81,PCB 105,PCB 114,PCB 118,PCB 123,PCB 126,PCB 156,PCB 157,PCB 167,PCB 167及PCB 189。PCBs对人类危害最典型的例子是日本1968年米糠油中毒事件,受害者食用被PCBs污染的米糠油而中毒。 20世纪70年代,人们就开始了分析研究PCBs,如Thomas G.H.等[3]利用GC/MS分析了纸浆中的PCBs,Canada D.C.等[4]通过GC/MS技术讨论了PCBs的分析方法,到目前为止,PCBs的分析研究仍是大家关注的热点[5-6]。前处理和分析方法也趋于多样化,如邱静等采用高效液相色谱对常温存在的19种手性多氯联苯进行了拆分,并对比了5种不同多糖类手性色谱柱的拆分效果[7];郭远明等采用超声波萃取、分散固相萃取净化结合气相色谱电子捕获检测法,建立了快速测定环境土壤或底泥中7种指示性多氯联苯的方法[8]。本文利用高分辨气相色谱-高分辨质谱(HRGC/HRMS)联用法测定环境空气中12种PCBs,加标回收率和精密度测定的数据表明,该方法的各项参数能满足实验的要求。 2 实验部分 2.1 仪器和试剂 AutoSpec Premier高分辨磁式质谱仪(美国Waters)、7890A气相色谱仪(美国Agilent)、ASE350快速溶剂萃取仪(美国Thermo Fisher)、Sibata HV-1000R大流量环境空气采样器(日本柴田)、N-1200BV-WD旋转蒸发仪(日本东京理化)。EPA68C PCB标准物质系列(加拿大Wellington)、聚氨酯吸附材料(PUF)、甲苯(分析纯,美国Tedia)、丙酮(分析纯,美国Tedia)、正己烷(分析纯,美国Tedia)、二氯甲烷(分析纯,美国Tedia)、壬烷(分析纯,美国Tedia)、无水硫酸钠(分析纯,国药集团)。 2.2 实验方法 2.2.1 样品的采集和保存样品采集使用HV-1000R型大流量环境空气采样器,流量为1 000L/min,采样时间约为24h。采样前石英滤膜于400oC下烘烤6h,PUF用丙酮和甲苯分别超声30min。样品运输过程中应密封避光、冷藏保存,途中应避免引入干扰而破坏样品。回实验室后将样品放在事先用有机溶剂清洗过的金属盘中,室温下干燥避光保存,以备提取。 2.2.2 样品预处理(1)提取:样品使用快速溶剂萃取仪进行提取。将样品填装在萃取池内,加入提取内标,进行萃取。ASE参数如下:系统压力1 500psi、温度100oC、加热时间5min、静态时间6min、溶剂甲苯、冲洗体积60%(萃取池体积)、吹扫150psi 200s、循环3次。(2)脱水:在玻璃漏斗上垫少许玻璃棉,铺加约5g无水硫酸钠,将萃取液经上述漏斗过滤到浓缩器皿中,每次用少量萃取溶剂充分洗涤萃取容器,将洗涤液也倒入漏斗中,重复3次。最后再用少许萃取溶剂冲洗无水硫酸钠,待浓缩。(3)净化:样品首先使用浓硫酸进行

气质联用

气相色谱-质谱分析(GC-MS) 学生:郑德 摘要目的:练习气相色谱-质谱仪的操作,熟悉气质工作站的使用;掌握SCAN及SIM的应用。 关键词气相色谱质谱 1.实验材料 1.1仪器 气相色谱-质谱仪(MS检测器);微量注射器;质谱工作站; 1.2试药 样品溶液:混合溶剂 2.方法与原理 2.1色谱条件 色谱参数:进样口250℃,分流进样,分流比80:1,色谱柱:甲基苯基硅烷柱(30m×0.25mm ×0.25μm),载气流量:1.2ml/min(He),接口温度280℃,柱温:70℃。 质谱参数:溶剂延迟1min,SCAN:30-400质量数,SIM:自选参数 进样量:0.2 μl 2.2原理 气质联用技术是在气相色谱分离的基础上,利用质谱作检测器(MSD),可以得到不同时刻的质谱信息,灵敏度高,选择性好,给定性、定量分析带来方便。在气质联用中,质谱检测器采集数据有两种模式:SCAN(全扫描)和SIM(选择离子监测),其中SCAN连续扫描采集选定质荷比范围内所有离子的信号,可以获得化合物的质谱图,通过自动检索能够得到化合物的结构,常用于定性分析,峰形及灵敏度稍差,而SIM只监测采集某几个所选的特征离子的信号,灵敏度高,峰形好,主要用于定量分析。 本实验首先对样品作SCAN分析,以获得个化合物的质谱图,通过检索进行定性分析,并选择每个化合物的特征离子(一般选丰度较高的),利用所选的特征离子作SIM分析,并比较SCAN和SIM的异同。 3.操作与结果 4.思考题 1.讨论SCAN和SIM两种方法的差异及特点。

答:SCAN即全扫描方式适应于未知物的定性分析,而待定量分析的组分则采用SIM 即选择离子检测。 2.溶剂延迟的作用是什么? 答:保护灯丝 3.调谐的作用是什么? 答:诊断;编写系统性能变化表;提高灵敏度。

Agilent气质联用培训教材

Agilent 7890 / 5975C-GC/MSD (For 1701E02系列工作站) 现场培训教材 安捷伦科技有限公司 生命科学与化学分析仪器部

培训目的 ●初步了解Agilent 7890A气相色谱仪和5973C质谱仪的操作。 ●正确地执行仪器的开机、关机;初步掌握软件中有关仪器参数设定、 分析方法的编辑、谱库检索及报告的打印。 注意事项: 1.老化柱子 分段老化。按温度从低到高分段,程序升温老化。这是最好 的老化方法。如HP-5柱,5-6℃/min至250℃,反复数次; 再升至280℃,反复数次;接到MS上看基线情况。270℃以 后基线提高为正常。再老化到300℃半小时。无论何种方式, 载气必须充足。 2.进样口用红色或灰色隔垫,可减少隔垫流失。 3.GC/MS接口处必须用vesper垫圈(5062-3508)。注意安装方 向(大的一端朝向质谱)。 4.新柱子安装时无方向性,但一旦使用过,再不要改变方向。 保存柱子时注意将两端密封好,避免水和空气破坏柱子内涂层 仪器配置: 1. 在操作系统桌面双击Config/配置图标进入仪器配置界面 2.如下图所示点击所要配置的仪器

配置MSD及GC: 以下采用中文工作站界面,英文工作站请参考相应位置及图标 在出现的画面中输入仪器名称、序列号等信息后,在质谱仪一栏中选择MSD的型号,并输入MSD的IP地址,选择DC极性(标注于MSD侧板的中部金属上部);同样配置GC后点击确定退出。

配置完成后桌面上应出现“Instrument #1”和“Instrument #1 Data Analysis”的图标(名称由配置时输入的仪器名称决定)。如下图所示: 开机 1.打开载气钢瓶(He)控制阀,设置分压阀压力至0.5Mpa 2.打开计算机,登录进入Windows XP(SP2)系统,初次开机时建 议使用5975的小键盘LCP输入IP地址和子网掩码,并使用新地 址重启,否则安装并运行Bootp Service 3.打开7890GC、5975MSD电源(若MSD真空腔内已无负压则应在打 开MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧 固地吸牢),等待仪器自检完毕 4.在桌面双击“Instrument #1”图标,进入MSD化学工作站

安捷伦气质联用仪操作规程

Agilent 7890 A/ 5975C气相色谱质谱联用仪操作规程1. 开机 1)打开载气钢瓶控制阀,设置分压阀压力至0.5Mpa 。 2) 打开计算机,登录进入Windows XP系统,初次开机时使用5975C的小键盘LCP输入IP地址和子网掩码,并使用新地址重起,否则安装并运行Bootp Service 。 3)依次打开7890AGC、5975MSD电源(若MSD真空腔内已无负压则应在打开MSD电源的同时用手向右侧推真空腔的侧板直至侧面板被紧固地吸牢),等待仪器自检完毕。 4)桌面双击GC-MS图标,进入MSD化学工作站 5)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面, 在真空菜单中选择真空状态,观察真空泵运行状态,此仪器真空泵配置为分子涡轮泵,状态显示涡轮泵转速涡轮泵转速应很快达到100 %,否则,说明系统有漏气,

应检查侧板是否压正、放空阀是否拧紧、柱子是否接好。 2. 调谐 调谐应在仪器至少开机2个小时后方可进行,若仪器长时间未开机为得到好的调谐结果将时间延长至4小时。 1)首先确认打印机已连好并处于联机状态。 2) 在操作系统桌面双击GC-MS图标进入工作站系统。 3)在上图仪器控制界面下,单击视图菜单,选择调谐及真空控制进入调谐与真空控制界面。 4) 单击调谐菜单,选择自动调谐调谐MSD,进行自动调谐,调谐结果自动打印。 5) 如果要手动保存或另存调谐参数,将调谐文件保存到atune.u中。 6) 然后点击视图然后选择仪器控制返回到仪器控制界面。 注意: 自动调谐文件名为ATUNE.U 标准谱图调谐文件名为STUNE.U 其余调谐方式有各自的文件名. 3. 样品测定 3.1 方法建立 1)7890A配置编辑 点击仪器菜单,选择编辑GC配置进入画面。在连接画面下,输入GC Name:GC 7890A;可在Notes处输入7890A的配置,写7890A GC with 5975C MSD。点击获得GC配置按钮获取7890A的配置。

超详细气质联用原理

超详细气质联用原理 3在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相 ;自上而下运动的一相(一般是气体或液体)称为流动相 ;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1. 按两相状态分类 气体为流动相的色谱称为气相色谱(GC)根据固定相是固体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物液体),又可分为气固色谱(GSC)和气液色谱(GLC)。液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC)。超临界流体为流动相的色谱为超临界流体色谱(SFC)。 随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CBPC). 4 由检测器输出的电信号强度对时间作图,所得曲线称为色谱流出曲线。曲线上突起部分就是色谱峰。如果进样量很小,浓度很低,在吸附等温线(气固吸附色谱)或分配等温线(气液分配色谱)的线性范围内,则色谱峰是对称的。在实验操作条件下,色谱柱后没有样品组分流出时的流出曲线称为基线,稳定的基线应该是一条水平直线。色谱峰顶点与基线之间的垂直距离,以(h)表示 5不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间,它正比于色谱柱的空隙体积。试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间

气相色谱法和气质联用测定混合烷烃样品的实验讲义

实验1 毛细管气相色谱法测定混合烷烃样品 一、目的要求 1. 了解6820气相色谱仪的基本结构及工作原理。 2. 了解色谱定性的基本原理。 3. 熟悉分离度的定义、计算及判据。 二、实验原理 色谱法的实质是分离分析。它根据混合物各组分在互不相溶的两相——固定相与流动相中分配能力、吸附能力等性能的差异作为分离依据。当各组分随流动相渗漉通过固定相时,在流动相与固定相之间进行反复多次的分配,结果使那些分配系数仅有微小差异的组分在色谱柱中的移动距离产生了较大的差别,从而得到分离。 物质在一定得色谱条件下具有一定的保留值,故保留值可以作为一种定性指标。色谱定量的依据是峰高或峰面积。当操作条件一定时,组分的质量(或浓度)与检测器响应讯号成正比。判断色谱柱分离效能的指标是分离度,其定义式为: Rs=2(t R2-t R1)/(W1+W2) 式中,t R为保留时间,W为基线宽度,二者均可由色谱流出曲线得到。 三、仪器与试剂 仪器:6820气相色谱仪,FID检测器(Agilent),氮、氢、空气体发生器,稳压电源,微量进样器,定性滤纸 试剂:混合烷烃样品 四、实验步骤 1. 色谱条件 色谱柱:DB-1,15 m×0.53 mm; 柱温:80℃,梯度:15 ℃/min;气化室温度:250 ℃;FID温度:300 ℃; 载气:高纯氮,分压表0.4 MPa,流量:410 mL/min。 2. 混合样品的分离测定 (1)注册样品——样品/编辑/注册样品。 (2)进样——混合样品0.2μL/后进样口/手动进样。 五、结果处理 1. 方法/输出/报告规格/面积百分比/打印。 2. 计算分离度。 六、思考题 1. 气相色谱如何定性? 2. 分离度有何意义? 3. 气相色谱中柱温的选择原则是什么? 4. 分流与不分流进样各适用于何种情况?应注意哪些问题?

气质联用技术原理与在多领域应用

气质联用技术原理与在领域应用 刘龙吟 中国矿业大学(北京) 摘要:气质联用技术是一种高灵敏度、高定性能力的监测分析手段。本文介绍了气质联用技术的基本原理与各组分组成,并列举了其在食品成分、农药残留、水污染物与化工产物中的微量物质上的检测实例。 关键词:气质联用;检测;原理 Abstract: GC-MS detecting technology is an analyzing method known as its high sensitivity and accuracy. This paper focuses on its principle and component. Besides, some applications were reviewed, in the detection of the components of provision, contaminations in water and microscale impurities in the chemical products. Keywords: GC-MS; detection; principle 质谱法具有灵敏度高、定性能力强等特点,但进样要纯,才能发挥其特长,另一方面,进行定量分析较为复杂;气相色谱法具有分离效率高、定量分析简便的特点,但定型能力却较差。因此这两种方法若能联用,可以相互取长补短,其优点是:(1)气相色谱仪是质谱法的理想的“进样器”,试样经色谱分离后纯物质形式进入质谱仪,就可充分发挥质谱法的特长。(2)质谱仪是气相色谱法的理想“检测器”,色谱法所用的检测器如氢焰电离检测器、热导池检测器、电子捕获检测器等都有局限性,而质谱仪能检出几乎全部化合物,灵敏度又很高。 所以,色谱-质谱联用技术既发挥了色谱法的高分离能力,有发挥了质谱法的高鉴别能力。这种技术适用于做多组分混合物中位未知组分的定性鉴定;可以判断化合物的分子结构;可以准确地测定未知组分的相对分子质量;可以修正色谱分析的错误判断;可以鉴定出部分分离甚至未分离开的色谱峰等等,因此日益受到重视。 图1 气质联用设备图

“三招”判断气质联用分子离子峰

“三招”判断气质联用分子离子峰 通常判断分子离子峰的方法如下: (1)分子离子峰一定是质谱中质量数最大的峰,它应处在质谱的最右端。 (2)分子离子峰应具有合理的质量丢失。也即在比分子离子小4~14 及20~25个质量单位处,不应有离子峰出现,否则,所判断的质量数最大的峰就不是分子离子峰。因为一个有机化合物分子不可能失去4~14个氢而不断键。如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位。同样也不可能失去20~25个质量单位。 (3)分子离子峰应为奇电子离子,它的质量数应符合氮规则(略)。 如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不是分子离子峰。应该特别注意的是,有些化合物容易出现M-1峰或M+1峰,另外,在分子离子很弱时,容易和噪音峰相混,所以,在判断分子离子峰时要综合考虑样品来源、性质等其他因素。 如果经判断没有分子离子峰或分子离子峰不能确定,则需要采取其他方法得到分子离子峰,常用的方法有:

(1)降低电离能量降低电子轰击的能量,可以减少分子离子峰进一步裂解的可能性,从而增强分子离子峰 (2)制备衍生物 (3)更换其他离子源 分子离子的确认: 分子离子峰的m/z 值示出准确的相对分子质量,高分辨质谱的分子离子峰还可提供精确的相对分子质量,由此可方便地推断出化合物的分子式,所以识别分子离子峰是很重要的。构成分子离子峰有三个必要条件: (1) 在质谱图中必须是最高质量的离子; (2) 必须是一个奇电子离子; (3) 在高质量区,它能合理地丢失中性碎片而产生重要的碎片离子。 样品分子电离失去一个电子形成的分子离子除了伴随的同位素峰外,必然出现在质谱图中的最高质量处。中性分子失去孤电子对中或一对成键电子中的一个电子,而形成的分子离子必定是一个自由基正离子,

气质联用分析未知混合物成分及最佳分离条件的选择

气质联用分析未知混合物成分及最佳分离条件的选择[摘要] 本文是利用GC/MS对生物碱进行分离,运用质谱库进行检索筛选 得到混合物的主要成分。探讨了不同的升温程序,柱前压与流速,进样口温度,接口温度,分流比等参数对分离效果的影响。实验结果表明,温程序和柱前压与流速对分离效果影响最大,进样口温度,接口温度对分离效果影响较小。 [关键词] 气相色谱-质谱联用;最佳分离条件;成分;影响 1.引言 GC/MS技术是化学工作者分离有机混合物常用的手段。色谱-质谱联用技术既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力。这种技术适用于做多组分混合物中未知组分的定性鉴别,可以判断化合物的分子结构,可以准确的测定未知组分的分子量,可以修正色谱分析的判断错误,可以鉴定出部分分离甚至未分开的色谱峰。特别是近年来计算机技术的发展,使GC/MS仪使用更为方便,简单,快捷。 本文是利用GC/MS对未知样品(生物碱)进行分离,从而得到它的最佳分离条件,运用质谱库进行检索筛选得到混合物的主要成分,并且进一步探讨了不同的升温程序,柱前压与流速,进样口温度,接口温度,分流比等参数对分离效果的影响。分离条件的探索对混合物的分离有重要的指导意义。对分离其它样品具有极大的参考价值。 2.实验部分 2.1样品的性质和仪器参数 样品来源于从植物的茎叶中提取的生物碱。柱温选择在50-260℃。 仪器:GC/MS-QP2010 ,He气源(99.999%),毛细管色谱柱DB-5MS (30m×0.25mm×0.25um)。 2.2最佳分离条件的探索与讨论 2.2.1升温程序 仪器参数: ①GC:注射模式:分流; 分流比:20/1; 柱前压:100.1Kpa; 流速:1.69ml/min;进样口温度:200℃ ②MS:离子源温度:200℃;检测范围:35—550;去溶剂峰:2min 接口温度:250℃;检测器电压:1000kv 升温程序对分离效果有显著的影响。所以选择适宜的升温程序最为重要。拟采用如下升温程序: 升温程序一:初温50℃,以10℃/min 的升温速率升至200℃,保留30min;结果发现,在保留时间为20min时,峰较多,可能出峰不完全,所以应该提高柱温。在20min以前出峰较少,间距太宽,所以应该增加升温速率。 升温程序二:初温50℃,以12℃/min 的升温速率升至200℃,以2℃/min 的升温速率升至220℃保留10min;结果发现,在保留时间为17min时,出峰较多,没有分开。要使分离效果更好,在210℃时采用降温程序。 升温程序三:初温50℃,以10℃/min 的升温速率升至210℃,以-5℃/min 的降温速率降至190℃,以20℃/min 的升温速率升至240℃;结果发现,降温使分离效果明显变好,但是出峰不完全,为此,需增加保持时间。在10min以前出峰太少,间距较大,可以增加升温速率缩短间距。

气质联用

第一章气相色谱-质谱联用技术 气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。GC/MS 已经成为分析复杂混合物最为有效的手段之一。 气质联用法是将气-液色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。气相色谱和质谱由接口相连。气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。 气质联用仪系统一般有下图所示的部分组成。 图1.1 气质联用仪组成框图 气质联用仪根据其要完成的工作被设计成不同的类型和大小。由于在现代质谱仪中最常用的质量分析器是四极杆型的,所以,在本章中将主要介绍这种将不同质量离子碎片分离的方法。

第一节气相色谱仪简介 气相色谱仪,通过对欲检测混合物中组分有不同保留性能的气相色谱色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。 图1.2 气相色谱流程图 一、气相色谱仪的组成 气相色谱仪的基本构造有两部分,即分析单元和显示单元。前者主要包括气源及控制计量装置﹑进样装置﹑恒温器和色谱柱。后者主要包括检定器和自动记录仪。色谱柱(包括固定相)和检定器是气相色谱仪的核心部件。气相色谱仪主要由以下六大系统组成:(1)载气系统气相色谱仪中的气路是一个载气连续运行的密闭管路系统。整个载气系统要求载气纯净、密闭性好、流速稳定及流速测量准确。 (2)进样系统进样就是把气体或液体样品速而定量地加到色谱柱上端。 (3)分离系统分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分。色谱柱分为填充柱和毛细管柱两类。

超详细气质联用原理

3在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相; 自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1. 按两相状态分类 气体为流动相的色谱称为气相色谱(GC)根据固定相是固体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物液体),又可分为气固色谱(GSC)和气液色谱(GLC)。 液体为流动相的色谱称液相色谱(LC)同理液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC)。超临界流体为流动相的色谱为超临界流体色谱(SFC)。 随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CBPC). 4 由检测器输出的电信号强度对时间作图,所得曲线称为色谱流出曲线。曲线上突起部分就是色谱峰。如果进样量很小,浓度很低,在吸附等温线(气固吸附色谱)或分配等温线(气液分配色谱)的线性范围内,则色谱峰是对称的。在实验操作条件下,色谱柱后没有样品组分流出时的流出曲线称为基线,稳定的基线应该是一条水平直线。色谱峰顶点与基线之间的垂直距离,以(h)表示 5不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间,它正比于色谱柱的空隙体积。试样从进样到柱后出现峰极大点时所经过的时间,称为保留时间 6调整保留时间实际上是组份在固定中停留的总时间。保留时间是色谱法定性的依据。但同一组分的保留时间受到流动相流速的影响,因此,常用保留体积等参数进行定性分析。死体积指色谱柱在填充后,柱管内固定相颗粒间所剩留的空间、色谱仪中管路和连接头间的空间以及检测器的空间的总和。某组分的保留时间扣除死时间后,称为该组分的调整保留时间。由于组分在色谱柱中的保留时间tr包含了组分随流动相通过柱子所须的时间和组分在固定相中滞留所须的时间,所以tr实际上是组分在固定相中保留的总时间。保留时间是色谱法定性的基本依据,但同一组分的保留时间常受到流动相流速的影响,因此色谱工作者有时用保留体积来表示保留值。指从进样开始到被测组分在柱后出现浓度极大点时所通过的流动相的体积。某组分的保留体积扣除死体积后,称为该组分的调整保留体积。 7相对保留值只与柱温以及固定相性质有关,与柱径柱长、填充情况和流动相流速无关。是常用的定性数据。在定性分析中,通常固定一个色谱峰作为标准(s),然后再求其它峰(i)对这个峰的相对保留值,此时可用符号α表示, 式中tr '(i)为后出峰的调整保留时间,所以α总是大于1的。相对保留值往往可

气质联用操作流程

气相色谱仪-质谱仪操作流程 1开气; 2打开两主机(GC/MS),启动电脑。 3点击联机图表; 4在弹出的离子源、四级杆信息栏点应用、确定,使其分别加热到230℃,150℃; 5编辑GC参数中把辅助加热设置为280℃;抽真空4小时以后,调谐. 6调谐质谱:视图—调谐和真空控制,进入调谐界面,调谐--自动调谐:仪器自动调谐,看调节结果中水氮比(与基峰比)是否小于20%和10% 等(或者点击调谐—调谐评估),调谐好后保存文件:文件--保存调谐参数,并替代原有调谐文件;(也可直接调用原有的调谐报告) 7编辑气相色谱仪参数:编辑进样前清洗,进样口,色谱柱,检测器的温度压力条件等 8编辑质谱参数:a:定性:全扫描,--全扫描参数,规定扫描质量范围,阈值(>500),光电倍增器工作电压,扫描绘图窗口的设置等;b:定量:选择离子扫描,找出已定性样的特征离子,在“SIM参数”中,根据待测组分个数和组分间隔时间分组,在组内添加特征离子质荷比m/z,并根据不同组分出峰时间的差异分组设定不同时间段采集的特征离子质荷比。 9保存方法 10运行序列或者方法 11数据处理:A:定性:a、打开待分析色谱图;b、扣除本底(圈一段相对平稳基线,仪器自动算出时间范围内的平均值,--文件--图谱扣除);c、谱库检索: 1.选谱库:谱图—选择谱图—通过路径找到谱图(c:\datebase\nisi08.l); 2选择结构图:视图—参数检索,到选结构图视图,结构—选择结构数据库--通过路径找到谱图(c:\datebase\nisi08.l),然后返回分析窗口:视图—返回图谱。 B:定量:调出数据,积分,编辑校正曲线,保存方法,出报告 12执行放空程序视图—调谐和真空,进入调谐和放空的界面。点击真空放空,ok,开始执行放空程序,外真空泵自动关闭,辅助加热区降温,转子降速,约40分钟达到规定状态。手动扭松放气阀慢慢让空气进入。 13关机,关气

浅析高分辨气质联用法测定环境空气中的12种多氯联苯类化合物.doc

浅析高分辨气质联用法测定环境空气中的12种多氯联苯类化合物- 1前言 多氯联苯(PCBs)又称氯化联苯,由德国H.施米特和G.舒尔茨于1881年首次合成。PCBs属于人工合成的氯代芳香烃类化合物,化学式为C12H10-nCl(nn10)。PCBs物理化学性质极为稳定,具有良好的电绝缘性和耐热性,曾在工业上广泛使用。但由于PCBs的污染具有广泛性、残留持久,以及通过生物链浓缩对人体的潜在危害等原因,成为社会公害,是公认的全球性污染物之一。其中的12种被世界卫生组织(WHO)认定为具备毒性的PCBs,包括PCB77,PCB81,PCB105,PCB114,PCB118,PCB123,PCB126,PCB156,PCB157,PCB167,PCB167及PCB189。PCBs 对人类危害最典型的例子是日本1968年米糠油中毒事件,受害者食用被PCBs污染的米糠油而中毒。 20世纪70年代,人们就开始了分析研究PCBs,如ThomasG.H.等利用GC/MS分析了纸浆中的PCBs,Cana?daD.C.等通过GC/MS技术讨论了PCBs的分析方法,到目前为止,PCBs 的分析研究仍是大家关注的热点。前处理和分析方法也趋于多样化,如邱静等采用高效液相色谱对常温存在的19种手性多氯联苯进行了拆分,并对比了5种不同多糖类手性色谱柱的拆分效果;郭远明等采用超声波萃取、分散固相萃取净化结合气相色谱电子捕获检测法,建立了快速测定环境土壤或底泥中7种指示性多氯联苯的方法。本文利用高分辨气相色谱-高分辨质谱(HRGC/HRMS)联用法测定环境空气中12种PCBs,加标回收率

和精密度测定的数据表明,该方法的各项参数能满足实验的要求。 2实验部分 2.1仪器和试剂AutoSpecPremier高分辨磁式质谱仪(美国Waters)、7890A气相色谱仪(美国Agilent)、ASE350快速溶剂萃取仪(美国ThermoFisher)、SibataHV-1000R大流量环境空气采样器(日本柴田)、N-1200BV-WD旋转蒸发仪(日本东京理化)。EPA68CPCB标准物质系列(加拿大Wellington)、聚氨酯吸附材料(PUF)、甲苯(分析纯,美国Tedia)、丙酮(分析纯,美国Tedia)、正己烷(分析纯,美国Tedia)、二氯甲烷(分析纯,美国Tedia)、壬烷(分析纯,美国Tedia)、无水硫酸钠(分析纯,国药集团)。 2.2实验方法 2.2.1样品的采集和保存样品采集使用HV-1000R型大流量环境空气采样器,流量为1000L/min,采样时间约为24h。采样前石英滤膜于400oC下烘烤6h,PUF用丙酮和甲苯分别超声30min。样品运输过程中应密封避光、冷藏保存,途中应避免引入干扰而破坏样品。回实验室后将样品放在事先用有机溶剂清洗过的金属盘中,室温下干燥避光保存,以备提取。 2.2.2样品预处理(1)提取:样品使用快速溶剂萃取仪进行提取。将样品填装在萃取池内,加入提取内标,进行萃取。ASE 参数如下:系统压力1500psi、温度100oC、加热时间5min、静态时间6min、溶剂甲苯、冲洗体积60%(萃取池体积)、吹扫150psi200s、循环3次。(2)脱水:在玻璃漏斗上垫少许玻璃棉,铺加约5g无水硫酸钠,将萃取液经上述漏斗过滤到浓缩器皿中,每次用少量萃取溶剂充分洗涤萃取容器,将洗涤液也倒入漏斗中,重复3次。最后再用少许萃取溶剂冲洗无水硫酸钠,待浓缩。

气质联用 原理[教材]

气质联用原理[教材] 气质联用 - 原理 GC-MS被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和MS的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。 质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:GC到MS的连接部件,由GC出来的样品通过接口进入到质谱仪。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。接口作用: 1 压力匹配——质谱离子源的真空度在10-3Pa,而GC色谱柱出口压力高达105Pa,接口的作用就是要使两者压力匹配。 2 组分浓缩——从GC色谱柱流出的气体中有大量载气,接口的作用是排除载气,使被测物浓缩后进入离子源。 常见接口技术有: 1 分子分离器连接(主要用于填充柱) 扩散型——扩散速率与物质分子量的平方成反比,与其分压成正比。当色谱流出物经过分离器时,小分子的载气易从微孔中扩散出去,被真空泵抽除,而被测物分子量大,不易扩散则得到浓缩。 2 直接连接法(主要用于毛细管柱) 在色谱柱和离子源之间用长约50cm,内径0.5mm的不锈钢毛细管连接,色谱流出物经过毛细管全部进入离子源,这种接口技术样品利用率高。 3 开口分流连接

该接口是放空一部分色谱流出物,让另一部分进入质谱仪,通过不断流入清洗氦气,将多余流出物带走。此法样品利用率低。 离子源:将气化的样品分子电离,产生分子离子及碎片离子的部件。主要有电子轰击离子源(EI)和化学电离源(CI)。EI源是最早也是应用最广泛的一种电离方式,由灯丝发射电子将气化的样品分子电离,产生丰富的碎片离子。其特点是稳定可靠,能获得丰富的结构信息,在70eV下可获得类似“指纹图谱”,有标准质谱图可以检索,是气质联用仪的标准配置。CI源相对EI源是一种“软电离”方式,需要反应气(常用甲烷、异丁烷、氨气等),灯丝发射的电子先将反应气电离产生反应离子,这些反应离子再样品分子发生离子-分子反应,实现样品分子电离。由于电离能量大大降低,可获得分子离子峰,是获得分子量信息的重要手段,某些电负性较强的化合物(卤素及含氮、氧化合物),采用CI方式选择负离子,不仅选择性好,灵敏度也会提高。 质量分析器:样品离子在质量分析器中得到分离。质谱的质量分析器有多种类型,如四极杆质量分析器(又称四极滤质器)、离子阱质量分析器、飞行时间质量分析器、扇形磁场质量 分析器,另外还有各种串级质谱。在气质联用仪中,应用最多的是四极杆质量分析器。四极杆质量分析器是由四根严格平行并与中心轴等间隔的圆形柱形或双曲面柱状电极构成的正、负两组电极,其上施加直流和射频电压,产生一动态电场即四极场。离子在四极场的运动轨迹由典型的马绍(Mathieu)方程解确定,满足方程稳定解的即有稳定振荡的离子才能通过四极场。精确地控制四极电压变化,使一定质荷比的离子通过正、负电极形成的动态电场到达检测器,对应于电压变化的每个瞬间,只有一种质荷比的离子能通过。四极杆质量分析器有全扫描(Scan)和选择离子扫描(SIM)两种不同的扫描模式,Scan模式扫描的质量范围覆盖被测化合物的分子离子和碎片离子的质量,可获得化合物的全谱,用于谱库检索定性,一般在未

气相色谱与气质联用原理简介(精)

色谱法也叫层析法, 它是一种高效能的物理分离技术, 将它用于分析化学并配合适当的检测手段,就成为色谱分析法。 色谱法的最早应用是用于分离植物色素, 其方法是这样的:在一玻璃管中放入碳酸钙, 将含有植物色素 (植物叶的提取液的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗, 随着石油醚的加入, 谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带, 继续冲洗就可分别接得各种颜色的色素, 并可分别进行鉴定。色谱法也由此而得名。 现在的色谱法早已不局限于色素的分离, 其方法也早已得到了极大的发展, 但其分离的原理仍然是一样的。我们仍然叫它色谱分析。 一、色谱分离基本原理: 由以上方法可知,在色谱法中存在两相, 一相是固定不动的, 我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时, 混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异, 与固定相之间产生的作用力的大小、强弱不同, 随着流动相的移动, 混合物在两相间经过反复多次的分配平衡, 使得各组分被固定相保留的时间不同, 从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合, 实现混合物中各组分的分离与检测。 二、色谱分类方法: 色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。

从两相的状态分类: 色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC 和液相色谱法(LC 。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气 -液色谱、气 -固色谱、液 -固色谱、液 -液色 气相色谱仪的组成 :载气处理控制系统:专用气源,进入气体恒定; 进样装置:液体样品手动进样:实验室; 气体样品定量管进样:工业色谱柱:分离混合样品组分:填充、毛细管。吸附 (固、分配 (液检测器和记录仪:热导、电离 2. 定性和定量分析色谱图分析组分物质; 分析组分含量。基线滞留时间:峰值最大;死时间; 峰高、峰宽、半峰宽; 峰面积、分辨率 3. 定性分析滞留时间法:滞留时间一定, 由此判别组分。加入纯物质法:加入后分析色谱峰值判别。 4. 定量分析定量进样法:面积归一化法:外标法:智能化 GC7890F 气相色谱仪操作规程, 填充柱恒温操作 1. 打开载气高压阀, 调节减压阀至所需压力(载气输入到 GC7890系列气相色谱仪的压力必须在 0.343MPa ~0.392MPa ,如果使用氢气为载气时, 输入到气相色谱仪的载气入口压力应为 0.343MPa 。打开净化器上的载气开关阀,用检漏液检漏,保证气密性良好。调节载气稳流阀载气使流量达到适当值(查 N2或 H2流量输出曲线 7890II 用刻度~流量表 ,通载气 10min 以上。 2. 打开电源开关,根据分析需要设置柱温、进样温度和 FID 检测器的温度(FID 检测器的温度应>100℃。 3. 打开空气、氢气高压阀,调节减压阀至所需压力 (空气输入到 GC7890系列气相色谱仪的压力必 须在 0.294MPa ~0.392MPa , 氢气输入到 GC7890系列气相色谱仪的压力必须在 0.196MPa ~ 0.392MPa 。打开净化器的空气、氢气开关阀, 分别调节空气和氢气针形阀使流量达到适当值 (查空气和 H2流量输出曲线针形阀刻度~流量表。 4. 按[基流 ]键, 观察此时的基流值。 5. 按 [量程 ]键,设置 FID 检测器微电流放大器的量程。按 [衰减 ]键,设置输出信号的衰减值。

完整word版超高效液相色谱 四极杆飞行时间高分辨质谱联用仪

附件:技术参数 一、超高效液相色谱-四极杆飞行时间高分辨质谱联用仪 1.应用范围: 系统主要用于有机化合物的定性和定量分析。可分别通过多目标未知物筛查流程、完全未知物筛查流程等来开展未知物的发现和鉴定工作;还可以开展药物代谢、代谢物鉴定和代谢组学研究等。 2.工作环境条件: 2.1 电源:230Vac,?10%,50/60Hz,30A。 2.2 环境温度:15 ~ 26?C。 2.3 相对湿度:20 ~ 80%。 3.总体要求: 3.1 该系统基本组成包括超高效液相色谱部分和具有超高灵敏度、超快扫描速度的落地式高频四极杆-飞行时间串联质谱仪部分。仪器由 计算机控制、配有独立的ESI和APCI离子源。软件包括仪器调节、数据采集、数据处理、定量分析和报告。 3.2 仪器灵敏度要高,性能稳定,重复性好。 3.3 国际知名质谱公司(10年以上商品化四极杆-飞行时间质谱生 产经验)推出的主流产品,产品全部为原装进口,其性能达到或超过以下要求。 4. 质谱性能指标: 4.1 离子源:配有电喷雾离子源(ESI)、大气压化学电离源(APCI),

离子源切换方便、快速,清洗、维护方便。. 4.1.1 插拔式可互换ESI及APCI喷针,可实现ESI源及APCI源的快速更换。 4.1.2 大气压离子源采用锥孔结构,使用气帘气技术,而无毛细管(半径<1mm)设计装置,以同时保持高灵敏度和优异的抗污染能力。(要求提供接口结构图) 4.1.3 电喷雾离子源流速范围:在确保灵敏度不损失的前提下,实现高流速,无需分流,即可达到3ml/min;加快样品的分析速度同时,还可避免分流对样品造成损失。 4.1.4 大气压化学电离源流速范围:在确保灵敏度不损失的前提下,实现高流速,无需分流,即可达到3ml/min;加快样品的分析速度同时,还可避免分流对样品造成损失。 4.1.5 脱溶剂能力:离子源内采用辅助气体加热,气体最高温度可达700℃,确保最佳的离子化效率。(要求提供硬件结构图和软件界面截图作为证明文件) 4.1.6 离子源内废气排放:有主动废气排放装置,防止气体在密闭的离子源腔体中的回流,降低离子源的记忆效应和污染,降低机械泵的负荷延长机械泵泵油使用时间,维护试验环境,保障工作人员健康。 4.1.7 Q0聚焦技术:离子引入部分拥有高压离子聚焦技术,压力至少达7.5mtorr,以确保最佳的离子聚焦效果和离子传输效率,有效消除“记忆效应”和“交叉污染”。 4.1.8 校正方式:外置CDS辅助校正。

气质联用仪法备考复习

气质联用仪法(GC-MS)测定檀香籽精油挥发性成分 1 实验试剂与仪器 1.1 实验试剂 迷迭香精油 1.2 实验仪器 气相色谱质谱联用仪:安捷伦7890A/5975C-GC/MSD 2 实验方法与原理 2.1 仪器基本原理和应用范围 质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力;而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气-质联用仪。 气质联用仪是利用试样中各组份在气相和固定液两相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器(质谱仪),产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。 气质联用仪的工作过程是高纯载气由高压钢瓶中流出,经减压阀降压到所需压力后,通过净化干燥管使载气净化,再经稳压阀和转子流量计后,以稳定的压力、恒定的速度流经气化室与气化的样品混合,将样品气体带入色谱柱中进行分离。分离后的各组分随着载气先后流入检测器(质谱仪),然后载气放空。检测器将物质的浓度或质量的变化转变为一定的电信号,经放大后在记录仪上记录下来,就得到色谱流出曲线。根据色谱流出曲线上得到的每个峰的保留时间,可以进行定性分析,根据峰面积或峰高的大小,可以进行定量分析。 2.2 定性分析原理 将待测物质的谱图与谱库中的谱图对比定性。

相关文档
最新文档