地球化学复习答案

地球化学复习答案
地球化学复习答案

1、地球化学的研究思路和方法:

研究思路:见微而知著,即通过观察原子之微,以求认识地球和地质过程之著。

研究方法:一、野外阶段:1)宏观地质调研。明确研究目标和任务,制定计划;2)运用地球化学思维观察认识地质现象;3)采集各种类型的地球化学样品。二、室内阶段:1)“量”的研究,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的分配量。元素量的研究是地球化学的基础和起点,为此,对分析方法的研究的要求:首先是准确;其次是高灵敏度;第三是快速、成本低;2)“质”的研究,即元素的结合形式和赋存状态的鉴定和研究;3)地球化学作用的物理化学条件的测定和计算;4)归纳、讨论:针对目标和任务进行归纳、结合已有研究成果进行讨论。

2、举例阐述“量”“质”“动”之间的内在联系:

地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、分配问题,也就是地球化学体系中“量”的研究。元素的结合形式和赋存状态,简而言之为“质”的研究。地球内部的各研究元素的迁移,简而言之是“动”的研究,也就是元素在自然作用体系中的含量和存在形式在时间、空间上的变化。各种原子的结合和存在形式不是任意的、静态的,而是有条件的、变化的。

从定义的深入理解,我们可以将自然界元素的丰度(量)和元素赋存形式(质)与元素迁移(动)的关系联系起来,一是事实基础,另一是理论指导。

查明元素在不同地区、地质体、岩石和矿物的分布、分配、集中、分散及赋存形式的实际情况,是研究元素地球化学迁移的事实基础;而搞清楚元素迁移的途径、机制和物理化学条件,则又是阐明元素分布、分配、集中、分散规律的理论指导。

3、简述元素的丰度、分配之间的关系:

丰度:指元素在各种宇宙体或地质体(太阳、星星、云石、地球、地壳等)中的平均含量。体系中元素的丰度值实际上只能对这个体系里元素真实含量的一种估计,它只反映了元素分布特征的一个方面,即元素在一个体系中分布的一种集中(平均)倾向;元素在一个体系中的分布,特别是在较大体系中决不是均一的。

元素的分配指的是元素在各地球化学体系内各个区域区段中的含量。分布是整体,分配是局部,两者是一个相对的概念,既有联系也有区别.化学元素在地球中的分布,也就是元素中的各圈层分配的总和,而元素的构成地壳的各构造层及各类型岩石中的分布,则又是元素咋地壳中各子体中分配。

4、地壳中元素的赋存形式:

元素赋存形式是指元素在一定的自然过程或其演化历史中的某个阶段所处的状态及与共生元素间的结合关系。元素的赋存形式的含义应包括元素的赋存状态和元素的存在形式。

1.元素在固相中的存在形式:

①独立矿物(肉眼或显微镜下可分辨的矿物,粒径>0.001mm)

②类质同象(即结构混入物,不同元素或质点占据相同的晶格结点位置、而晶格类型和晶格常熟不发生明显变化)

③超显微非结构混入物(或称为超显微包裹体:被包裹在其他矿物中,粒径小于0.001mm)

④吸附(胶体、晶体表面或解理面上由于电荷不平衡而吸附异性离子)

⑤与有机质结合(元素加入到有机物中或者微量元素与有机物结合形成金属有机化合物或金属有机络合物)

另同种元素在同一类地质体中可有多种存在形式;元素的存在形式可随环境的变化而变化。

2.元素在水流体相(真溶液)中的存在形式:

颗粒物、胶体、絮状物、分子(分子聚集体)、离子。在真溶液中则仅包括分子(分子聚集体)和离子。

5、研究类质同象的意义:

定义:某些物质在一定的外界条件下结晶时,晶体中的部分构造位置随机地被介质中的其他质点所占据,结果只引起晶格常数的微小改变,晶体的构造类型、化学键类型等保持不变。

意义:无论主量元素或微量元素都可以发生类质同象,这决定了自然界几乎没有纯化合物。类质同像是自然界化合物中一种十分普遍的现象,它是支配地壳中元素共生组合的一个重要因素,特别是对一些微量元素,是决定它们在自然界活动状况的主要因素。1)确定了元素的共生组合(包括微量元素和常量元素间的制约、依赖关系);2)决定了元素在共生矿物间的分配;3)支配微量元素在交代过程中的行为;4)类质同象的元素比值可作为地质作用过程和地质体成因的标志;5)标型元素组合;6)影响微量元素的集中或分散(晶体化学分散或残余富集);7)为地质找矿及环境研究服务。

6、元素的地球化学亲和性及其分类:

元素的地球化学亲和性:在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性。

在地球系统中,丰度最高的阴离子是氧,其次是硫;在地球系统中能以自然金属形式存在的丰度最高的元素是铁。因此,在自然体系中元素的地球化学亲和性主要有:亲氧性元素、亲硫性元素和亲铁性元素。

7、阐述影响元素结合规律的因素:

控制元素结合规律应从宏观和微观两方面研究,而控制元素结合的微观因素包括原子(离子)的半径、配位数、原子和离子极化、最紧密堆积等;同时自然界元素的结合还受体系性质和热力学规律影响,主要控制因素如下:

⑴体系的组成(系统的元素丰度):体系中各元素间存在丰度的差异,使元素间的结合有一定的倾向性;

⑵体系状态的稳定性:体系的能量越低体系的状态越稳定。元素结合的半径、化学键类型、电负性(X)、电离势(I)、电子亲和能(E)、晶格能(U)等能量参数以及硫化物矿物中化学键及元素行为决定了元素结合的可能性和形成化合物的稳定性。

⑶晶体结构的稳定性:在微观上是保持晶体结构稳定的因素,包括化学键方向性和离子间的最紧密堆积等。宏观上是有利于晶体结构的稳定的热力学条件。

8、水介质中元素的迁移形式及迁移能力的制约因素:

水溶液中元素的迁移形式主要有:离子(络离子)、分子;胶体;悬浮液;三者间可用滤纸和半透膜分开。

迁移能力的制约因素:元素是否会发生迁移,首先与元素迁移前的存在形式有关,如果元素原来呈,则容易发生迁移;若元素已进入到矿物晶格内部,形成了独立矿物或类质同象,则难迁移。晶体的化学键类型是影响晶格稳定性的重要因素,离子键和分子间化合物由于易溶于水溶液,较易迁移;共价键和金属件化合物则较难迁移。元素的地球化学性质——离子电价、半径等,既决定了元素在水介质中的稳定性有重要影响。体系中相伴组分的类型和浓度、体系中物理化学强度参数的空间变化(浓度差、压力差、温度差等),以及环境的pH和Eh值变化,都会影响元素的迁移形式和迁移能力。

9、微量元素的定义:

元素在所研究客体(地质体、岩石、矿物等)中的含量低到可以近似地用稀溶液定律描述其行为,该元素可称为微量元素。特点:在体系中含量低(<0.1%),通常不形成自己的独立矿物,其行为服从稀溶液定律和分配定律。在不同条件下演化规律基本一致,可以指示物质的来源和地质体的成因。

10、能斯特分配系数及其研究意义:

能斯特分配系数:在温度、压力恒定的条件下,微量元素i(溶质)在两相分配达平衡时其浓度比为一常数(K D),此常数K D称为分配系数,或称能斯特分配系数。

研究意义:分配系数是微量元素地球化学研究中极重要的参数,没有分配系数值,微量元素定量模型就无法建立。并可做如下方面研究:定量研究元素分配;为成矿分析提供了理论依;

判断成岩和成矿过程的平衡;微量元素地质温度;)微量元素地质压力;指示沉积环境;岩浆作用过程微量元素分配和演化定量模型的研究;岩浆形成机制的研究;判断岩石的成因等。11、相容元素和不相容元素微量元素的地球化学应用:

不相容元素即D i<1或在岩浆结晶过程容易以类质同象形式进入固相的微量元素,在熔体中富集;相容元素D i>1,在部分熔融的熔体中发生贫化,贫化速度随F增大呈变换特征。不相容元素常具有过大或过小离子半径或离子电荷,决定了他们在自然作用过程中较大的活动性。他们不同特性决定了他们具有不同示踪意义。如大离子亲石元素易溶于水,活动性强,在自然作用过程中活泼,易迁移,可作为地壳演化及作用发生的示踪剂;高场强元素,由于在自然作用过程中性质稳定,可作为“原始”物质组成特征的指示剂。

12、稀土元素的主要地球化学性质及示踪意义:

稀土元素的主要地球化学性质:①它们是性质极为相似的地球化学元素组,在地质-地球化学作用过程中整体活动;②它们的分馏情况能灵敏地反映地质-地球化学作用的性质,有良好的示踪作用;③除经受岩浆熔融外,稀土元素基本上不破坏它们的整体组成特征;④在地壳各岩石中分布广泛;⑤络合物是稀土元素的主要迁移形式:稀土元素离子电位居中,在碱性条件下易形成络阴离子。

示踪意义:①岩石成因,不同成因的岩石具有不同的稀土特征(如花岗岩的成因分类:a.基性岩浆分异,Eu负异常值 b.地壳硅铝层重熔:轻缓平滑型 c.花岗岩化:右倾型。)②变质原岩的恢复,因为许多变质作用过程中,稀土元素保持原岩特征③研究地壳演化

13、自然界引起同位素组成变化的原因。

自然界同位素按其原子核的稳定性可以分为放射性同位素和稳定同位素两类。

造成放射性同位素组成变化的原因: 主要原因是放射性衰变作用或称衰变反应.放射性同位素不断自发地发射出质点和能量,改变同位素组成并转变成稳定的核素,这种过程称核衰变反应或蜕变。结果母体同位素(母核)不断减少,而子体同位素(子核)不断增加。常见的衰变反应有α衰变、β衰变、电子捕获、重核裂变四类。

造成稳定同位素组成变化的原因: 主要原因是稳定同位素的分馏作用。1)物理分馏:也称质量分馏,同位素之间因质量引起一系列与质量有关的性质的不同,如密度、比重、熔点、沸点等微小的差别,使之在蒸发、凝聚、升华、扩散等自然物理过程中发生轻重同位素的分异;2)动力分馏:质量不同导致同位素分子参加化学反应活性的差异(不同的分子振动频率和化学键强度不同)。导致轻同位素分子的反应速率高于重分子,在共存平衡相之间产生微小的分馏,反应产物、特别是活动相中更富集轻同位素;3)平衡分馏:化学反应中反应物和生成物之间由于物态、相态、价态以及化学键性质的变化,轻重同位素分别富集在不同分子中,也称同位素交换反应。达到同位素交换平衡时共存相同位素相对丰度比值为常数,称分馏系数α;4)生物化学分馏:生物活动和有机反应也能导致的同位素分馏效应。如植物的光合作用使12C更多地富集于生物合成有机化合物中。生物成因的地质体如煤、油、气等具有最高的12C/13C值。生物化学分馏是同位素分异作用中重要的控制反应。

14、稳定同位素组成的表示方法:

15、各种同位素测年方法的实用性。

铷锶测年适用于体系形成后能够一直保存。铀钍铅测年适用于由亲氧元素构成的元素的矿物。碳十四试用与年龄小于70000a的样品。

16、放射性同位素年龄测定公式,各符号的含义。

用以下式子表示:-dN/dt=λN

其中,N:在t时刻未衰变完母核的原子数

dN/dt:单位时间内所衰变的原子数

λ:衰变速率常数(单位时间内衰变几率)1/年、1/秒

-:表示dt时间内母核的变化趋势是减少的

假设:以D表示由经过t(T0→T)母核衰变成的子核数,则:

D=N0—N

把N0=Neλt代入

经整理得:

t =(1/λ)ln(1+(D/N))

D/N是现存子核和母核的原子数比值.

17、判断成岩成矿物理化学条件。

物理条件:温度、压力、时间。地质温度计,流体包裹体测温、稳定同位素测温微量元素地质温度计。

化学条件,ph、氧逸度等等。

地球化学复习总结题

《地球化学》复习题 一、各章重点 PPT第0章重点: 地球化学发展简史(尤其是引领地球化学发展的关键学者的学术观点) 地球化学的发展趋势,包括学科生长点,及理论突破点。 PPT第1章重点: 地球化学分带的依据,各个分带地球化学特征以及相互之间的差异性; 元素和核素在地壳中分布的计量单位,元素在地壳中的分布特征,元素在主要岩石类型中的分布; 元素在地球其它圈层,如水圈(尤其是海水)、大气圈、生物圈中的分布特征。 元素在地球演化的各大地质时期中的成矿特点。 PPT第2章重点: 元素结合规律 类质同像 过渡元素的结合规律 了解戈尔德施密特的元素地球化学分类方法和按照元素的地球化学亲合性分类方法。 PPT第3章重点: 元素在水溶液中存在状态和迁移的主控因素; 主要造岩元素在岩浆结晶分异过程中的演化 岩浆作用中微量元素的定量模型 PPT第4章重点: 掌握讲解的每一种放射性同位素定年方法的原理及适用范围 稳定同位素在地球各个储库中的分布特征,影响稳定同位素分馏的主要控制反应。 PPT第5章重点: 太阳系元素分布特征,陨石分类体系及依据。 二、练习题 ---------------------------------------------------------------------------------- 1. 概述地球化学学科的特点。 2. 简要说明地球化学研究的基本问题。 3. 简述地球化学学科的研究思路和研究方法。 4. 地球化学与化学、地球科学其它学科在研究目标和研究方法方面的异同。-----------------------------------------------------------------------------------------

地球化学复习题(推荐文档)

地球化学复习题 绪论 1、地球化学的定义。 答:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。 2、地球化学的任务。 答:1)地球及其子系统中元素及其同位素的组成,即元素的分布和分配问题;2)元素的共生组合和赋存形式;3)元素的迁移和循环;4)地球的历史和演化。5)基础理论和应用的发展。 3、地球化学的研究思路和工作方法。 答:研究思路:以化学、物理化学等基本原理为基础,以研究原子(包括元素和同位素)的行为为手段,来认识地球的组成、历史和地球化学作用。工作方法:野外:地质考察+样品采集(代表性、系统性、统计性、严格性)。 室内: --岩矿鉴定 --分析测试:早期容量法、离子色谱法和比色法,现今X射线荧光光谱XRF、ICPAES、--ICPMS、固体质谱、AAS等。 --元素结合形式和赋存状态的研究:化学分析、晶体光学、X射线衍射、拉曼谱、微区分析(电子探针、离子探针)等。 --作用过程的物理化学条件的测定:温度(包裹体、矿物、同位素)、压力、pH、Eh、盐度等。 --自然作用的时间参数:同位素测年。 --模拟实验。 --多元统计计算和数学模型。 4、地球化学学科的特点。 答:1、基础科学成果的应用.2、地质科学的发展.3、更广泛的数字模拟。 第一章太阳系和地球系统的元素丰度 1、对比元素在地壳、地球和太阳系中分布规律的异同点,并解释其原因。 答:相同点:元素的丰度均随原子系数增大而减小。均符合奇偶定律。 不同点:与太阳系或宇宙相比,地壳和地球都明显地贫H, He, Ne, N等气体元素;而地壳与整个地球相比,则明显贫Fe和Mg,同时富集Al, K和N a。 原因: 2、研究克拉克值有何地球化学意义。 答:可作为元素集中、分散的标尺。控制元素的地球化学行为。A)影响元素参加地壳中地球化学过程的浓度。B)限定自然界的矿物种类及种属。C) 限制了自然体系的状态。 3、地球各圈层化学组成的基本特征。 答:地壳:①地壳中元素的相对平均含量是极不均一的。②元素的克拉克值大体上随原子序数的增大而减小。地幔:元素分布不均,铁镁含量增高。地核:铁镍含量占绝大部分,其它元素仅占极少部分。水圈、大气圈和生物圈在地球总质量中所占的比例很小,对地球总体成分的影响不大。 4、陨石研究的意义 答:①它是认识宇宙天体、行星的成分、性质及其演化的最易获取、数量最大的地外物质;

微量元素地球化学课程作业

蛇绿岩中地幔橄榄岩成因及构造意义研究 研究目的和意义: 地幔橄榄岩是蛇绿岩超镁铁岩的主要岩石类型。在蛇绿岩的形成过程和构造侵位的过程中,地幔橄榄岩还会遭受部分熔融作用,熔体萃取作用,以及地幔交代等多种地质作用的影响和改造。不同的地质作用会产生相应的矿物组合,通过对蛇绿岩中的地幔橄榄岩不同时代矿物组合特征的研究,可以进一步对蛇绿岩形成构造背景的认识,对于恢复蛇绿岩的形成和演化至关重要。 拟解决的问题: 1.地幔橄榄岩的形成过程中所经历的地质作用,如部分熔融作用,熔体抽取作用,流体-岩石反应,熔体-岩石反应等。 2.蛇绿岩的形成环境,如SSZ环境和MOR环境[1]。 拟研究的手段和方法: 1. 岩石学 对岩石的结构,构造,风化程度以及变质程度以及组成矿物进行研究,对岩石进行定名,如地幔橄榄岩包含纯橄岩,方辉橄榄岩以及二辉橄榄岩。 2. 矿物学 对岩石的组成矿物进行观察研究,地幔橄榄岩中不同时代的矿物的矿物组合具有不同的结构特征,反映了岩石成因的复杂性和多阶段演化的特征。 地幔橄榄岩中的矿物会保存地幔橄榄岩形成和演化历史的印记,尤其是地幔橄榄岩的矿物组合及化学特征对认识地幔橄榄岩的成因和恢复蛇绿岩的形成背景至关重要。对地幔橄榄岩中的橄榄石,斜方辉石,单斜辉石,尖晶石等矿物的化学成分进行研究和分析。 室内试验工作显示,尖晶石二辉橄榄岩在10—20 kbar的压力范围内,随着岩石熔融程度的增加,岩石中单斜辉石的含量迅速减少,斜方辉石的含量将逐渐降低。橄榄石的Fo和NiO含量,辉石的Mg#和Cr2O3含量,铬尖晶石的Cr#值将逐渐增加,而辉石和全岩的Al2O3和TiO2将逐渐减少[2]。 尖晶石的Cr#值是地幔岩熔融程度、源区亏损程度以及结晶压力的灵敏指示剂,Cr#反映了地幔部分熔融程度的增加[3],经历较高程度部分熔融和萃取的橄榄岩具有较高的Cr#值。Dick 和Bullen(1984)根据铬尖晶石的成分将阿尔卑斯型地幔橄榄岩分为三中类型:Ⅰ型:铬尖晶石的Cr#<60;Ⅲ型:铬尖晶石的Cr#>60;Ⅱ型:为一种过渡类型,铬尖晶石的Cr#包含Ⅰ型和Ⅲ型地幔橄榄岩中的铬尖晶石。其中Ⅰ型地幔橄榄岩可能反映了洋中脊大洋岩石圈的环境,相当于深海橄榄岩,其部分熔融程度较低;Ⅲ型地幔橄榄岩,形成于岛弧环境,经历了较高程度的部分熔融;Ⅱ型地幔橄榄岩,则反映了复合来源的特征[3]。 利用铬尖晶石的Cr#—Mg#图解,可以判断地幔橄榄岩的形成环境,即为SSZ型还是MOR

地球化学综合考试答案

中国地质大学(武汉)远程与继续教育学院 地球化学课程综合测试3 学习层次:专升本时间:120分钟 一.名词解释 1.元素的地球化学迁移:当体系与环境处于不平衡条件时,元素将从一种赋存状态转变为另一种赋存状态,并伴随着元素组合和分布上的变化及空间上的位移,以达到与新环境条件的平衡,该过程称为元素的地球化学迁移。 2.能斯特分配定律:在一定的温度和压力条件下,微量元素在两共存相中的活度比为常数。3.盐效应:当溶液中存在易溶盐类时,溶液的盐度对元素的溶解度有影响。溶液中易溶电解质的浓度增大,导致其它化合物溶解度增大的现象,称为盐效应。 4.放射性同位素:能够自发地衰变形成其它核数,最终转变为稳定核数的同位素。 5.大陆地壳:地表向下到莫霍面,厚度变化在5-80km,分为上部由沉积岩和花岗岩组成的硅铝层,下部由相当于玄武岩、辉长岩或麻粒岩等组成的硅镁层两部分组成。 6.不相容元素:在一定的温度和压力条件下,在部分熔融或岩浆分异结晶过程中,在固相/熔体相中的总分配系数<<1的微量元素称为不相容元素。 7. Ce:表征Ce与REE整体分离程度的参数。其计算公式为:δCe=2Ce n/(La n+Pr n)(n 表示相对于球粒陨石标准化)。 8.元素丰度的奇偶规律:偶序数元素的丰度大于相邻奇序数元素的丰度,这一规律又被称为Oddo-Harkins(奥多-哈金斯)法则。 二.简答题 1. 大陆地壳组成研究的基本方法。 答:由于大陆地壳的物质组成在横向和纵向上都具有极度的不均一性,因此,研究大陆的浅部地壳和深部地壳的手段不尽相同。其中,对大陆地壳浅部组成研究的方法包括区域大规模取样法、简化取巧方法以及细粒碎屑沉积物法等等。而对大陆深部地壳的研究手段则主要包括研究火山岩中的角闪岩和麻粒岩包体,暴露地表的深部地壳断面,或利用地球物理勘探获取的地震波速与岩石化学组成之间的对应关系进行反演。 2. 简述能斯特分配定律及元素分配系数的涵义。地球化学上按总分配系数将元素在岩浆作用过程中的行为分为几类?它们各自的地球化学特点是什么?(要求各类别至少举两个元素为例)。 答:能斯特分配定律:在一定的温度和压力条件下,微量组分在两共存相中的活度比为常数。将微量元素在两相之间的活度笔直称之为分配系数(K D)。 按元素在岩浆作用过程中的行为分为相容元素、不相容元素。其中不相容元素进一步分为高场强和低场强元素。 相容元素指总分配系数大于1的元素,如Ni、Co、Cr,在岩浆作用中优先进入矿物相或残留固相;不相容元素指总分配系数小于1的元素,它们优先进入熔体相,其中将分配系数小于0.1的又称为强不相容元素。大离子亲石元素如K、Rb、Sr、Ba以及高场强元素如Nb、Ta、Zr、Hf为不相容元素的代表。 3. 活度积原理及其在地球化学研究上的意义。 答:定义在一定的温度下,难溶化合物中该化合物的离子浓度乘积得到的常数为活度积。所谓的活度积原理指的是在天然水中,金属元素首先选择形成活度积最小的化合物的阴离子

地球化学期末考试总结

第一章绪论 1.地球化学的定义:地球化学是研究地球及子系统(含部分宇宙体)的化学组成、化学作用和化学演化的科学(涂光炽)。 2.地球化学研究的基本问题 第一: 元素(同位素)在地球及各子系统中的组成(量) 第二: 元素的共生组合和存在形式(质) 第三: 研究元素的迁移(动) 第四: 研究元素(同位素)的行为 第五: 元素的地球化学演化 第二章自然体系中元素的共生结合规律 1.元素地球化学亲和性的定义:在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性称为元素的地球化学亲和性。 2.亲氧元素、亲硫元素与亲铁元素的特点 (1)亲氧元素:能与氧以离子键形式结合的金属(半金属)元素称为亲氧元素。 特点:惰性气体结构;电负性小;离子键为主;生成热>FeO;主要集中在岩石圈。(2)亲硫元素:能与硫结合形成高度共价键的金属(半金属)元素称为亲硫元素特点:铜型离子;电负性较大;共价键为主;生成热

地球化学地球化学综合练习考试卷模拟考试题

《地球化学综合练习》 考试时间:120分钟 考试总分:100分 遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。 1、超显微非结构混入物( ) 2、分馏作用( ) 3、同位素地球化学( ) 4、同位素成分( ) 5、初始铅( ) 姓名:________________ 班级:________________ 学号:________________ --------------------密----------------------------------封 ----------------------------------------------线-------------------------

6、原始铅() 7、原生铅() 8、普通铅() 9、同位素的分类() 10、Rb-Sr法() 11、K-Ar法() 12、Sm-Nd法()

13、U-Th-Pb法() 14、Rb-Sr() 15、Pb-Pb法() 16、区域克拉克值() 17、丰度系数() 18、富集矿物() 19、载体矿物() 20、元素的地球化学迁移()

21、氧化(还原)障() 22、离子电位π() 23、放射性衰变() 24、α衰变() 25、β-衰变() 26、r衰变() 27、单衰变()

28、电子捕获() 29、衰变系列() 30、放射性成因铅() 31、稳定同位素() 32、同位素分馏作用() 33、同位素效应() 34、惰性组分()

35、什么是元素的克拉克值?克拉克值在地球化学找矿中有何作用?() 36、研究元素丰度有何意义?() 37、类质同象有何地球化学意义?() 38、元素为什么会迁移?迁移的实质是什么?() 39、什么是地球化学背景?如何确定背景值?地球化学背景有哪些种类? () 40、什么是地球化学异常?如何确定异常下限?地球化学异常如何分类? () 41、地球化学背景与地球化学异常的关系?()

06地球化学试卷A

课程号:013201 《地球化学》期末考试试卷(A卷) 考试形式:闭卷考试考试时间:120分钟 班号学号姓名得分 一、概念题(每题5分,共50分) 1、元素的丰度值 2、类质同象混入物 3、载体矿物和富集矿物 4、地球化学障 5、八面体择位能 6、戈尔德斯密特相律 7、相容元素和不相容元素 8、δCe值(列出计算公式并说明) 9、同位素分馏系数 10、衰变定律 二、问答题(每题8分,共40分): 1、当以下每种物质形成时,其氧化电位是高还是低?(1) 陨石;(2)煤;(3)海底锰结核;(4)钒钾铀矿;(5)页岩中的黄铁矿;(6)鲕绿泥石。 2、为什么硅酸盐矿物中K的配位数经常比Na的配位数大?(离子半径:K+的为1.38A,Na+的为1.02A,O2-的1.40A)。 3、研究表明,岩浆岩和变质岩中的不同矿物具有不同的18O/16O比值,例如岩浆岩中石英一般比钾长石具有更高的18O/16O比值,试阐明控制矿物18O/16O比值大小的原因是什么?

4、用Rb-Sr或Sm-Nd法对岩石定年时,为什么当岩石矿物中的87Rb/86Sr或143Sm/144Nd比值差别越大结果越好? 5、试分析下图中稀土元素球粒陨石标准化模式中各个曲线可能代表的岩石类型及造成分配型式特征的原因。 三、论述题(任选1题,10分) 1、试述稀土元素数据的处理步骤和表示方法。 2、要获得准确的同位素地质年龄必须满足的条件是什么?

答案: 一、 1.每种化学元素在自然体中的质量,占自然体总质量(或自然体全部化学元素总质量)的相对份额(如百分数),称为该元素在该自然体中的丰度值. 2.某种物质在一定的外界条件下结晶时,晶体中的部分构造位置被介质的其它 质点(原子、离子、络离子、分子)所占据,结果只引起晶格常数的微小变化,而使晶体构造类型、化学键类型等保持不变的现象。由类质同像形式混入晶体中的物质称为类质同像混入物。含有类质同像混入物的混合晶体称为固溶体。 3. 载体矿物是指岩石中所研究元素的主要量分配于其中的那种矿物。但有时该 元素在载体矿物中的含量并不很高,往往接近该元素在岩石总体中的含量。 富集矿物是指岩石中所研究元素在其中的含量大大超过它在岩石总体中的含量的那种矿物。 4、地球化学障指地壳中物理或化学梯度具有突变的地带,通常伴随着元素的聚 集或堆积作用。即在元素迁移过程中经过物理化学环境发生急剧变化的地带时,介质中原来稳定的元素迁移能力下降,形成大量化合物而沉淀,这种地带就称为地球化学障。 5.任意给定的过渡元素离子,在八面体场中的晶体场稳定能一般总是大于在四面体场中的晶体场稳定能.二者的差值称为该离子的八面体择位能(OSPE). 这是离子对八面体配位位置亲和势的量度。八面体择位能愈大,则趋向于使离子进入八面体配位位置的趋势愈强,而且愈稳定。 6.在自然条件下,矿物常形成于一定的温度、压力变化范围,并在此范围内保持稳定。因此,F≥2,据吉布斯相律,F=K-Φ+2,有Φ≤K,即平衡共存的矿物数不超过组分数,即为戈尔德斯密特矿物学相律。 7.相容元素(Compatible elements):岩浆结晶或固相部分熔融过程中偏爱矿物相的微量元素;不相容元素(Incompatible elements):岩浆结晶或固相部分熔融过程中偏爱熔体或溶液相的微量元素.也称为湿亲岩浆元素(hygromagmatophile). 8.δCe或(Ce/Ce*)。是表征样品中Ce相对于其它REE分离程度的参数.Ce除

施密特元素分类

元素地球化学分类 yuansu diqiu huaxue fenlei 元素地球化学分类 geochemical classification of the elements 在元素周期表的基础上,结合元素的自然组合及各种地球化学特征,对化学元素进一步的分类。它反映了化学元素在自然界的分布规律及其相互间的共生组合特征与其原子结构的密切关系。元素的地球化学分类较多,被广泛采用的是V.M.戈尔德施密特及A.H.扎瓦里茨基的分类。 戈尔德施密特的分类是以其地球起源和内部构造的假说为基础的,他根据化学元素的性质与其在各地圈内的分配之间的关系,将元素分为4个地球化学组,如图1戈尔德施密特元素地球化学分类图所示。①亲石元素,离子最外层具有2个或8个电子,呈惰性气体型稳定结构,与O、F、CL亲合力强,多组成氧化物或含氧盐,特别是硅酸盐,形成大部分造岩矿物,并主要集中在岩石圈;②亲铜元素,离子最外层具有 18个电子的铜型结构,与S、Se、Te亲和力强,多形成硫化物和复杂硫化物;③亲铁元素,离子最外层具有8~18个电子的过渡型结构,与O及S的亲和力均较弱,主要集中在地球深部的铁镍核中;④亲气元素,为惰性气体,呈原子或分子状态集中在地球的大气圈中。此外,戈尔德施密特还划分出亲生物元素,这些元素多富集在生物圈中。 扎瓦里茨基的分类能够从原子结构这一最本质的原因去理解元素在自然界的分布与组合规律。按这种分类,化学元素被分成 12族(图2扎瓦里茨基元素地球化学分类图):①氢族;②造岩元素族(Li、Be、Na、Mg、Al、Si、K、Ca、Rb、Sr、Cs和Ba);③惰性气体族 (He、Ne、Ar、Kr、Xe、Rn);④挥发分元素族(B、C、N、O、F、P、S、Cl);⑤铁族(Ti、V、Cr、Mn、F e、Co、Ni);⑥稀土稀有元素族 (Sc、Y、Zr、Nb、TR、Hf、Ta等);⑦放射性元素族(Fr、Ra、Ac、Th、Pa、U等);⑧钨钼族 (Mo、Tc、W、Re);⑨铂族(Ru、Rh、Pd、Os、Ir、Pt);⑩硫化矿床成矿元素族 (Cu、Zn、Ge、Ag、Cd、In、Sn、Au、H g、Tl、Pb等);□半金属元素族(As、Sb、Bi、Se、Te、Po);□重卤素元素族(Br、I、At)。 除了上述这些系统的分类外,还有根据特定的地质作用对元素进行地球化学分类的。如在描述岩浆分异结晶作用或部分熔融过程中,把进入结晶相或残留相的称为相容元素,而进入熔体相的称为不相容元素等。 参考书目南京大学地质学系编:《地球化学》(修订本),科学出版社,北京,1979。赵伦山、张本仁编著:《地球化学》,地质出版社,北京,1988。 (王中刚)

地球化学——考试内容总结

绪论思考题 地球化学定义 地球化学学科的特点和基本问题 地球化学学科的研究思路和研究方法 地球化学与化学、与地球科学其它学科的联系和区别。 第一章、第二章思考题 1元素分布与分配的概念 2地球化学体系 3元素丰度的概念 4元素在地壳中的克拉克值和浓度克拉克值概念 5太阳系、地球及地壳中元素丰度的研究方法 6太阳系、地球及地壳中元素丰度特征并讨论它们的异同、分析造成这种现象的原因? ++ 7元素克拉克值的地球化学意义并举例说明 8区域地壳丰度的研究方法及研究意义 9地壳中元素分配不均一性的基本特征++ 第三章思考题 1、元素的地球化学亲和性 2、Goldschmidt的元素地球化学分类 3、元素类质同象概念 4、影响元素类质同象的晶体化学条件 5、影响元素类质同象的物理化学条件 6、Goldschmidt的类质同象法则 7、Ringwood的电负性法则 8、研究元素类质同象的地球化学意义 9、晶体化学集中与晶体化学分散概念 10、晶体场理论的要点及应用范围 11、八面体、四面体晶体场稳定能和八面体择位能概念 12、晶体场理论应用的地球化学意义 13、元素的赋存形式及其研究方法 14、举例说明Pb在地壳中的各种存在形式 第四章复习题 1微量元素概念 2能斯特分配定律与分配系数 3总分配系数概念 4元素在共存相中分配系数的确定方法 5相容元素、不相容元素、大离子亲石元素、高场强元素概念 6微量元素地质温度计的原理与方法 7元素在共存相中分配定律的地球化学意义 8在岩浆结晶过程中元素分配的定量模型、特征及地球化学应用

9在部分熔融过程中元素分配的定量模型、特征及地球化学应用 10岩浆结晶过程和部分熔融过程的判别方法 11稀土元素的基本地球化学性质 12稀土元素的数据处理方法及有关参数的计算方法(稀土元素配分模式图、ΣREE 、∑LREE/∑ HREE或ΣCe/ΣY 、(La/Yb)N ) 13 Eu异常、Ce异常的概念及计算公式 14稀土元素对岩石成因的指示意义 15变质原岩恢复的地球化学方法 16石榴石和长石的REE组成特征分别是什么? 17微量元素蜘网图及其意义 18微量元素对岩石形成构造环境进行判别时应注意的问题 19 Mg#、ACNK指数的意义与计算方法 20 Harker图解的特点与用途 第五章思考题 1.何为“同位素”、“放射性同位素”、“放射成因同位素”? 2.同位素发生放射性衰变的原因是什么?有几种衰变形式(请举例说明)? 3.放射性同位素定年的原理和基本公式是什么? 4.何为λ常数、半衰期、同位素等时线? 5.放射性同位素定年的前提是什么? 6.用同位素等时线法测量地质年龄的基本要求是什么? 7.同位素封闭温度和冷却年龄的概念 8.Rb-Sr同位素体系定年的特点是什么?需注意什么? 9.BABI的定义和意义是什么?是如何确定的? 10.何为UR、εSr? 11.Sm-Nd同位素等时线法定年的特征是什么?为什么Sm-Nd同位素方法可对较 高级变质地质体进行定年? 12.Sm-Nd同位素体系与Rb-Sr同位素体系在地球化学特征及等时线定年方法上 有何差异? 13.何为CHUR、DM岩浆库,其现在Sm-Nd同位素组成是什么? 14何为Sm-Nd同位素的ε参数和模式年龄,如何计算 15.U-Th-Pb同位素体系定年的方法几种?分别是什么? 16.何为谐和年龄、谐和曲线和不一致线? 17.U-Pb同位素定年常采用的分析测试方法有哪些?并对每一种方法进行简要 评述。 18.与同位素年代学中的其它长寿命同位素体系相比,K-Ar同位素体系的主要特 征是什么? 19.相对于传统的K-Ar体系定年方法,Ar-Ar分步加热技术的主要优点是什么? 20.何为稳定同位素? 21.自然界中稳定同位素的分布规律是什么? 22.稳定同位素组成的表达方式是什么? 23.稳定同位素有哪些分馏类型?什么是稳定同位素的平衡分馏和动力学分 馏?

元素地球化学

元素地球化学 第一章:导论 ◆地球化学的三个主要分支:①元素地球化学②同位素地球化学③实验地球化学 ◆元素地球化学:是地球化学最主要的分支学科,它通过逐一阐明个别元素的地球化学和宇宙化学特征及其与其它元素的组合关系来研究自然界化学演化规律的学科,是地球化学的传统研究内容和主干学科。它力求完整地了解元素的地球化学旋回及其演化历史和原因,揭示元素含量变化对自然过程的指示意义 ◆元素地球化学主要研究内容和任务: (1)每个或每组化学元素的地球化学性质; (2)元素或元素群在自然界的分布、分配情况; (3)元素相互置换、结合、分离的规律和机制; (4)元素的存在形式、组合特点、迁移条件; (5)每个元素的地球化学旋回及其演化历史和原因 (6)应用于地球资源、环境和材料的研究、预测、开发和保护。 ◆元素地球化学的研究方法: (1)地质研究方法; (2)高灵敏度、高精度、快速和经济的测定和分析手段:ICP-MAS、ICP-AES、X荧光、电子探针等等; (3)各种地球化学模拟实验研究; (4)一些物理化学、热力学等理论的应用; (5)计算机技术在处理大量数据方面的广泛应用。 ◆戈尔德施密特的元素地球化学分类: 亲铁元素Siderophile:富集于陨石金属相和铁陨石中的化学元素。它们与氧和硫的结合能力均弱,并易溶于熔融铁中;在地球中相对于地壳和地幔,明显在地核内聚集。其离子最外层电子数在8~18之间。典型的秦铁元素有镍、钴、金、铂族元素。 亲石元素lithophile:在陨石硅酸盐相中富集的化学元素;在地球中它们明显富集在地壳内,有较大的氧化自由能。在自然界中都以氧化物,含氧盐,特别是硅酸盐的形式出现。如硅、铝、钾、钠、钙、镁、铷、锶、铀、稀土元素等。其离子最外层电子数为2或8。 亲铜元素chalcophile:在陨石硫化物相和陨硫铁(FeS)中富集的化学元素;在自然界中,它们往往易与S2-结合成硫化物和复杂硫化物。如硫、铜、锌、铅、镉、砷、银、硒、碲、锑等。其离子最外层有18个电子。 亲硫元素sulphophile:指不易与氧、氟和氯结合,而易于形成硫化物、硒化物、碲化物、砷化物等矿物的元素。该术语现一般理解为与“亲铜元素”同义,并包括一些亲铁元素。 亲气元素atmophile:组成地球大气圈的主要元素,惰性气体元素,以及主要呈易挥发化合物存在的元素。如氢、氮、碳、氧、及惰性气体元素等。 亲生物元素biophile:集中在有生命的动植物内的元素。C, H , O, N, P, S, Cl, I, (B), (Ca, Mg, K, Na), (V, Mn, Fe, Cu) ◆有关其他元素分类的常用术语: 常量元素:组成物质主要结构和成分的元素,它们常占天然物质总组成的99%以上,并决定了物质的定名和大类划分。 微量元素(trace element, microelement):物质中除了那些构成主要结构格架所必须的元素之外,所有以低浓度存在的化学元素。其浓度一般低于0.1%,在大多数情况下明显低于0.1%而仅达到ppm乃至ppb数量级。 次要元素(minor element):在文献中单独出现时时与微量元素同义;当两者同时出现时,一般指含量为1~5的化学元素。 稀有元素(rare element):在低壳中分布量较低,但易于在自然界高度富集形成较常见的矿物和独立工业矿床的的化学元素。如REE、Nb、Ta、Be、Li、(W)等。 分散元素(dispersed element):在地壳中元素丰度低,并且其离子半径和电荷等化学性质与地壳中的高丰度元素(硅、铝、钙、铁、钾、钠等)相似的一类微量元素。因上述性质,它们在自然界中大多以类质同像置换形式分散存

地球化学复习题汇总

地球化学赵伦山张本仁 韩吟文马振东等 P 1:地球化学基本问题) P 5:克拉克值,地球化学发展简史(几个发展阶段) P31:元素丰度,表示单位元素在地壳平均化学丰度―――确定方法,克拉克值, P37:元素克拉克值的地球化学意义 P68:类质同象和固溶作用 P81:元素的赋存状态――1,5种 P88: 元素迁移 P 123: 相律 P169: 衰变定律 P181:痕量元素地球化学,稀土元素的研究方法和意义(痕量元素=微量元素) 复习内容及答案汇总 一、地球化学研究的基本问题、学科特点及其在地球科学中的地位(P1-) 地球化学是研究地球及相关宇宙体的化学组成、化学作用和化学演化的科学,在地球化学发展历史中曾经历了较长时间的资料积累过程,随后基于克拉克、戈尔施密特、维尔纳茨基、费尔斯曼等科学家的出色工作,地球化学由分散的资料描述逐渐发展为有系统理论和独立研究方法的学科。目前地球化学已发展成为地球科学领域的重要分支学科之一,与岩石学、构造地质学等相邻学科相互渗透与补充,极大地丰富了地球科学研究内容,在地质作用过程定量化研究中已不可或缺。 地球化学的研究思路和学科特点是:(1)通过分析常量、微量元素和同位素组成的变化,元素相互组合和赋存状态变化等追索地球演化历史;(2)利用热力学等现代科学理论解释自然体系化学变化的原因和条件,探讨自然作用的机制;(3)将地球化学问题置于地球和其子系统(岩石圈、地壳、地幔、地核等)中进行分析,以个系统的组成和状态约束作用过程的特征和元素的行为。 围绕原子在自然环境中的变化及其意义,地球化学研究主要涉及四个基本问题:(1)研究地球和动质体中元素和同位素的组成;(2)研究元素的共生组合和赋存形式;(3)研究元素的迁移和循环;(4)研究元素和同位素迁移历史和地球的组成、演化历史、地球化学作用过程。 二、简述痕量元素地球化学研究解决的主要问题 痕量元素地球化学理论使许多地质难题迎刃而解,其可解决的主要问题有:

地球化学(专升本)阶段性作业

地球化学(专升本)阶段性作业1 总分:100分得分:0分 一、单选题 1. 克拉克值是指元素在(1) 中的平均含量(5分) (A) 地壳 (B) 地球 (C) 所研究的任意对象 (D) 球粒陨石 参考答案:A 2. (2) 的化学成分被认为最接近原始的太阳系化学组成(5分) (A) 铁陨石 (B) 碳质球粒陨石 (C) 火星陨石 (D) 太阳光谱 参考答案:B 3. 从元素化学组成角度,大陆地壳可分为上部的(3) 层和下部的硅镁层(5分) (A) 硅酸盐 (B) 硅铝 (C) 碳酸岩 (D) 沉积岩 参考答案:B 4. (4) 被认为是代表了古大洋地壳组成的典型岩石组合(5分) (A) 橄榄岩 (B) 辉长岩 (C) 蛇绿岩套 (D) 碳酸盐岩+石英砂岩 参考答案:C 5. 以下不是地幔组成岩石类别的一种岩石是(5) (5分) (A) 二辉橄榄岩 (B) 麻粒岩 (C) 方辉橄榄岩 (D) 辉石岩 参考答案:B 6. 元素的(6) 研究是地球化学研究的第一根本要务(5分) (A) 丰度 (B) 种类 (C) 分布规律 (D) 化学性质 参考答案:A 二、多选题 1. 陨石的主要类型包括(7) 。(5分) (A) 石陨石 (B) 铁陨石 (C) 石铁陨石

(D) 月球陨石 参考答案:A,B,C 2. 就分层结构而言,地球自地表向其内部包括(8) 等主要圈层。(5分) (A) 地壳 (B) 地幔 (C) 软流圈 (D) 地核 参考答案:A,B,D 3. 全球大陆地壳整体的化学组成为(9) 。(4分) (A) 酸性 (B) 安山质 (C) 花岗闪长质 (D) 基性 参考答案:B,C 4. 以下属于研究深部地壳物质及其化学组成的手段和方法的是(10) 。(4分) (A) 火山岩中的各类捕获岩石包体 (B) 构造侵位而暴露在地表的深部地壳断面 (C) 地球物理探测技术反演 (D) 人工区域大规模采集地表岩石样品 参考答案:A,B,C 5. 地球化学是研究地球(包括部分天体)的(11) 的科学。(4分) (A) 岩石组成 (B) 化学作用 (C) 化学组成 (D) 化学演化 参考答案:B,C,D 三、判断题 1. 橄榄岩是组成下地壳的主要岩石类型_____ (4分) 正确错误 参考答案:错误 解题思路: 2. 陨石主要是指来自星际空间的地球以外星体的岩石碎片_____ (4分) 正确错误 参考答案:正确 解题思路: 3. 地球化学属于化学学科,主要认识和解决地球上元素的化学性质及行为等问题_____ (4分) 正确错误 参考答案:错误 解题思路: 4. 运用细粒碎屑沉积物法能更精确地获取大陆上部地壳的全部元素化学组成_____ (4分) 正确错误 参考答案:错误 解题思路:

普通地球化学期末复习

普通地球化学 选择、名词解释、简答题、计算题 第一章绪论 一、地球化学的定义 地球化学是研究地球及子系统(含部分宇宙体)的化学组成、化学作用和化学演化的科学。 二、地球化学研究的基本问题 第一: 元素(同位素)在地球及各子系统中的组成(量) 第二: 元素的共生组合和存在形式(质) 第三: 研究元素的迁移(动) 第四: 研究元素(同位素)的行为 第五: 元素的地球化学演化 第二章自然体系中元素的共生结合规律 一、元素地球化学亲和性的定义 在自然体系中元素形成阳离子的能力和所显示出的有选择地与某种阴离子结合的特性称为元素的地球化学亲和性。 二、亲氧元素与亲硫元素的特点 亲氧(石)元素:离子的最外电子层具有8电子(s2p6)惰性气体型的稳定结构,具有较低的电负性,所形成的化合物键性主要为离子键,其氧化物的形成热大于FeO的形成热,与氧的亲和力强,易熔于硅酸盐熔体,主要集中于岩石圈。 亲硫(铜)元素:离子的最外层电子层具有18电子(s2p6d10)的铜型结构,元素的电负性较大,其所形成的化合物键性主要为共价键,氧化物的生成热小于FeO的形成热,与硫的亲和力强,易熔于硫化铁熔体。主要集中于硫化物-氧化物过渡圈。 三、其它的概念 电负性:中性原子得失电子的难易程度。或者说原子在分子中吸引价电子的能力叫电负性。电离能:指从原子电子层中移去电子所需要的能量。电离能愈大,则电子与原子核之间结合得愈牢固 电子亲和能:原子得到电子所放出的能量(E)叫电子亲和能。E越大,表示越容易得到电子成为负离子。 离子电位:是离子电价与离子半径的比值 四、元素的地球化学化学分类(戈式分类) 亲氧(亲石)、亲硫(亲铜)、亲铁、亲气 五、类质同象的定义 某些物质在一定的外界条件下结晶时,晶体中的部分构造位置随机地被介质中的其他质点(原子、离子、配离子、分子)所占据,结果只引起晶格常数的微小改变,晶体的构造类型、化学键类型等保持不变,这一现象称为“类质同象”。 六、类质同象的置换法则 1.戈式法则(适于离子键化合物)①优先法则:两种元素电价相同,半径较小者优先进入矿物晶格。②捕获允许法则:两种离子半径相似而电价不同时,较高价的离子优先进入矿物晶格。③隐蔽法则:两个离子具有相近的半径和相同的电荷,则它们因丰度的比例来决定自身的行为,丰度高的主量元素形成独立矿物,丰度低的微量元素进入矿物晶格,为主量元素所“隐蔽”。 2.林伍德提出对戈氏法则(更适于非离子键化合物)对于二个价数和离子半径相似的阳离子,具有较低电负性者将优先被结合,因为它们形成一种较强的离子键成分较多的化学键。

地球化学考试题

名词解释 1.浓度克拉克值:概念系指某元素在某一地质体(矿床、岩体或矿物等)中的平均含量与克拉克值的比值,表示某种元素在一定的矿床、岩体或矿物内浓集的程度。当浓度克拉克值大于1时,说明该元素在地质体中比在地壳中相对集中;小于1时,则意味着分散 2.亲氧性元素:倾向于与氧形成高度离子键的元素称亲氧元素。特征是:离子半径较小,有惰性气体的电子层结构,电负性较小。如K、Na、Ca、Mg、Nb、Ta、Zr、Hf、REE等;易形成惰性气体型离子; 3.元素的地球化学迁移:即元素从一种赋存状态转变为另一种赋存状态,并经常伴随着元素组合和分布上的变化及空间上的位移 4.普通铅(或正常铅):普通铅(或正常铅):指产于U/Pb、Th/Pb比值低的矿物和岩石中任何形式的铅(如方铅矿、黄铁矿、钾长石等),在矿物形成以前,Pb 以正常的比例与U、Th共生,接受U、Th衰变产物Pb的不断叠加并均匀化。 5.不相容元素:趋向于在液相中富集的微量元素。由于其浓度低,不能形成独立矿物相,并且因离子半径、电荷、晶场等性质与构成结晶矿物的主元素相差很大,而使其不能进入矿物相。它们的固相/液相分配系数近于零。 6.同位素分馏系数:达到同位素交换平衡时共存相同位素相对丰度比值为常数,称分馏系数α,或者指两种物质(或物相)之间同位素比值之(α),即αA-B=RA / RB,式中A,B表示两种物质(或物相),R表示重同位素与轻同位素比值,如34S/32S,18O/16O。α表示同位素的分馏程度,α值偏离1愈大,说明两相物质之间同位素分馏程度愈大;α=1时物质间没有同位素分馏 7.K(不稳定常数):金属离子与配位体生成络合物的逆反应是络合物的解离反应,达成平衡时的常数,称为不稳定常数。它与稳定常数互为倒数。不稳定常数越大,络合物越不稳定。 8.δEu:反映Eu异常的强。. 9.稀土元素(REE):原子序数57-71的镧系元素以及与镧系相关密切的钪和钇共17种元素,包括:La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Y 10.高场强元素 (HFSE):指离子半径小、电荷高,难溶于水,地球化学性质稳

矿床地球化学结课作业(原著-可直接交)

中国地质大学(北京) 课程期末考试 作业

矿床地球化学作业(一) 根据下列给定的火山岩岩石化学数据计算火山岩的特征参数,并作出图解,分析火山岩岩石系列和形成环境(参考岩石矿床地球化学教材第三章计算方法)。 原数据中火山岩岩性有流纹斑岩、杏仁状流纹斑岩、角砾岩和硅化角砾岩。共有样品18个,数据包括样品全分析与部分微量元素。全析中大多样品SiO2含量大于63%,样品岩性以流纹岩为主。 根据样品全分析数据计算出的火山岩的各类特征参数如表1表示,先将样品数据进行CIPW 标准矿物计算,其中氧化铁调整方法为TFeO=FeO+0.8998Fe2O3,所计算出的标准矿物均为重量百分含量,则可得出各矿物分异指数(DI) = Qz + Or + Ab + Ne + Lc + Kp。其中固结指数为(SI) =MgO×100/(MgO+FeO+F2O3+Na2O +K2O) (Wt%)。里特曼指数算式为σ43=(Na2O+K2O)^2/(SiO2-43),据表里特曼指数多位于1.8-3.3显示为钙碱性,由于原岩多数SiO2含量较高,里特曼指数确定出的钙碱度准确度差。碱度率(AR) =[Al2O3+CaO+(Na2O+K2O)]/[Al2O3+CaO- (Na2O+K2O)] (Wt%),当SiO2>50%, K2O/Na2O大于1而小于 2.5时, Na2O+K2O=2*Na2O,本例以碱度率对样品碱度进行判别,由表可知,杏仁状流纹斑岩的碱度率都为1-3,显示钙碱性,流纹斑岩为3.3-5显示出弱碱性。 图1 样品SiO2-K2O+Na2O 图解 Pc-苦橄玄武岩;B-玄武岩;O1-玄武安山岩;O2-安山岩;O3-英安岩;R-流纹岩;S1-粗面玄武岩;S2-玄武质粗面安山岩;S3-粗面安山岩;T-粗面岩、粗面英安岩;F-副长石岩;U1-碱玄岩、碧玄岩;U2-响岩质碱玄岩;U3-碱玄质响岩;Ph-响岩;Ir-Irvine 分界线,上方为碱性,下方为亚碱性。

成都理工大学地球化学考试试卷

成都理工大学 《地球化学》期末考试试卷 大题 一 二 三 四 总分 得分 一、名称解释 克拉克值:元素在地壳中的丰度。 浓度克拉克值:元素在某一地质体中的平均含量与其克拉克值之比,反映元素在地质体中的浓集程度。 类质同像:某些物质在一定的外界条件下结晶时,晶体中的部分构造位置随机地被介质中的其他质点所占据,结果只引起晶格常数的微小改变,晶体的构造类型、化学键类型等保持不变。 地球化学:地球化学是研究地球(包括部分天体)的化学组成,化学作用和化学演化的科学。 元素的赋存形式:元素在一定自然过程或其演化历史中的某个阶段所处的状态及与共生元素间的结合关系。 地球化学障:在元素迁移途中,如果环境的物理化学条件发生了急剧变化,导致介质中原来稳定迁移的元素其迁移能力下降,元素因形成大量化合物而沉淀,则这些引起元素沉淀的条件或因素就称为地球化学障。 (不)相容元素:在岩浆结晶作用过程中,那些(不)容易以类质同像的形式进入固相的微量元素,称为(不)相容元素。 同位素分馏:是指在一系统中,某元素的同位素以不同的比值分配到两种物质或两相中的现象。 元素地球化学亲和性:在自然体系中元素形成阳离子的能力和所显示出的有选着地与某种阴离子结合的特性。 能斯特分配系数:在温度、压力恒定的条件下,微量元素i (溶质)在两相分配达平衡时其浓度比为一常数(KD),此常数KD 称为分配系数,或称能斯特分配系数。 亨利定律(稀溶液定律):在无限稀释的溶液中,溶质的浓度n 与溶质摩尔浓度N 成正比。 浓度系数:元素在矿床中最低工业品位与克拉克值之比。 活度积:当T 一定时,难溶强电解质溶液中离子活度的乘积为一常数。 同离子效应:在难溶化合物的饱和溶液中加入与该化合物有相同离子的易溶化合物时,使原难溶化合物的溶解度降低。 盐效应:当溶液中存在易溶盐类时,溶液的含盐度对元素的溶解度有影响。溶液中易溶电解质的浓度增大,导致其他溶解度增大的现象。 院(系) 班级 姓名 学号 …… … … … …… … … … … … … … … … … 密… … … … 封 … … … … 线 … … … … … … … … … … … … … … … … … …

地球化学复习重点报告

绪论: 1.地球化学:地球化学是研究地球及其子系统(含部分宇宙)的化学组成、化学作用和化学演化的科学. 2.地球化学研究的基本问题: ①元素(同位素)在地球及各子系统中的组成 ②元素的共生组合和存在形式 ③研究元素的迁移 ④研究元素(同位素)的行为 ⑤元素的地球化学演化 3.地球化学的研究思路: “见微而知著”。通过观察原子、研究元素(同位素),以求认识地球和地质作用地球化学现象。 4.简述地球化学的研究方法: A.野外工作方法: ①宏观地质调研 ②运用地球化学思维观察、认识地质现象 ③在地质地球化学观察的基础上,根据目标任务采集各种地球化学样品 B.室内研究方法: ④量的测定,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的含量值 ⑤质的研究,也就是元素结合形态和赋存状态的研究 ⑥动的研究,地球化学作用过程物理化学条件的测定和计算。包括测定和计算两大类。 ⑦模拟地球化学过程,进行模拟实验。 ⑧测试数据的多元统计处理和计算。 第一章:基本概念 1.地球化学体系:我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的时间连续,具有一定的空间,都处于特定的物理化学状态(T、P等) 2.丰度:一般指的是元素在这个体系中的相对含量(平均含量)。 3.分布:元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区)整体的总的含量特征。

4.分配:元素的分配指的是元素在各地球化学体系内各个区域、各个区段中的含量。 5.研究元素丰度的意义: ①元素丰度是每一个地球化学体系的基本数据 以在同一体系中或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素基本特征和动态情况,从而建立起元素集中、分散、迁移等系列的地球化学概念。是研究地球、研究矿产的重要手段之一。 ②研究元素丰度是研究地球化学基础理论问题的重要素材之一。 宇宙天体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的主要元素不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和分布规律。 6.获得太阳元素丰度的主要途径: 光谱分析;直接分析;利用宇宙飞行器分析测定;研究宇宙射线 7.陨石研究的意义: ①它是认识宇宙天体、行星的成分、性质及其演化的最易获取、数量最大的地外物质; ②也是认识地球的组成、内部构造和起源的主要资料来源; ③陨石中的60多种有机化合物是非生物合成的“前生物物质”,对探索生命前期的化学演化开拓了新的途径; ④可作为某些元素和同位素的标准样品(稀土元素,铅、硫同位素)。 8.陨石的类型: 陨石主要是由镍-铁合金、结晶硅酸盐或两者的混合物所组成,按成份分为三大类 铁陨石 石陨石 石铁陨石 9.太阳系元素的丰度特征: ①H和He是丰度最高的两种元素。这两种元素的原子几乎占了太阳中全部原子数目的98%。 ②Li、Be和B具有很低的丰度,属于强亏损的元素(核子结合能低,形成后易分解),而O和Fe呈现明显的峰,它们是过剩元素(核子结合能最高,核子稳定) ③原子序数较低时,元素丰度随原子序数增大呈指数递减,而在原子序数较大的范围内(Z>45)各元素丰度值很相近。

相关文档
最新文档