生物反应动力学

生物反应动力学

?一、微生物生长动力学

?1、生长速率

γx=dX/dt=μX;(1)

式中,X为菌体浓度,g·L-1;μ为比生长速率,h-1;

【例题】以乙醇为唯一碳源进行产气气杆菌培养,细胞初始浓

度X

0=0.1kg/m3,培养至3.2h,细胞浓度为8.44kg/m3,如果

不考虑延迟期,比生长速率一定,求倍增时间t

d

。【解】

dX/dt=μX (1)

当t=0,X=X

0,积分(1)得lnX=μt+lnX

变形为ln(X/X

0)=μt (2)

倍增时间是指X/X

0=2所需时间,因此ln2=μt

d

(3)

由(2)和(3),可得到

t d=............= 0.5(h)

?练习

?下面为某微生物的生长数据,求此微生物的μ,1小时和2小时时候的生长速率。

?时间/h 0 0.5 1.0 1.5 2.0?细胞干重/(g/L) 0.1 0.15 0.23 0.34 0.51

2、生长的非结构模型

确定论的非结构模型,是一种理想状况,不考虑细胞内部结构,每个细胞之间无差别,细胞群体作为一种溶质;

?目前,常使用确定论的非结构模型是Monod方程

?μ=μmax[S]/(K s+[S]) (2)

?式中,μmax是最大比生长速率,[S]是某限制性营养物的浓度,K s为基质

利用常数,相当于μ=μ

max /2时的基质浓度.g·I-1,这是菌对基质的亲和力

的一种度量。

【例题】乙醇为唯一碳源进行面包酵母培养,获得如下数据:

[S]/(g/L) 0.4 0.33 0.18 0.10 0.07 0.049 0.038 0.020 0.014μ/(h-1) 0.161 0.169 0.169 0.149 0.133 0.135 0.112 0.0909 0.0735

求μ

max 和K

S

?3、基质消耗动力学

?以菌体得率为媒介,可确定基质的消耗速率与生长速率的关系。

基质的消耗速率γ

S

可表示为

?-γS=d[S]/dt=γX/Y X/S (3)

?基质的比消耗速率指基质的消耗速率除以菌体的量,以q S来表

示,即q

S

=γS/X (4)

?-q S=μ/Y X/S (5)

?【例题】葡萄糖为唯一碳源进行酵母培养,反应式为:

? 1.11C6H12O6+2.10O2→C3.92H6.5O1.94+2.75CO2+3.42H2O

?μ为0.42h-1,求(1)Y X/S,(2)基质的比消耗速率

?练习:

?在啤酒酵母的生长试验中,消耗了0.2kg葡萄糖0.0672kgO2,

生成0.0746kg酵母细胞和0.12lkg CO

2,请计算酵母得率Y

X/S

?μ由Monod 方程表示时,(5)式可变形为:

?-q S =(-q S ,max )[S]/(K S +[S]) (6)

?当以氮源、无机盐类、维生素等为基质时,由于这些成分只能组成菌体的构成成分,不能成为能源,Y X/S 近似一定,所以式(6)能够成立,但当基质既作为能源又是碳源时,就应考虑维持代谢所消耗的能量。此时

碳源总消耗速率=用于生长的消耗速率十用于维持代谢的消耗速率

?-γS =γX /Y G +mX (7)

?Y G 是无维持代谢时的最大细胞得率;m 为细胞的维持系数?两边同除以X ,则

?-q S =μ/Y G +m (8)

?式(8)作为连接q S 和μ的关联式,也可看成是含有两个参数的线性模型,q S 对μ的依赖关系可化为-q S =f(μ),由于μ是[S]的函数,因而q S 也是[S]的函数。

?氧是微生物细胞的成分之一,同时,也是一种基质,氧的消耗速率与生长速率有如下关系

?γO 2=dc/dt=γX /Y X/O (9)

?式中C 为溶解氧浓度。在好氧微生物发酵过程中对氧的衡算式为:?dc/dt=k L a(c ※-c)-qO 2X (10)

?式中:k L 是液膜传质系数;a 是气液比表面积;c ※是饱和溶解氧浓度;qO 2是氧的比消耗速率,常称为比呼吸速率或摄氧率,qO 2也可表示为:

?qO 2=μ/Y GO +m o (11)

?式中:Y GO 是相对氧的生长得率常数(以细胞/O 2计),g /mol ;m o 为氧维持常数,h -1。

?(11)式表明了氧的消耗与呼吸链反应生成ATP的量成比例关系。

当细胞内ATP的生成占中心地位,则

?(?ATP)S=Y A/O?[O2] (12)

?式中,Y A/O是消耗氧的ATP得率常数,mol/mol(以ATP/O2计)?在?t时间内微生物细胞生成的ATP用于维持代谢(?ATP)M和生

,其相关的能量衡算式为:

长代谢(?ATP)

G

?(?ATP)S=(?ATP)M+(?ATP)G (13)

?其中(?ATP)M=m A X?t (14)

?式中m A是ATP的维持常数,mol/(g·h)

?(?ATP)G =?X/ Y ATP(15)

?式中,Y ATP为ATP生长得率常数,对于能量偶联型生长来讲,其为最大生长得率。

?相对氧消耗的细胞得率Y X/O的定义式为:

?Y X/O=?X/?[O2]=μ/qO2 (16)

?基于(16)和(11)可变形为

?1/ Y X/O=m O/μ+1/Y GO (17)

?【例题】乙醇为碳源,进行酵母好养培养,结果如下:

?μ/h-10.02. 0.055 0.095 0.115 0.119?qO2/[g/(g.h) 0.0278 0.0589 0.0909 0.111 0.115?由已知结果,利用式(11)求Y GO和m0

?4、代谢产物的生成动力学

?用微生物生产的代谢产物种类很多,并且微生物细胞内的生物合成途径与代谢调节机制各有特色,因此代谢产物的生成动力学很难用统一的式子表达。与生长速率和基质消耗速率相同,

当以体积为基准时,称为代谢产物的生成速率,记为γ

P ;当以

单位质量为基准时,称为产物的比生成速率,记为q

P ,相关式

为:

?二、分批发酵动力学

?1、反应速率

?(1)绝对速率(又简称为速率)

2、比速率该速率是以单位浓度细胞(或单位质量细胞)为基准而表示的各个组分变化速率。

?2、生长动力学

?2、单级连续培养

所以单级连续培养的稀释率不可大于临界稀释率Dc。如果D>Dc,由于细胞的比生长速率低于稀释率,细胞不断地从反应器中被冲走,最终被洗出,培

养液中的细胞浓度降到0,而限制性基质浓度升为S

3、细胞回流时的单级连续培养

将单级连续培养流出液中的细胞加以浓缩,送回生物反应器中,就相当于不断对生物反应器接种,有利于提高连续培养的稀释率。

活性污泥法基本原理

活性污泥法的基本原理 一.基本概念和工艺流程 (一)基本概念 1.活性污泥法:以活性污泥为主体的污水生物处理。 2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体 (二)工艺原理 1.曝气池:作用:降解有机物(BOD5) 2.二沉池:作用:泥水分离。 3.曝气装置:作用于①充氧化②搅拌混合 4.回流装置:作用:接种污泥 5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气池内的微生物量平衡。 混合液:污水回流污泥和空气相互混合而形成的液体。 二.活性污泥形态和活性污泥微生物 (一)形态: 1、外观形态:颜色黄褐色,絮绒状 2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。③含水率>99%,C<1%固体物质。④比重1.002-1.006,比水略大,可以泥水分离。 3.组成:

有机物:{具有代谢功能,活性的微生物群体Ma {微生物内源代谢,自身氧化残留物Me {源污水挟入的难生物降解惰性有机物Mi 无机物:全部有原污水挟入Mii (二)活性污泥微生物及其在活性污泥反应中作用 1.细菌:占大多数,生殖速率高,世代时间性20-30分钟; 2.真菌:丝状菌→污泥膨胀。 3.原生动物 鞭毛虫,肉足虫和纤毛虫。 作用:捕食游离细菌,使水进一步净化。 活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。 ☆原生动物作为活性污泥处理系统的指示性生物。 4.后生动物:(主要指轮虫) 在活性污泥处理系统中很少出现。 作用:吞食原生动物,使水进一步净化。 存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。 (三)活性污泥微生物的增殖和活性污泥增长 四个阶段: 1.适应期(延迟期,调整期)

第二章反应动力学基础解析

2 反应动力学基础 2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。在等温常压 解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。 切线的斜率为 0.760.125/.6.1 α-==-mol l h 由(2.6)式可知反应物的水解速率为 0.125/.-==dC A r mol l h A dt 2.2在一管式反应器中常压300℃等温下进行甲烷化反应: 2423+→+CO H CH H O 催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,改变进口原料气流量Q 0解:是一个流动反应器,其反应速率式可用(2.7)式来表示 00000(1)(1)-= =-=-=-A A R A A A A A A A A dF r dV F F X Q C X dF Q C dX 故反应速率可表示为: 000 0(/)==A A A A A R R dX dX r Q C C dV d V Q 用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。 0.650.04 1.79 0.34 α-== 故CO 的转化速率为 40030.10130.03 6.3810/8.31410573--? ===???A A P C mol l RT

430 0 6.3810 1.79 1.1410/.min (/)--==??=?A A A R dX r C mol l d V Q 2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为: 20.850.4 /-=?w CO CO r k y y kmol kg h 式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算: (1) 以反应体积为基准的速率常数k V 。 (2) 以反应相界面积为基准的速率常数k g 。 (3) 以分压表示反应物系组成时的速率常数k g 。 (4) 以摩尔浓度表示反应物系组成时的速率常数k C 。 解:利用(2.10)式及(2.28)式可求得问题的解。注意题中所给比表面的单位换算成m 2/m 3。 33230.450.45 33 0.45(1) 1.13100.053560.46/.6(2) 1.7810/.3010 11(3)()()0.05350.15080.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==??=-= = =???==?=??==?=v b w b b g w w v b n p w n c w k k kmol m h k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h 2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为: 1.50.5 0.8/min =?A A B r C C mol l 若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的 转化率。 解:由题中条件知是个等容反应过程,且A 和B 的初始浓度均相等,即为1.5mol/l ,故可把反应速率式简化,得 1.50.5222 00.80.80.8(1)===-A A B A A A r C C C C X 由(2.6)式可知 00 (1)?? ???? --==-=A A A A A A d C X dC dX r C dt dt dt 代入速率方程式 22 00.8(1)=-A A A A dX C C X dt 化简整理得 00.8(1)=-A A A dX C dt X 积分得 00.81= -A A A X C t X 解得X A =82.76%。

第三章 微生物反应动力学习题

第三章微生物反应动力学习题 1. 微生物反应的特点,其与化学反应的主要区别有那些? 2.简要回答微生物反应与酶促反应的最主要区别? 3. 进行微生物反应过程的物量衡算有何意义,请举例说明。 4.Monod 方程建立的几点假设是什么?Monod 方程与米氏方程主要区别是什么? 5.举例简要说明何为微生物反应的结构模型? 6. 以葡萄糖为单一碳源,进行某种微生物好氧或厌氧培养。已知此菌的比生长速率μ、葡萄糖的比消耗速率γ、细胞、葡萄糖、二氧化碳和各产物中的碳元素含量α1、α2、α3 和αi,利用这6 个常数给出此菌的与生长相关的物料衡算式。 7. 葡萄糖为碳源的复合培养基进行干酪乳杆菌的厌氧培养,1mol葡萄糖可生成乳酸或乙酸或乙醇或甲酸为0.05mol、1.05mol、0.94mol和1.76mol,试讨论各分解代谢的碳元素的恒算及生成ATP的摩尔数。 8. 荧光假单胞菌(Pseudomonas fluorescens)好氧培养中,已知:Y x/s=180g/mol,Y x/o=30.4g/mol,每消耗1mol葡萄糖可生成2molATP,氧化磷酸化的P:O比为1,求Y ATP? 9. 在啤酒酵母的生长试验中,消耗了0.2kg 葡萄糖和0.0672kgO2,生成0.0746kg 酵母菌和 0.121kgCO2,请写出该反应的质量平衡式,计算酵母得率Y X/S 和呼吸商RQ。 10. 微生物物繁殖过程中分裂一次生成两个子细胞,也有4 分裂或8 分裂的,试证明当n 分 裂时,有如下式子:,式中: 为倍增时间, 为世代时间。 11.分别采用含有蛋白胨和牛肉膏的复合培养基、含有20 余种氨基酸的合成培养基和基本培养基进行运动发酵单胞菌厌氧培养,碳源为葡萄糖,获得如下表所示结果。已知菌体的含碳量(以碳源/细胞计)为0.45g/g,求采用不同培养基时的Y KJ。 12. 葡萄糖为碳源进行酿酒酵母培养,呼吸商为1.04,氨为氮源。消耗100mol 葡萄糖和48mol氨,生成细胞48mol、二氧化碳312mol 和水432mol。求氧的消耗量和酵母细胞的化学组成。 13. 以葡萄糖为唯一碳源的最低培养基进行Candida utilis 培养,Y x/s=91.8g-细胞/mol 葡萄糖,求Y kJ。已知葡萄糖的燃烧热为2830KJ/mol。 15. 以葡萄糖为唯一碳源的基本培养基厌氧培养产气气杆菌, Yx/s= 26.1 g 细胞/mol 葡萄糖,试求分解代谢消耗葡萄糖的量占总消耗量的分率? 已知每克细胞含0.45g 碳,每mol 葡萄糖含72g 碳,且△S=△S 合成 +△S分解。 16.一个新发现的微生物在每一次细胞分裂时,可产生3个新细胞,由下列生长数据求:①此微生物的比生长速率μ(h-1);②两个细胞分裂的平均间隔时间;③此微生物细胞的平均世代时间。 时间/h 0 0.5 1.0 1.5 2.0 细胞干重/(g/L) 0.10 0.15 0.23 0.34 0.51

活性污泥法的反应动力学原理及其应用

活性污泥法的反应动力学原理及其应用 活性污泥法反应动力学可以定量或半定量地揭示系统内有机物降解、污泥增长、耗氧等作用与各项设计参数、运行参数以及环境因素之间的关系。 它主要包括:① 基质降解的动力学,涉及基质降解与基质浓度、生物量等因素的关系;② 微生物增长动力学,涉及微生物增长与基质浓度、生物量、增长常数等因素的关系;③ 还研究底物降解与生物量增长、底物降解与需氧、营养要求等的关系。 在建立活性污泥法反应动力学模型时,有以下假设:① 除特别说明外,都认为反应器内物料是完全混合的,对于推流式曝气池系统,则是在此基础上加以修正;② 活性污泥系统的运行条件绝对稳定;③ 二次沉淀池内无微生物活动,也无污泥累积并且水与固体分离良好;④ 进水基质均为溶解性的,并且浓度不变,也不含微生物;⑤ 系统中不含有毒物质和抑制物质。 一、活性污泥反应动力学的基础——米—门公式与莫诺德模式 1、米—门公式 Michaelis—Menton 提出酶的“中间产物”学说,通过理论推导和实验验证,提出了含单一基质单一反应的酶促反应动力学公式,即米—门公式: S K S v m += m ax ν 式中:v ——酶促反应中产物生成的反应速率; m ax v ——产物生成的最高速率; m K ——米氏常数(又称饱和常数,半速常数); S ——基质浓度。

中间产物学说:P E ES S E +??+ 米门公式的图示: 2、莫诺德模式 ① 莫诺德模式的基本形式: Monod 于1942年和1950年曾两次进行了单一基质的纯菌种培养实验,也发现了与上述酶促反应类似的规律,进而提出了与米门公式想类似的表达微生物比增殖速率与基质浓度之间的动力学公式,即莫诺德模式: S K S s +?= m ax μ μ 式中: ( )x dt dx /=μ——微生物的比增殖速率,d kgVSS kgVSS ?/; m ax μ——基质达到饱和浓度时,微生物的最大比增殖速率, S ——反应器内的基质浓度,mg/l ; s K ——饱和常数,也是半速常数。 随后发现,用由混合微生物群体组成的活性污泥对多种基质进行微生物增殖实验,也取得了符合这种关系的结果。 可以假定:在微生物比增殖速率与底物的比降解速率之间存在下列比例关系: v max v=v max O K m

化学反应动力学基础-学生整理版

5202 反应 2O 3→ 3O 2的速率方程为 - d[O 3]/d t = k [O 3]2[O 2]-1 , 或者 d[O 2]/d t = k '[O 3]2[O 2]-1,则速率常数 k 和 k ' 的关系是: ( ) (A) 2k = 3k ' (B) k = k ' (C) 3k = 2k ' (D) -k /2 = k '/3 5203 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时 并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( ) (A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 5204 对于反应 2NO 2= 2NO + O 2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( ) (A) -2d[NO 2]/d t = 2d[NO]/d t = d[O 2]/d t (B) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = d ξ /d t (C) - d[NO 2]/d t = d[NO]/d t = d[O 2]/d t (D) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = 1/V d ξ /d t 5207 气相基元反应 2A k 1 B 在一恒容的容器中进行,p 0为 A 的初始压力, p t 为时间 t 时反应 体系总压,此反应速率方程 d p t / d t = 。 - k (2p t - p 0)2 5208 有一反应 mA → nB 是一简单反应,其动力学方程为 -d c A / d t = kc A m , c A 的单位为 mol ·dm -3, 时间单位为 s ,则: (1) k 的单位为 ___________ mol 1- m ·dm 3( m -1)·s -1 (2) 以d c B /d t 表达的反应速率方程和题中给的速率方程关系为 B A A A 1d 1d 'd d m m c c k c k c n t m t m =-== 5209 反应 2N 2O 5─→ 4NO 2+ O 2 在328 K 时,O 2(g)的生成速率为0.75×10-4 mol ·dm -3·s -1。 如 其间任一中间物浓度极低, 难以测出, 则该反应的总包反应速率为 _______________mol ·dm -3·s -1, N 2O 5 之消耗速率为__________ mol ·dm -3·s -1,NO 2之生成速率为_______________mol ·dm -3·s -1 。0.75×10-4, 1.50×10-4, 3.00×10-4 5210 O 3分解反应为 2O 3─→3O 2 ,在一定温度下, 2.0 dm 3容器中反应。实验测出O 3每秒消耗1.50× 10-2 mol, 则反应速率为_______________mol ·dm -3·s -1氧的生成速率为_______________mol ·dm -3·s -1, d ξ /d t 为_______________ 0.75×10-2, 2.25×10-2, 1.50×10-2.。 5211 2A +B =2C 已知反应某一瞬间, r A =12.72 mol ·dm -3·h -1, 则 r B = , r C =_____________r B =6.36 mol ·dm -3·h -1, r C =12.72mol ·dm -3·h -1 5212分别用反应物和生成物表示反应A +3B =2C 的反应速率, 并写出它们间关系为: 。 r A =13r B =12 r C 5222 有关基元反应的描述在下列诸说法中哪一个是不正确的: ( ) (A) 基元反应的级数一定是整数 (B) 基元反应是“态-态”反应的统计平均结果 (C) 基元反应进行时无中间产物,一步完成 (D) 基元反应不一定符合质量作用定律 5223 400 K 时,某气相反应的速率常数k p = 10-3(kPa)-1·s -1,如速率常数用 k C 表示,则 k C 应为: (A) 3.326 (mol ·dm -3)-1·s -1 k C = k p (RT ) (B) 3.0×10-4 (mol ·dm -3)-1·s -1 (C) 3326 (mol ·dm -3)-1·s -1 (D) 3.0×10-7 (mol ·dm -3)-1·s -1 5224 如果反应 2A + B = 2D 的速率可表示为:

活性污泥反应动力学

13.3 活性污泥反应动力学及应用 13.3.1 概述 活性污泥反应动力学能够通过数学式定量地或半定量地揭示活性污泥系统内有机物降解、污泥增长、耗氧等作用与各项设计参数、运行参数以及环境因素之间的关系。 在活性污泥法系统中主要考虑有机物降解速度、微生物增长速度和溶解氧利用速度。 目前,动力学研究主要内容包括: (1)有机底物降解速度与有机物浓度、活性污泥微生物量之间的关系。 (2)活性污泥微生物的增殖速度与有机底物浓度、微生物量之间的关系。 (3)微生物的耗氧速率与有机物降解、微生物量之间的关系。 13.3.2 反应动力学的理论基础 (1)有机物降解与活性污泥微生物增殖 曝气池是一个完整的反应体系,池内微生物增殖是微生物合成反应和内援代谢两项胜利活动的综合结果,即: 微生物增殖速率= 降解有机物合成的生物量速率—内源代谢速率 式中,Y——产率系数,即微生物降解1kgBOD所合成的MLSS量,kgMLSS/kgBOD; K d——自身氧化率,即微生物内源代谢的自身减少率; 对于完全混合式活性污泥系统,曝气池中的微生物量物料平衡关系式如下: 每日池内微生物污泥增殖量=每日生成的微生物量—每日自身氧化掉的量 ∴ 式中,S0——原水BOD浓度; S e——处理出水BOD浓度; Q——日处理水量,m3/d; V——曝气池容积,m3; X——曝气池中污泥平均浓度,mg/L。 两边除以VX ,式子变为 而 q称为BOD比降解速率,其量纲与污泥负荷相同,单位一般用kgBOD/(kgMLSS?d)表示。 即, θc为泥龄。可见高去除负荷下,污泥增长很快,导致排泥加快,污泥龄就短,生物向不够丰富,因此原 水的可生化性要好。

化学反应动力学基础(一)-学生

5202 反应 2O 3→ 3O 2的速率方程为 - d[O 3]/d t = k [O 3]2[O 2]-1 , 或者 d[O 2]/d t = k '[O 3]2[O 2]-1,则速率常数 k 和 k ' 的关系是: ( ) (A) 2k = 3k ' (B) k = k ' (C) 3k = 2k ' (D) -k /2 = k '/3 5203 气相反应 A + 2B ─→ 2C ,A 和 B 的初始压力分别为 p A 和 p B ,反应开始时 并无 C ,若 p 为体系的总压力,当时间为 t 时,A 的分压为: ( ) (A) p A - p B (B) p - 2p A (C) p - p B (D) 2(p - p A ) - p B 5204 对于反应 2NO 2= 2NO + O 2,当选用不同的反应物和产物来表示反应速率时,其相互关系为:( ) (A) -2d[NO 2]/d t = 2d[NO]/d t = d[O 2]/d t (B) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = d ξ /d t (C) - d[NO 2]/d t = d[NO]/d t = d[O 2]/d t (D) - d[NO 2]/2d t = d[NO]/2d t = d[O 2]/d t = 1/V d ξ /d t 5207 气相基元反应 2A k 1 B 在一恒容的容器中进行,p 0为 A 的初始压力, p t 为时间 t 时反应 体系总压,此反应速率方程 d p t / d t = 。 - k (2p t - p 0)2 5208 有一反应 mA → nB 是一简单反应,其动力学方程为 -d c A / d t = kc A m , c A 的单位为 mol ·dm -3, 时间单位为 s ,则: (1) k 的单位为 ___________ mol 1- m ·dm 3( m -1)·s -1 (2) 以d c B /d t 表达的反应速率方程和题中给的速率方程关系为 B A A A 1d 1d 'd d m m c c k c k c n t m t m =-== 5209 反应 2N 2O 5─→ 4NO 2+ O 2 在328 K 时,O 2(g)的生成速率为0.75×10-4 mol ·dm -3·s -1。 如其间任一中间物浓度极低, 难以测出, 则该反应的总包反应速率为 _______________mol ·dm -3·s -1, N 2O 5之消耗速率为__________ mol ·dm -3·s -1,NO 2之生成速率为_______________mol ·dm -3·s -1 。0.75×10-4, 1.50×10-4, 3.00×10-4 5210 O 3分解反应为 2O 3─→3O 2 ,在一定温度下, 2.0 dm 3容器中反应。实验测出O 3每秒消耗1.50×10-2 mol, 则反应速率为_______________mol ·dm -3·s -1氧的生成速率为_______________mol ·dm -3·s -1, d ξ /d t 为_______________ 0.75×10-2, 2.25×10-2, 1.50×10-2.。 5211 2A +B =2C 已知反应某一瞬间, r A =12.72 mol ·dm -3·h -1, 则 r B = , r C =_____________r B =6.36 mol ·dm -3·h -1, r C =12.72mol ·dm -3·h -1 5212分别用反应物和生成物表示反应A +3B =2C 的反应速率, 并写出它们间关系为: 。r A = 13r B =1 2 r C 5222 有关基元反应的描述在下列诸说法中哪一个是不正确的: ( ) (A) 基元反应的级数一定是整数 (B) 基元反应是“态-态”反应的统计平均结果 (C) 基元反应进行时无中间产物,一步完成 (D) 基元反应不一定符合质量作用定律 5223 400 K 时,某气相反应的速率常数k p = 10-3(kPa)-1·s -1,如速率常数用 k C 表示,则 k C 应为: (A) 3.326 (mol ·dm -3)-1·s -1 k C = k p (RT ) (B) 3.0×10-4 (mol ·dm -3)-1·s -1 (C) 3326 (mol ·dm -3)-1·s -1 (D) 3.0×10-7 (mol ·dm -3)-1·s -1 5224 如果反应 2A + B = 2D 的速率可表示为:

第三章 微生物反应动力学习题答案

第三章 微生物反应动力学习题答案 1. 微生物反应的特点,其与化学反应的主要区别有那些? 答:微生物反应与化学反应相比,具有以下特点: 1)微生物反应属于生化反应,通常是在常温常压下进行;2)反应原料来源相对丰富;3)易于生产复杂的高分子化合物和光学活性物质;4)通过菌种改良,可大大提高设备的生产能力;5)副产物多,提取有一定难度;6)生产微生物受外界环境影响比较大;7)开发成本较大;8)废水BOD较大 2.简要回答微生物反应与酶促反应的最主要区别? 答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。此外,二者还有以下区别: (1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。 (2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。 (3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。 微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。 (4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。 4. 答:Monod 方程建立的基本假设:微生物生长中,生长培养基中只有一种物质的浓度(其他组分过量)会影响其生长速率,这种物质被称为限制性基质,并且认为微生物为均衡生长且为简单的单一反应。Monod 方程与米氏方程的主要区别如下表所示: Monod 方程:S K S S += max μμ 米氏方程:S K S r r m += max 方程中各项含义: μ:生长比速 μmax :最大生长比速 S: 单一限制性基质浓度 K S : 半饱和常数 方程中各项含义: r:反应速率 r max :最大反应速率 S:底物浓度 K m :米氏常数 微生物生长动力学方程 酶促反应动力学方程

第六章生化反应动力学剖析

第六章 生物反应动力学基础(张婷婷) 请对发现的文字错误及格式等进行修订,同时对我蓝色标出的要求进行补充完善。。注意此章节中公式编辑器所编辑的公式均可正常显示并编辑,所以不用更改为word 格式。辛苦了,谢谢!孔秀琴 一、底物降解速率 底物降解速率即每天每公斤活性污泥能降解多少公斤的BOD 5,其单位为: d kgVSS kgBOD ?/5,是反映生物反应器处理能力的重要参数。生物反应系统中,反应器 容积等重要参数是根据系统的底物降解速率(污泥负荷)来确定的。底物降解速率的函数关系式如下: S k S v Xdt dS s +=max (6-1) 式中: Xdt dS —比降解速率,单位 d -1 m a x v —最大比底物降解速率,即单位微生物量利用底物的最大速率 K S —饱和常数 X —微生物浓度 S —底物浓度 环境工程中,一般S 较小,当S K S ≤≤时,分母略去S ,并令 2max k k s =υ,,即可得下式: S k Xdt dS 2= (6-2) 上式积分可得:错误!未找到引用源。 t X t S S ??-=2k 0e (6-3) 那么已降解的底物含量为: )(t X k t S S S S ??-?=-=2e -100 (6-4) 式中:?S —降解的有机底物浓度

0S —初始的有机底物浓度 t S —t 时刻剩余的有机底物浓度 上式中,因一般生物系统活性污泥浓度x 为定值,所以可令12k X k =,同时把已降解的底物浓度用BOD t 浓度代替,初始底物浓度用BOD U 代替,,即得下式: )1(1t k u t e BOD BOD ?-= (6-5) 即得5日生化需氧量和总需氧量之间的换算关系式: (6-6) 因C o 20时,23.01 =k ,则可得到: u BOD BOD 68.05= 环境工程中,用污泥负荷来表示有机物(底物)的降解速率,是特定工艺处理能力的度量参数。在工程设计中,在确定生物反应器的容积及排泥量等关键数据时,污泥负荷是重要的设计参数,其值的选取直接关系到整个工程的造价。根据工程参数所确定的污泥负荷定义式如下: Xt S S XV S S Q N e e ) ()(00-=-= (6-7) 式中:N —污泥负荷,单位kg/kgVSS ﹒d V —反应器的有效容积,单位m 3 污泥负荷即底物比降解速率,其函数关系式也可写作 S k S k S N s 2max =+=υ (6-8) 二、微生物增殖 有机底物经过微生物降解作用后,其中一部分经氧化产能代谢为H 20和CO 2、小分子的有机物等,一部分则通过微生物合成作用转变为新的细胞物质,表现为微生物的增殖,同时微生物还通过内源呼吸作用而不断衰亡,表现为污泥的衰减。所以底物降解和微生物增殖之间存在着必然联系。生物反应系统需要根据微生物的增殖速率来确定泥龄、进而确定剩余污泥排放量等重要数据,所以其相互之间的关系可用下式表示: d K Xdt dS Y Xdt dX -= (6-9)

活性污泥法动力学模型的研究进展

活性污泥法动力学模型的研究进展 [摘要]从模型的机理、功能等方面对活性污泥法动力学的微生物模型、传统静态模型和动态模型进行简要的介绍,并分析比较了各自的优缺点。 [关键词]活性污泥法模型ASM 活性污泥法是废水生物处理中应用最广泛的方法之一。起初对于活性污泥过程的设计和运行管理主要依靠经验数据,自20世纪50年代后期,Eckenfelder 等人基于反应器理论和生物化学理论提出活性污泥法静态模型以来,动态模型研究不断发展,已成为国际废水生物处理领域的研究热点。但我国在该领域的研究尚处于起步阶段,与国际先进水平还存在很大差距。 1微生物模型 1942年,Monod发现均衡生长的细菌的生长曲线与活性酶催化的生化反应曲线类似,1949年发表了在静态反应器中经过系统研究得出的Monod模型[1]:Monod模型实质上是一个经验式,是在单一微生物对单一基质、微生物处 于平衡生长状态且无毒性存在的条件下得出的结论。Monod模型的提出使废水生物处理的设计和运行更加理论化和系统化,提高了人们对废水生物处理机理的认识,进一步促进了生物处理设计理论的发展。由于微生物模型描述的是微生物生长和限制微生物生长的基质浓度之间的关系,它是活性污泥法数学模型的理论基础。微生物模型的不断发展和计算机技术的普及同时也推动了活性污泥数学模型研究的日趋深入。 2传统静态模型 传统静态模型主要有20世纪50-70年代推出的Eckenfelder、Mckinney和Lawrence-McCarty模型,这些模型所采用的是生长-衰减机理[2]。 2.1Eckenfelder模型 该模型提出当微生物处于生长率上升阶段时,基质浓度高,微生物生长速度与基质浓度无关,呈零级反应;当微生物处于生长率下降阶段时,微生物生长主要受食料不足的限制,微生物的增长与基质的降解遵循一级反应关系;当微生物处于内源代谢阶段时,微生物进行自身氧化。 2.2McKinney模型 该模型忽略了微生物浓度对基质去除速度的影响,认为在活性污泥反应器内,微生物浓度与底物浓度相比,属低基质浓度,微生物处于生长率下降阶段,代谢过程为基质浓度所控制,遵循一级反应动力学。并首次提出活性物质的概念,

【免费下载】第四章微生物反应动力学

习题与答案2.简要回答微生物反应与酶促反应的最主要区别?答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。此外,二者还有以下区别: (1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。(2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。(3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。 (4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。4.Monod 方程建立的几点假设是什么?Monod 方程与米氏方程主要区别是什么?答:Monod 方程建立的基本假设:微生物生长中,生长培养基中只有一种物质的浓度(其他组分过量)会影响其生长速率,这种物质被称为限制性基质,并且认为微生物为均衡生长且为简单的单一反应。Monod 方程与米氏方程的主要区别如下表所示: Monod 方程与米氏方程的区别Monod 方程:S K S S +=max μμ米氏方程:S K S r r m +=max 经验方程理论推导的机理方程方程中各项含义:μ:生长比速(h -1)μmax :最大生长比速(h -1)S: 单一限制性底物浓度(mol/L) K S :半饱和常数(mol/L)方程中各项含义:r :反应速率(mol/L.h)r max :最大反应速率(mol/L.h)S :底物浓度(mol/L)K m :米氏常数(mol/L)适用于单一限制性基质、无抑制的微生物反应。适用于单底物、无抑制的酶促反应。 5.举例简要说明何为微生物反应的结构模型?而且高中资中资料料试卷置时

微生物反应动力学

4 微生物反应动力学 教学基本内容: 微生物反应的特点;微生物反应的质量衡算,包括碳素衡算、碳源衡算、氧衡算;微生物反应的能量衡算。微生物反应动力学,包括生长动力学、基质消耗动力学和产物生成动力学 4.1 微生物反应的特点 4.2 微生物反应过程的质量与能量衡算 4.2.1 碳素衡算 4.2.2 碳源衡算 4.2.3 氧衡算 4.2.3 能量衡算 4.3 微生物反应动力学 4.3.1 生长动力学 4.3.2 基质消耗动力学 4.3.3 产物生成动力学 授课重点: 1. 微生物反应与酶促反应的比较。 2. 微生物反应式及微生物反应平衡式的概念。 3. 菌体实验化学式的概念与测定方法。 4. 微生物反应中的动力学变量。 5. 微生物反应的得率系数的概念。 6. 微生物反应的维持常数的概念。 7. 碳素衡算。 8. 碳源衡算。 9. 氧衡算。 10. 能量衡算。 11. 莫诺方程。 12. 产物的Gaden模型。 难点: 1. 微生物反应涉及到的动力学变量和参数远多于酶促反应。 2.微生物反应过程中碳源衡算、氧衡算和能量衡算间的关系。

3. 自由能消耗对菌体得率Y KJ的计算。 本章主要教学要求: 1. 理解微生物反应与酶促反应的区别。 2. 掌握菌体实验化学式的测定方法。 3. 掌握微生物反应式中系数的确定方法。 4. 掌握微生物反应中动力学变量及参数的数学定义。 5. 理解碳素衡算式。 6. 理解碳源衡算式。 7 理解氧衡算式。 8. 理解碳源衡算与氧衡算、能量衡算之间的内在联系。 9. 掌握有效电子转移的概念,掌握Y KJ的计算方法。 10. 了解生长模型的分类。 11. 理解莫诺方程与米氏方程的区别。掌握莫诺方程中动力学参数的测定方法。 12. 理解产物的Gaden模型。

生物反应动力学

生物反应动力学

?一、微生物生长动力学 ?1、生长速率 γx=dX/dt=μX;(1) 式中,X为菌体浓度,g·L-1;μ为比生长速率,h-1; 【例题】以乙醇为唯一碳源进行产气气杆菌培养,细胞初始浓 度X 0=0.1kg/m3,培养至3.2h,细胞浓度为8.44kg/m3,如果 不考虑延迟期,比生长速率一定,求倍增时间t d 。【解】 dX/dt=μX (1) 当t=0,X=X 0,积分(1)得lnX=μt+lnX 变形为ln(X/X 0)=μt (2) 倍增时间是指X/X 0=2所需时间,因此ln2=μt d (3) 由(2)和(3),可得到 t d=............= 0.5(h)

?练习 ?下面为某微生物的生长数据,求此微生物的μ,1小时和2小时时候的生长速率。 ?时间/h 0 0.5 1.0 1.5 2.0?细胞干重/(g/L) 0.1 0.15 0.23 0.34 0.51

2、生长的非结构模型 确定论的非结构模型,是一种理想状况,不考虑细胞内部结构,每个细胞之间无差别,细胞群体作为一种溶质; ?目前,常使用确定论的非结构模型是Monod方程 ?μ=μmax[S]/(K s+[S]) (2) ?式中,μmax是最大比生长速率,[S]是某限制性营养物的浓度,K s为基质 利用常数,相当于μ=μ max /2时的基质浓度.g·I-1,这是菌对基质的亲和力 的一种度量。 【例题】乙醇为唯一碳源进行面包酵母培养,获得如下数据: [S]/(g/L) 0.4 0.33 0.18 0.10 0.07 0.049 0.038 0.020 0.014μ/(h-1) 0.161 0.169 0.169 0.149 0.133 0.135 0.112 0.0909 0.0735 求μ max 和K S 。

第四章微生物反应动力学

习题与答案 2.简要回答微生物反应与酶促反应的最主要区别? 答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。此外,二者还有以下区别: (1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。 (2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。 (3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。 (4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。 4.Monod 方程建立的几点假设是什么?Monod 方程与米氏方程主要区别是什么? 答:Monod 方程建立的基本假设:微生物生长中,生长培养基中只有一种物质的浓度(其他组分过量)会影响其生长速率,这种物质被称为限制性基质,并且认为微生物为均衡生长且为简单的单一反应。Monod 方程与米氏方程的主要区别如下表所示: Monod 方程与米氏方程的区别 Monod 方程:S K S S +=max μμ 米氏方程:S K S r r m += max 经验方程 理论推导的机理方程 方程中各项含义: μ:生长比速(h -1) μmax :最大生长比速(h -1 ) S: 单一限制性底物浓度(mol/L) K S :半饱和常数(mol/L) 方程中各项含义: r :反应速率(mol/L.h) r max :最大反应速率(mol/L.h) S :底物浓度(mol/L) K m :米氏常数(mol/L) 适用于单一限制性基质、无抑制 的微生物反应。 适用于单底物、无抑制的酶促反应。 5.举例简要说明何为微生物反应的结构模型? 答:由于细胞的组成是复结的,当微生物细胞内部所含有的蛋白质、脂肪、碳水化合物、

最新2_反应动力学基础汇总

2_反应动力学基础

2 反应动力学基础 2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。在等温常 解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。 切线的斜率为 0.760.125/.6.1 α-==-mol l h 由(2.6)式可知反应物的水解速率为 0.125/.-==dC A r mol l h A dt 2.2在一管式反应器中常压300℃等温下进行甲烷化反应: 2423+→+CO H CH H O 催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,改变进口原料气流量Q 0进行实验,测得出口CO 的转化率为: 试求当进口原料气体流量为50ml/min 时CO 的转化速率。 解:是一个流动反应器,其反应速率式可用(2.7)式来表示 00000(1)(1)-= =-=-=-A A R A A A A A A A A dF r dV F F X Q C X dF Q C dX 故反应速率可表示为: 00 0(/)==A A A A A R R dX dX r Q C C dV d V Q 用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0) 值α。 0.650.04 1.79 0.34 α-== 故CO 的转化速率为

40030.10130.03 6.3810/8.31410573--? = ==???A A P C mol l RT 4300 6.3810 1.79 1.1410/.min (/)--==??=?A A A R dX r C mol l d V Q 2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为: 20.850.4 /-=?w CO CO r k y y kmol kg h 式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算: (1) (1) 以反应体积为基准的速率常数k V 。 (2) (2) 以反应相界面积为基准的速率常数k g 。 (3) (3) 以分压表示反应物系组成时的速率常数k g 。 (4) (4) 以摩尔浓度表示反应物系组成时的速率常数k C 。 解:利用(2.10)式及(2.28)式可求得问题的解。注意题中所给比表面的单位换算成m 2/m 3。 33230.450.45 33 0.45(1) 1.13100.053560.46/.6(2) 1.7810/.3010 11(3)()()0.05350.1508 0.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==??=-= = =???==?=??==?=v b w b b g w w v b n p w n c w k k kmol m h k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h 2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为: 1.50.5 0.8/min =?A A B r C C mol l 若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的 转化率。 解:由题中条件知是个等容反应过程,且A 和B 的初始浓度均相等,即为1.5mol/l ,故可把反应速率式简化,得 1.50.5222 00.80.80.8(1)===-A A B A A A r C C C C X 由(2.6)式可知 00 (1)??????--==-=A A A A A A d C X dC dX r C dt dt dt 代入速率方程式 22 000.8(1)=-A A A A dX C C X dt 化简整理得 00.8(1)=-A A A dX C dt X

第四章微生物反应动力学

习题与答案 2.简要回答微生物反应与酶促反应的最主要区别? 答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。此外,二者还有以下区别: (1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。(2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。 (3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。 (4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。 4.Monod方程建立的几点假设是什么?Monod方程与米氏方程主要区别是什么? 答:Monod方程建立的基本假设:微生物生长中,生长培养基中只有一种物质 的浓度(其他组分过量)会影响其生长速率,这种物质被称为限制性基质,并且认为微生物为均衡生长且为简单的单一反应。Monod方程与米氏方程的主要区 别如下表所示: Monod方程与米氏方程的区别 ?SrS maxmax???r米氏方程:Monod方程:K?SK?S mS 经验方程理论推导的机理方程 方程中各项含义:方程中各项含义: (mol/L.h) :反应速率r-1(hμ:生长比速 )(mol/L.h) :最大反应速率r max-1μ:最大生长比速(h) max(mol/L) S:底物浓度S: 单一限制性底物浓度(mol/L) (mol/L) K:米氏常数m K:半饱和常数(mol/L) S 适用于单一限制性基质、无抑制适用于单底物、无抑制的酶促反应。的微生物反应。 5.举例简要说明何为微生物反应的结构模型?

相关文档
最新文档