导叶开启时间对水电站过渡过程-影响解析

导叶开启时间对水电站过渡过程-影响解析
导叶开启时间对水电站过渡过程-影响解析

导叶开启时间对水电站过渡过程-影响

摘要:针对国内外规范对导叶开启时间的不同规定,结合理论推导和数值计算实例,分析了不同的导叶开启时间对水电站过渡过程的影响。实例研究结果表明,大波动过渡过程中的蜗壳动水压力、沿管道轴线的压力分布以及调压室阻抗孔口压差等参数均随导叶开启时间变化而变化。通过研究得到如下结论:国际电工技术委员会标准推荐的增负荷时间30~40s是合理的;在并入小网的水力干扰过渡过程中,需要将运行机组最大初始开度限制在最大临界开度之内,才能保证运行机组转速收敛于额定转速,以满足发电机和电网对调节系统的要求。

关键词:过渡过程导叶开启时间数值计算临界时间

前言

在水电站运行中,从空载增至全负荷的导叶开启时间,国内外规范有不同的规定:文献[1]中对调节系统的要求:导叶开度的全行程动作时间应符合设计规范,一般为10~40s。国际电工技术委员会IEC(International Electrotechnical Commission)标准[2]则规定开启时间为20~80s,推荐值30~40s。上述规程标准给出的取值范围虽有重叠部分,但整体范围并不一致,而导叶开启时间的取值问题一直未进行深入的研究。本文将结合两机一洞常规水电站和抽水蓄能水电站两个代表性实例,探讨不同的导叶开启时间对水电站过渡过程的影响,寻找恰当的开启时间(直线开启规律),以满足发电机和电网对调节系统的要求。

1导叶开启时间对过渡过程的影响

水电站过渡过程涉及到大波动、小波动和水力干扰过渡过程三个方面。而在小波动过渡过程中,调速器将自动跟踪,机组不受导叶开启时间长短的影响。因此本文仅讨论导叶开启时间对大波动和水力干扰过渡过程的影响。

1.1导叶开启时间对大波动过渡过程的影响

在无穷大电网条件下,增负荷,机组转速不变,调速器将不参与调节,所以增负荷时间的长短将只对机组两个调保参数(蜗壳末端动水压力、尾水管进口断面压力)、管道沿程的压力分布、调压室涌浪水位及阻抗孔口压差等产生

相应的影响。文献[3]给出了粗略估算水锤压力的计算公式:

、、对时间、表示管道中水流速度,为水轮机引用流量,上游调压室取“+”号,尾水调压室取“-”号),可得

大小衡量)不仅影响隧洞水流惯性的变化,而且直接影响调压室涌浪水位高低。

1.2导叶开启时间对水力干扰过渡过程的影响

在两机一洞布置方式下,若一台机组并入有限电网正常运行,另一台机组增负荷,该动作机组增负荷时间的长短必然对正常运行机组的调节品质产生影响。将水轮发电机组的运动方程:

(2)

(4)

上式中,-水轮机主动力矩和出力,-机组转动角速度,-水轮机引用流量,-时间。

第六章 水电站的布置形式及组成建筑物

第二篇水电站建筑物 水电站是利用水能资源发电的场所,是水、机、电的综合体。其中为了实现水力发电,用来控制水流的建筑物称为水电站建筑物。本篇主要讨论水电站引水系统的布置、结构设计和水力计算;水电站厂区枢纽的布置设计和结构特点。 第六章水电站的布置形式及组成建筑物重点:坝式、引水式、混合式开发的水电站的布置特点及组成建筑物。 第一节水电站的基本开发方式及其布置形式 由N = 9.81ηQH可知,要发电必须有流量和水头,关键是形成水头。 要充分利用河流的水能资源,首先要使水电站的上、下游形成一定的落差,构成发电水头。因此就开发河流水能的水电站而言,按其集中水头的方式不同分为坝式、引水式和混合式三种基本方式。 抽水蓄能电站和潮汐电站也是水能利用的重要型式。 形成水头方式——水电站的开发方式。 一、坝式水电站 在河流峡谷处拦河筑坝,坝前雍水,在坝址处形成集中落差,这种开发方式为坝式开发。在坝址处引取上游水库中水流,通过设在水电站厂房内的水轮机,发电后将尾水引至下游原河道,上下游的水位差即是水电站所获取的水头。用坝集中水头的水电站称为坝式水电站。 (一) 坝式水电站特点 (1) 坝式水电站的水头取决于坝高。目前坝式水电站的最大水头不超过300m。 (2) 坝式水电站的引用流量较大,电站的规模也大,水能利用较充分。(由于筑坝,上游形成的水库,可以用来调节流量)目前世界上装机容量超过2 000MW的巨型水电站大都是坝式水电站。此外坝式水电站水库的综合利用效益高,可同时满足防洪、发电、供水等兴利要求。 (3) 坝式水电站的投资大,工期长。原因:工程规模大,水库造成的淹没X围大,迁移人口多。 适用:河道坡降较缓,流量较大,并有筑坝建库的条件。

水电站社会实践报告

水电站社会实践报告 实践目的:认识和了解一些电气设备 时间:XX年7月13日 ,其中总是要遇上各种挫折各种自己无法想象的灾难,在我的心中似乎每个奋斗都要经历灼烧他们心理承受力和人格尊严的故事,而对于其所达到的成绩就与他们内心所经受的煎熬的程度所成正比。生活中的奋斗者多,而至于有所成绩的奋斗者却十分的少,大部分人无法承受内心的煎熬而放弃了,最终无法成功。人生中既然选择了自己奋斗的目标而坚持“努力不一定成功,放弃一定失败”的心态来奋斗来努力,至于成功与失败在天意了,过分的计算结果只能让自己犹豫前,错失成功的机会。 地点:攀枝花二滩水电站 这次认识实习是在攀枝花二滩水电站进行的.09年7月13日的上午,阳光明媚,心情也暖暖.每个人精力充沛.都很期待也很珍惜这次短暂的认识实习机会. 二滩简介 二滩水电站是位于四川省西南部攀枝花市境内的雅砻江干流下游河段上,距雅砻江与金沙江的交汇口33公里,距攀枝花市约40km.是雅砻江干流上规划建设的21座梯级电站中的第一座.1991年9月开工,1998年7月第一台机组发电,XX年完工.电站装机容量330万千瓦,是我国20世纪末建

成投产的最大水电站。 二滩选址 很幸运,有遇到开闸泄洪.在还没有到达水电站的时候,我们就能感受到那股很强大的水汽,迎面扑来,很凉很舒服… 我们首先参观的是二滩的大坝.很感谢那些技术人员认真地为我们讲解,耐心地回答我们提出的各种问题… 从中我了解到,这个电站从规划选点到建成投产花了30多年,许许多多的专家、学者为之倾注了智慧和心血. 二滩水电站的混凝土双曲拱坝高达240m.由于它的泄洪流量大,河谷相对较宽,地质条件较为复杂,无论是它承受的水压荷载还是泄洪功率,在当时世界上已建成的双曲拱坝中均居首位。因此,在工程设计中,有不少技术难题都需要勘测、设计和科研人员去努力攻克.在20多年前的技术条件下,如何评价坝址和库区的区域地质问题,能否具备建设高坝的条件,我国是否有能力自己来设计这样的高坝,是国家对这个项目进行立项决策首先要解决的基本问题。 早在1980年11月,时任清华大学副校长、中国科学院学部委员、北京水利水电科学研究院院长的张光斗老师,在听取二滩首任设计总工程师殷开忠同志的汇报后,就亲临电站坝址进行查勘,与成都院领导深入交换意见。回北京后,又就查勘二滩坝址的情况和意见向清华大学党委做了书面

水电站建筑物习题

第一部分引水建筑物 第一章水电站的布置形式及组成建筑物 一、填空题 1.水电站的基本布置形式有_______、__________、__________ 三种,其中坝式水电站分__________、__________、__________等形式。 2.有压引水式水电站由_________________、_________________、 ______________、______________、______________等组成;而无压引水式水电站由_____________、_____________、______________、______________、______________等组成。 3.抽水蓄能电站的作用是___________________________________,包括_________________和_________________两个过程。 4.按其调节性能水电站可分为____________和______________两类。 二、思考题 1.按照集中落差的方式不同,水电站的开发分为几种基本方式?各种水电站有何特点及适用条件? 2.水电站有哪些组成建筑物?其主要作用是什么? 3.抽水蓄能电站的作用和基本工作原理是什么?潮汐电站基本工作原理是什么 4.何为水电站的梯级开发? 第二章水电站进水口及引水建筑物 一、判断题 1.无压引水进水口,一般应选在河流弯曲段的凸岸。( )

2.有压进水口的底坎高程应高于死水位。( ) 3.通气孔一般应设在事故闸门的上游侧。( ) 4.进水口的检修闸门是用来检修引水道或水轮机组的。( ) 5.渠道的经济断面是指工程投资最小的断面。( ) 6.明渠中也会有水击现象产生。( ) 二、填空题 1.水电站的有压进水口类型有______________、______________、 ____________、____________等几种。 2.水电站有压进水口主要设备有______________、______________、 ______________和______________。 3.进水口的事故闸门要求在________中关闭,________中开启;检修闸门在________中关闭,________中开启。 4.水电站的引水渠道称为___________渠道,分_______________渠道和_______________渠道两种。 5.压力前池由____________、_________________、___________、__________________、 ______________________组成。 三、思考题 1.水电站进水口的功用和要求。 2.有压进水口有哪几种型式?其布置特点和适用条件如何? 3.有压进水口布置有哪些主要设备?其作用和布置要求是什么? 4.有压进水口位置、高程确定应考虑哪些因素? 5.有压进水口轮廓尺寸如何考虑?坝式进水口有什么特点?应满足哪些要求? 6. 无压进水口有哪些特殊问题?

导叶开启时间对水电站过渡过程的影响(1)解析

导叶开启时间对水电站过渡过程的影响(1) 摘要:针对国内外规范对导叶开启 时间的不同规定,结合理论推导和数值计算实例,分析了不同的导叶开启时间对水电站过渡过程的影响。实例研究结果表明,大波动过渡过程中的蜗壳动水压力、沿管道轴线的压力分布以及调压室阻抗孔口压差等参数均随导叶开启时间变化而变化。通过研究得到如下结论:国际电工技术委员会标准推荐的增负荷时间30~40s是合理的;在并入小网的水力干扰过渡过程中,需要将运行机组最大初始开度限制在最大临界开度之内,才能保证运行机组转速收敛于额定转速,以满足发电机和电网对调节系统的要求。 关键词:过渡过程导叶开启时间数值计算临界时间 前言 在水电站运行中,从空载增至全负荷的导叶开启时间,国内外规范有不同的规定:文献[1]中对调节系统的要求:导叶开度的全行程动作时间应符合设计规范,一般为10~40s。国际电工技术委员会iec(international electrotechnical commission)标准[2]则规定开启时间为20~80s,推荐值30~40s。上述规程标准给出的取值范围虽有重叠部分,但整体范围并不一致,而导叶开启时间的取值问题一直未进行深入的研究。本文将结合两机一洞常规水电站和抽水蓄能水电站两个代表性实例,探讨不同的导叶开启时间对水电站过渡过程的影响,寻找恰当的开启时间(直线开启规律),以满足发电机和电网对调节系统的要求。 1导叶开启时间对过渡过程的影响 水电站过渡过程涉及到大波动、小波动和水力干扰过渡过程三个方面。而在小波动过渡过程中,调速器将自动跟踪,机组不受导叶开启时间长短的影响。因此本文仅讨论导叶开启时间对大波动和水力干扰过渡过程的影响。 1.1导叶开启时间对大波动过渡过程的影响 在无穷大电网条件下,增负荷,机组转速不变,调速器将不参与调节,所以增负荷时间的长短将只对机组两个调保参数(蜗壳末端动水压力、尾水管进口断面压力)、管道沿程的压力分布、调压室涌浪水位及阻抗孔口压差等产生相应的影响。文献[3]给出了粗略估算水锤压力的计算公式:,式中、分别为压力管道水流惯性加速时间常数和导叶动作时间,、为水轮机在初始和终了时的相对流量值。由上式不难看出,在机组增负荷过程中,导叶开启越快,引起的

水电站假期社会实践报告

水电站假期社会实践报告 额定电压等级BR>一、动力部分: 发电部分当然是由发电机构成了,水轮机带动的转子运行,达到很定转速后,控制端给发电机的线圈励磁,励磁后产生了磁场,转动的转子切割磁感线产生了感生电流,到达一定的强度以后实现自主励磁,待电压达到额定状态稳定运行时,经过变压器变压,实现并网。发电过程是一个电站运行的最重要过程,为了保证电压及设备的稳定运行,必须实现各种控制,比如谐波的控制,温度控制,励磁的控制,转速的控制,由PT 和CT 控制的电压电流控制等等,各种控制不仅保证发电机的稳定运行,还要保证输送到电网电能的电能质量,甚至整个电力系统的稳定运行。 变压过程也是不可或缺,发电机发出的电压有限,必须升压才能实现电能的远程输送,以减少能源的损耗。变压器分为高压侧和低压侧,新式变压器还有一个中压侧,发电机输出的电能进入低压侧,通过升压后接入电网。电站的变压器由油浸式变压器构成,总共有五台主变压器,分别有110 千瓦时和千瓦时输出级别,老式的只有110 千瓦时输出级别,比较新的可实现110 千瓦时、220 千瓦时同时输出,老式中性点永久接地,新式在刀闸接地基础上还实现了气隙保护。高压侧的主变输电线上每根导线入口段都另接有一根导线连接避雷器,防止系统出现扰动和损坏。

控制是实现电厂稳定运行的重要措施。大到发电机的转速控制,小到一个开关的闭合,到处都实现了自动化功能,而实现自动化功能的设备主要是PLC 的控制,外部设备通过系统上的传感器采集数据,然后转化为电流的形式,通过数据传输进入到PLC,然后转化为码制,经过PLC 的运算得出运算结果,经过外部设备实现对系统的控制。PLC 控制的过程还与中心控制室进行通信,控制室可以实现人工干预控制。比如说发电机和变压器的温度控制部分,发电机温度过高时,系统启动真空泵对机组实现水冷。变压器温度过高时通过油压泵加快油在变压器的流动,同时通过水对油的冷却实现变压器的降温控制。大部分的动作控制都是由油压控制和机械控制实现。控制是整个系统的大脑部分,协调着系统的稳定运行。未来的电厂发展趋势也是控制部分,实现系统的智能控制,需要的工人就更少了! 实习地点:富顺黄泥滩水电站 通过实习,从而把书本上的理论和现实中的技术结合起来,让我们对所学过的各种仪器设备有一个感性的直观认识;并从实习中提高我们的交流团结协作能力,用所学过的知识去分析解决现实中的问题。除此外,实习还是我们在大学期间的最后一次特殊的学习,是一门意义重大的必修课,给我们去电力部门工作打下扎实的基础,同时也为继续深造的同学一次实践的机会。

水电站建筑物,有压引水水力计算说课讲解

水电站建筑物,有压引水水力计算

《水电站建筑物》课程设计有压引水系统水力计算 设 计 计 算 书 姓名 专业 学号 指导教师 时间

目录 第一部分设计课题 (3) 1.设计内容 (3) 2.设计目的 (3) 第二部分设计资料及要求 (4) 1.设计资料 (4) 2.设计要求 (5) 第三部分调压井稳定断面计算 (6) 1.引水系统水头损失 (6) 2.引水道有效断面 (8) 3.稳定断面计算 (8) 第四部分调压井水位波动计算 (10) 1.最高涌波水位 (10) 2.最低涌波水位 (13) 第五部分调节保证计算 (15) 1.水锤计算 (15) 2.转速相对升高值 (19) 第六部分附录 (21) 1.附图 (21) 2.参考文献 (21)

第一部分设计课题 1.1 课程设计内容 对某水电站有压引水系统水力计算 1.2 课程设计目的 通过课程设计进一步巩固所学的理论知识,使理论与工程实际紧密结合。提高学生分析问题和解决实际问题的能力,计算能力和绘图能力。

第二部分 设计资料及要求 2.1 设计资料 某电站是MT 河梯级电站的第四级。坝址以上控制流域面积23622Km ,多年平均流量44.9s m /3,由于河流坡降较大,电站采用跨河修建基础拱桥,在桥上再建双曲拱坝的形式,坝高(包括基础拱桥)54.8m 。水库为日调节,校核洪水位1097.35m ,相应尾水位1041.32m ;正常蓄水位1092.0m ,相应尾水位1028.5m ;死水位1082.0m ,最低尾水位1026.6m 。总库容m H m p 58,1070734=?,m H m H 4.53,4.65,min max ==。装机容量kw 4105.13??,保证出力kw 41007.1?,多年平均发电量h kw .1061.18?。 该电站引水系统由进水口、隧洞、调压井及压力管道四部分组成,电站平面布置及纵断面图如图所示(指导书图1,图2) 隧洞断面采用直径为5.5 m 的圆形,隧洞末端设一锥形管段,直径由5.5 m 渐变至5 .0m ,锥管段长5.0m ,下接压力钢管。隧洞底坡取0.005,全长500.3m ,其中进水口部分长25.7m,进口转弯段长25.595m, 锥管段长为5 m 。 水轮机型号为HL211—LJ —225,阀门从全开到全关的时间为7s ,其中有效关闭时间s T s 68.4=。机组额定转速m in /3.2140r n =,飞轮力矩22.10124m KN GD =。蜗壳长度s m L m L /66.165V .40.202==蜗蜗蜗,,尾水管长度s m L m L /697.3V .16.22 ==尾尾尾,。转轮出口直径 m m 94.1H 2.44D s 2-==,。经核算,当上游为正常蓄水位,下游为正常尾水位,三台机满发电,糙率n 取平均值,则通过水轮机的流量为96.9s m /3,当上游为死水位,下游为正常尾水位,三台机满发,饮水道糙率区最小值,压力管道糙率取最大值,则通过水轮机的流量为102s m /3。当上游为校核洪水位,下游为相应尾水位,电站丢弃两台机时,若丢荷幅度为30000—0KW,则流量为63.6—0s m /3;丢荷幅度为45000—15000KW,则流量变幅为96.5—31.0s m /3。当上游为死水位,下游为正常尾水位时,若增荷幅度为30000—45000KW,则 流量变化为68.5—102.5s m /3;若丢荷幅度为30000—0KW,则 流量变化为67.5—0s m /3。 采用联合供水方式,两个卜形分岔管布置,主管直径5m ,支管直径3.4m,分岔角、2729?。从调压井中心至蝴蝶阀中心,全长

实验五--一阶RC电路的过渡过程实验

实验五一阶RC电路的过渡过程实验 一、实验目的 1、研究RC串联电路的过渡过程。 2、研究元件参数的改变对电路过渡过程的影响。 二、实验原理 电路在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。 1、RC电路的零状态响应(电容C充电) 在图5-1(a)所示RC串联电路,开关S在未合上之前电容元件未充电,在t= 0时将开关S合上,电路既与一恒定电压为U的电源接通,对电容元件开始充电。此时电路的响应叫零状态响应,也就是电容充电的过程。 (a) (b) 图5-1RC电路的零状态响应电路及uC、u R、i随时间变化曲线根据基尔霍夫电压定律,列出t 0时电路的微分方程为 电容元件两端电压为 其随时间的变化曲线如图5-1(b) 所示。电压uc按指数规律随时间增长而趋于稳定值。 电路中的电流为 电阻上的电压为

其随时间的变化曲线如图5-1 (b)所示。 2、RC电路的零输入响应(电容C放电) 在图5-2(a)所示,RC串联电路。开关S在位置2时电容已充电,电容上的电压 uC= U0,电路处于稳定状态。在t = 0时将开关从位置2转换到位置1,使电路脱离电源,输入信号为零。此时电容元件经过电阻R开始放电。此时电路的响应叫零输入响应,也就是电容放电的过程。 (a)(b) 图5-2 RC电路的零输入响应电路及u C、u R、i随时间变化曲线 根据基尔霍夫电压定律,列出t>0时的电路微分方程为 电容两端电压为 其随时间变化曲线如图5-2(b)所示。它的初始值为U0,按指数规律衰减而趋于零。 τ =RC 式中τ = RC,叫时间常数,它所反映了电路过渡过程时间的长短,τ越大过渡时间就越长。 电路中的电流为 电阻上电压为 其随时间变化曲线如图5-2(b)所示。 3、时间常数τ 在RC串联电路中,τ为电路的时间常数。在电路的零状态(电容充电)响应上升到稳态值的63.2%所需要时间为一个时间常数τ,或者是电路零输入(电容放电)响应衰减到初始值的36.8%所需要时间[2]。虽然真正电路到达稳定状态所需要的时间为无限大,但通常认为经过(3-5)τ的时间,过度过程就基本结束,电路进入稳态。

武都水库工程水轮机过渡过程计算

武都水库工程水电站水轮机过渡过程计算成果 1.概述 根据技术协议的要求,完成所要求计算的过渡过程计算工况,并提出相应的初步计算成果。 2.计算条件 (1)上游水库 校核洪水位659.43m 设计洪水位656.96m 正常蓄水位658.00m 死水位624.00m (2) 下游尾水位 校核洪水位581.368m 设计洪水位580.126m 正常尾水位572.5m (3) 水轮机净水头 最大水头85.12m 加权平均水头68.09m 额定水头64.00m 最小水头49.35m (4) 流量 多年平均流量142m3/s 电站引用流量259.2m3/s 2.3 布置型式 武都水库水电站位于四川省江油市武都镇境内,电站厂房距江油市约20 km。该电站是涪江上游干流最后一级电站,具有不完全年调节性能,承担部分调峰的中型电站工程。该工程总库容5.72亿m3,额定水头64m,装机容量3×50MW。电站引水发电系统布置情况详见招标文件第8章引水系统布置图。 (5) 水轮发电机组基本参数 水轮机型号HLD267-LJ-320

转轮名义直径 3.2m 水轮机额定出力51.5MW 额定转速214.3r/min 飞逸转速465r/min 发电机GD23750t.m2 水轮机安装高程568.956m 水轮机导叶个数24 3.计算要求 机组最大转速升高率小于55%,蜗壳最大压力升高率小于50%。若两个参数不能同时满足,应推荐合适的参数值。尾水管内的最大真空度不宜大于8m水柱。 4.计算工况 根据武都水库工程电站引水系统的布置方式,水库和发电机组的运行调度情况,以下几种工况可以求出蜗壳最高压力、机组速率最高上升率和尾水管真空值,所选工况: A)额定水头64m条件下,3台机同时甩全负荷3×51.54MW。 B)最大水头85.12.m条件下,3台机甩全负荷3×51.54MW。 C)机组运行水头68.09.m条件下,1台机组带最大负荷56.7MW。 5.计算结果 所述工况的调节保证计算结果,汇总列于表5-1。 表5-1 调节保证计算结果 6.结论 1)武都水库工程电站采用的引水系统,当机组GD2不小于3750t.m2,导叶关闭规律采用图(一)的关闭规律,机组速率上升小于55.0%;蜗壳最高压力升高率小于50.0%,尾水管真空度不大于8.0m。

大学生水电站实习报告

大学生水电站实习报告 大学生水电站实习报告一对于任何一位大学生来 说,实习是一个很关键的学习内容,也是一个很好的锻炼机会。对于我们来说,平常学到的都是书面上的知识,而实习正好就给了我们一个在投身社会工作之前把理论知识与实际设计联系起来的机会,实习作为学校为我们安排的在校期间全面性、总结性的教学实践环节,它既让我们看到实际的中设计生产状况,也是我们在就业之前“实战预演”,我们 可以从中看到的不仅仅是一个车间的生产运作过程,还有大量实际设计方面的知识,以及我们还十分缺乏的实际经验都包含在每个生产过程中,通过实习能够使我们更好的完善自己。 对于要进入大四的我们来说,实习的一个主要目的就是通过在生产单位来完善我们所学的内容,当然我们在实习过程中还会收集相关资料、了解电能的的基本生产技术和发展现状,从而制定未来的就业方向,掌握相关的知识,这也是我们在对未来的职业规划中要符合实际的现成参考。认真完成好这次实习,为我们大四的学习做好充分的准备,也为不久以后的工作打下坚实的基础。 这次实习只有短短的几天,但无论是对我现在的学习还是今后的工作,都带来了很大的帮助。 石头河水电站位于岐山、眉县、太白三县交界斜峪关, 坝后电站(一车间)、斜峪关两座水电站,总装机19700千瓦,其中坝后水电站装有三台立式发电机组和一台卧式发电机

组,斜峪关水电站装有三台卧式发电机组,是陕西省关中地区装机容量最大的水电站。石头河水库以灌溉为主,兼具发和防洪效益。粘土心墙土石坝,最大坝高114m水库总库容 亿m3设计灌溉面积万hm2工程于1971年10月开工,1989 年10 月完工。坝址控制流域面积673km2,多年平均流为/s。大坝按百年一遇洪水设计,流量为2690m3/s; 千年一遇洪水校核,流量为4620m3/s。按可能最大暴雨计算,保坝洪水流量为8000m3/s。 自建站开始发电,15 年累计发电亿千瓦时,为关中地区经济社会发展做出了积极的贡献。在搞好发电生产主导产业的同时,该站充分发挥自身技术、设备和地理优势,积极开展水力发电设备安装和对外小水电培训业务。自1993 年以来,该站先后承接并完成了渭南市五峰电站、延安市东王河电站和铜川市第一座水电站--- 下桃电站等我省关中地区10 多个水电站的设备安装技术指导任务。承办了宝鸡市供电局主办的10 多期500 多人参加的水电职工培训班,接待了西安理工大学、西北农林科技大学等高校近100 批学生实习、参观。1997 年,该站被省水利厅评定为全省小水电实习培训基地。XX年,杨凌职业技术学院将该站定为实习培训基地。 近几年来,该站始终坚持“两个文明”一起抓的指导思想, 发电生产稳步增长,服务社会、服务农村的能力也逐年提 高,精神文明建设也逐年上台阶,先后被宝鸡市委、市政府 命名为“文明单位”和“卫生先进单位” ,被省水利厅命名 为全省水电系统“文明示范窗口”和陕西省水利系统“文明 单位” °xx年被省水利厅命名为全省水利系统“创佳评差”

水电站的布置形式及组成建筑物

水电站的布置形式及组 成建筑物 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第一篇第一篇水电站建筑物 水电站是利用水能资源发电的场所,是水、机、电的综合体。其中为了实现水力发电,用来控制水流的建筑物称为水电站建筑物。本篇主要讨论水电站引水系统的布置、结构设计和水力计算;水电站厂区枢纽的布置设计和结构特点。 第一章水电站的布置形式及组成建筑物重点:坝式、引水式、混合式开发的水电站的布置特点及组成建筑物。 第一节水电站的基本开发方式及其布置形式 由N = ηQH可知,要发电必须有流量和水头,关键是形成水头。 要充分利用河流的水能资源,首先要使水电站的上、下游形成一定的落差,构成发电水头。因此就开发河流水能的水电站而言,按其集中水头的方式不同分为坝式、引水式和混合式三种基本方式。 抽水蓄能电站和潮汐电站也是水能利用的重要型式。 形成水头方式——水电站的开发方式。 一、坝式水电站 在河流峡谷处拦河筑坝,坝前雍水,在坝址处形成集中落差,这种开发方式为坝式开发。在坝址处引取上游水库中水流,通过设在水电站厂房内的水轮机,发电后将尾水引至下游原河道,上下游的水位差即是水电站所获取的水头。用坝集中水头的水电站称为坝式水电站。 (一) 坝式水电站特点 (1) 坝式水电站的水头取决于坝高。目前坝式水电站的最大水头不超过 300m。 (2) 坝式水电站的引用流量较大,电站的规模也大,水能利用较充分。(由于筑坝,上游形成的水库,可以用来调节流量)目前世界上装机容量超过2 000MW的巨型水电站大都是坝式水电站。此外坝式水电站水库的综合利用效益高,可同时满足防洪、发电、供水等兴利要求。 (3) 坝式水电站的投资大,工期长。原因:工程规模大,水库造成的淹没范围大,迁移人口多。 适用:河道坡降较缓,流量较大,并有筑坝建库的条件。

实验六 一阶RL电路的过渡过程实验

dt di L 实验六 一阶RL 电路的过渡过程实验 一、实验目的 1、研究RL 串联电路的过渡过程。 2、研究元件参数的改变对电路过渡过程的影响。 二、实验原理 在电路中,在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。 1、RL 电路的零状态响应(电感L 储存能量) 图6-1 (a) 是RL 串联电路。在t = 0时将开关S 合上,电路既与一恒定电压为U 的电压接通。 根据克希荷夫电压定律,列出t ≥0时电路的微分方程为 i R + = U (a) (b) (c) 图6-1 RL 电路的零状态响应电路及、、 随时间变化曲线 电路中的电流为 电阻上电压为 电感上的电压为 其随时间的变化曲线如图6-1(b )、(c)所示。 2、RL 电路的零输入响应(电感L 释放能量)

在图6-2(a) 所示RL串联电路,开关S是合在位置2上,电感元件中通有电流。在t = 0时将开关从位置2合到位置1,使电路脱离电源,RL电路被短路。此时电路为零输入响应。 (a) (b) (c) 图6-2RL电路的零输入响应电路及、、随时间变化曲线根据克希荷夫电压定律,列出t≥0时电路的微分方程为 电路中的电流为 其随时间的变化曲线如图6-2 (b) 所示。它的初始值为I 0,按指数规律衰减而趋于零。 式中τ叫做时间常数,它反映了电路过渡过程时间的长短。 电路中电阻上电压为 电路中电感上电压为 其随时间的变化曲线如图6-2(c)所示。 3、时间常数τ 在RL串联电路中,τ为电路的时间常数。在电路的电路零状态响应上升到稳态值的63.2%所需要时间为一个时间常数τ,或者是零输入响应减到初始值的36.8%所需要时间。虽然真正电路到达稳定状态所需要的时间为无限大,但通常认为经过(3—5)τ的时间,过度过程就基本结束,电路进入稳态。 三、实验内容及步骤 1、脉冲信号源 在实际实验中,采用全数控函数信号发生器的矩形波形做为实验信号电源,由它产生一个固定频率的矩形波,模拟阶跃信号。在矩形波的前沿相当于接通直流电源,电容器通过电阻充电。矩形波后沿相当于电路短路,电容器通过电阻放电。矩形波周期性重复出现,电路就不断的进行充电、放电。

葛洲坝、三峡水电站实习报告

实习报告 实习内容:认识实习 教学实习 实习形式:集中 学生姓名: 学号: 50010 专业班级: 实习单位:葛洲坝、三峡水电站 实习时间: 葛洲坝三峡实习报告 实习目的 对于实习,对于大三的我们还是有点陌生。但是本学期,学院把实习安排在教学计划的一个重要的环节。实习是大学里必不可少的一课,它提供一个机会给我们,让我们去校验自己的知识是否正确,是否离

实际太远,是否真正能派上用场,更重要的是通过实践去得知自己的知识是否足够。通过简单的实习,让学生向技术人员学习相应的单位管理知识和实际操作过程,进一步巩固课堂所学的专业知识,了解并熟悉本专业的现代化技术和组织现场管理方法。为毕业后参加实际工作打好基础。针对本专业培养专业人才,让学生们认识到自己的专业前景,具有积极的作用。 实习内容 第一部分专题报告总结 9月12日下午、13日上午:入厂安全教育、厂纪教育,葛洲坝、三峡水利枢纽工程总体概况介绍 葛洲坝水利枢纽工程由船闸、电站厂房、泄水闸、冲沙闸及挡水建筑物组成。船闸为单级船闸,一、二号两座船闸闸室有效长度为280米,净宽34米,一次可通过载重为1.2万至1.6万吨的船队。每次过闸时间约50至57分钟,其中充水或泄水约8至12分钟。三号船闸闸室的有效长度为120米,净宽为18米,可通过3000吨以下的客货轮。每次过闸时间约40分钟,其中充水或泄水约5至8分钟。上、下闸首工作门均采用人字门,其中一、二号船闸下闸首人字门每扇宽9.7米、高34米、厚27米,质量约600吨。为解决过船与坝顶过车的矛盾,在二号和三号船闸桥墩段建有铁路、公路、活动提升桥,大江船闸下闸首建有公路桥。 两座电站共装有21台水轮发电机组,其中:大江电站装机14台、

水电站建筑物

目录 第一章工程概况及基本资料 (1) 第二章水电站厂区枢纽平面布置概述 (1) 第三章主厂房设计 3.1主厂房剖面设计 (2) 3.2主厂房的平面设计 (3) 3.3主厂房的平面布置 (3) 3.4主厂房的立面设计 (4) 第四章副厂房设计 4.1副厂房的布置设计 (4) 4.2副厂房长度和宽度及高度确定 (5) 第五章交通设计 (5)

一、工程概况及基本资料 五马河属长江流域赤水河系上一支流。五马河流域地处黔北高原,仁怀县中南部,流域集雨面积446平方公里。流域内山脉连绵,河网沟壑发育,地形起伏变化急剧,山峰高程多在800~1400米左右。五马河主河床高程在437~820米之间。五马河流域气候炎热,雨量充沛,多年平均降雨量为1000毫米,年内日照124天左右,多年平均气温21 C,多年平均蒸发量700毫米。多年平均流量5.65m/s,最枯流量1.23m/s,一般枯水流量在1.5~1.8m/s,历史调查洪峰流量约820m/s。流域区内碳酸类岩层广布,水文地质较为复杂。 五马河(5)电站是五马河梯级开发中的第五级电站。该电站由拦河坝、引水建筑物、压力前池、压力钢管、水电站厂房、升压变电站、输电线路等组成。拦河坝采用浆砌石拱形重力坝;引水建筑物沿左岸布置,全长2.7公里;压力钢管布置采用联合供水方式。 电站厂区位于五马河左岸,厂区北面山体雄厚,稳定性较好;东面地形开阔,坡度较缓,便于对外交通和通电线路出线。根据地形,厂区各部分可按阶梯布置。进厂公路由东向西进入厂区。 主厂房座落在河床左岸一级阶地上。电站厂房属四级建筑物,按三十年一遇洪峰流量713.0m/s设计,相应的设计洪水位为451。8m;三百年一遇洪峰流量1303.0m/s校核,相应的校核洪水位为454.5m。电站正常尾水位452.2m,最低尾水位452.0m。 主厂房地板高程452.00m,副厂房地板高程455.00m;升压站面积37.0m×27.0m,高程在457.00m。主厂房地板低于校核洪水位,必须四面设防洪墙,进厂大门设防洪门。 电站装机容量为2×1600kw,水轮机选用HL160-WJ-60型,设计水头100m,设计流量 2×2.19m/s,水轮机理论允许吸出高Hs=1.8m;发电机为TSW143/51-6型,额定出力1600 KW,额定电压6300V,额定转速1000转/分,飞逸转速2100转/分。水轮机总重11741Kg,发电机总重12175Kg,机组最重部件重4360Kg。发电机风道和出线电缆沟分别在上下游侧布置,互不干扰。机旁盘五块。选用15T手动双梁桥式吊车一台。 副厂房内布置中控室、蓄电池室、电缆道和空压机室及其它房室。 地形图、机组及吊车图见图纸。 二、厂区枢纽平面布置 主厂房布置:根据工程资料,该电站属于小型电站,选定厂房形式为坝后式厂房,压力管道供水方式为联合供水。钢管引进厂房采用正向引进,主厂房地面高程为452m,厂房地面高程低于校核洪水位故厂房四面设防洪墙。

YMS水电站水力过渡过程计算与分析

4第39卷第6期 2016年06月 水电姑机电技术 Mechanical & Electrical Technique of Hydropower Station Vol.39 No.6 Jun.2016 YM S水电站水力过渡过程计算与分析 刘峰,安刚 (新疆水利水电勘测设计研究院,新疆乌鲁木齐830000) 摘要:通过对YM S水电站水力过渡过程计算分析,介绍了各个系统的设计思路和布置方式,希望对国内外同类型水电站设计提供一定的借鉴参考。 关键词:水电站;调节保证计算;调压阀;气垫式调压室 中图分类号:TV136 文献标识码:A文章编号=1672-5387(2016)06-0004-03 D0I:10.13599/https://www.360docs.net/doc/8518805386.html,ki.11-5130.2016.06.002 1概述 YMS水电站工程位于新疆维吾尔自治区阿克 苏地区,工程为引水式电站,由进水闸、引水渠道、压 力前池、压力钢管、厂房及尾水渠等主要建筑物组 成。电站最大水头210.3 m,加权平均水头201.3 m,额定水头199.6 m,最小水头199.6 m,设计弓丨用流量 140 m3/s,厂房内安装3台70 MW和1台34 MW的 立轴混流式水轮发电机组,总容量为244 MW。 2无调保措施下的计算 2.1引水系统布置 该电站是一座长压力引水系统电站,压力管道 总长S L为2332.43 m。发电弓|7乂系统由2条压力 输水管路组成,其中1号输水主管(04 600 mm)经 岔管分为2条支管分别接入2台70 MW机组,2号 输水主管(CM 100 mm)经岔管分为2条支管分另!j接 入1台70 MW机组和1台34 MW机组。 2.2调节保证计算控制标准 本电站水头范围为199.6 ~ 210.3 m,在电网中 承担基荷运行。结合地区电网容量及特点,按照《水 力发电厂机电设计规范》的要求,机组甩负荷时的最 大转速升高率保证值宜小于60 %,蜗壳最大压力升 高率保证倌宜为25 %~30 %.尾水管进口断面的最 大真空保证值不应大于0.08 MPa0 考虑到最大转速升高率与最大压力升高率计算 值存在误差,计算值中没包括甩负荷时蜗壳中压力 脉动,因此其保证值应按计算值并留有适当的裕度 来确定,本电站调节保证计算的设计标准如下: 机组最大转速升高率矣50 %; 蜗壳最大压力升高率矣25 %(263 m); 尾水管进口最大真空彡6_3 m。 2.3无调保措施下的过渡过程数值计算 由于电站尾水道很短,尾水管进口最小压力容 易满足,而引水道相对较长,故主要针对蜗壳末端压 力和转速控制值选取控制工况。计算中的机组关闭 规律初步选用一段直线关闭,70 MW机组GD2暂取 3 600 t.m2,34 M W机组 GD2暂取 780 t.m2,计算结 果见下页表1。 由表1可知,在不设置调保措施的前提下,2个 7jC力单元机组关闭规律在11~15 S选取时,蜗壳末 端最大压力及机组最大转速上升率均大于相应的控 制标准,不能满足调保控制要求。因此,在现有的引 水系统下,单纯采用调整关闭规律的方法是不能够 解决水锤压力与机组转速上升之间的矛盾,应在引 水发电系统上设置调保措施。 3设置调压阀措施下的调保计算 为保证电站安全运行,需采用设置调压井或调 压阀等措施来解决引水系统水锤压力和转速上升之 间的矛盾。该电站属于中型电站,设置调压井需要较 大投资和较长工期,且电站由于自身的地形、地质条 件的限制,难于建造常规调压井。故从技术经济层面 考虑,推荐采用调压阀方案。 理论上调压阀必须与导叶联动,但一旦联动装收稿日期:2016-02-26 作者简介:刘峰(1981-),男,工程师,长期从事水电站水力机械设计工作。

水电站认识实践报告文档

水电站认识实践报告文档 Hydropower station understanding practice report doc ument 编订:JinTai College

水电站认识实践报告文档 小泰温馨提示:社会实践报告是进行社会实践后需要完成的报告,是 指有目的、有组织、有计划的深入实际、深入社会,对完成的社会实 践活动的一个总结报告。本文档根据社会实践报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调 整及打印。 这次认识实习是在攀枝花二滩水电站进行的.20xx年7月13日的上午,阳光明媚,心情也暖暖.每个人精力充沛.都很期 待也很珍惜这次短暂的认识实习机会. 二滩水电站是位于四川省西南部攀枝花市境内的雅砻江 干流下游河段上,距雅砻江与金沙江的交汇口33公里,距攀枝花市约40km.是雅砻江干流上规划建设的21座梯级电站中的 第一座.1991年9月开工,1998年7月第一台机组发电,XX年 完工.电站装机容量330万千瓦,是我国20世纪末建成投产的 最大水电站。 很幸运,有遇到开闸泄洪.在还没有到达水电站的时候,我 们就能感受到那股很强大的水汽,迎面扑来,很凉很舒服… 我们首先参观的是二滩的大坝.很感谢那些技术人员认真 地为我们讲解,耐心地回答我们提出的各种问题…

从中我了解到,这个电站从规划选点到建成投产花了30 多年,许许多多的专家、学者为之倾注了智慧和心血. 二滩水 电站的混凝土双曲拱坝高达240m.由于它的泄洪流量大,河谷 相对较宽,地质条件较为复杂,无论是它承受的水压荷载还是泄洪功率,在当时世界上已建成的双曲拱坝中均居首位。因此,在工程设计中,有不少技术难题都需要勘测、设计和科研人员 去努力攻克.在20多年前的技术条件下,如何评价坝址和库区 的区域地质问题,能否具备建设高坝的条件,我国是否有能力自己来设计这样的高坝,是国家对这个项目进行立项决策首先要解决的基本问题。 早在1980年11月,时任xxx大学副校长、xxx学院学部委员、北京水利水电科学研究院院长的张光斗老师,在听取二滩首任设计总工程师殷开忠同志的汇报后,就亲临电站坝址进行查勘,与成都院领导深入交换意见。回北京后,又就查勘二滩坝址的情况和意见向xxx大学党委做了书面汇报,并写信给成都院领导,就二滩设计中的一系列关键技术问题,提出了系统的意见。他以自己的丰富经验和渊博的知识,首先肯定了二滩可行性研究工作的主要结论,明确指出二滩坝址的地质条件总的说来不错,具备修建高坝条件;双曲拱坝的下游消能防冲问题,可以采用分散消能的方式予以解决;采用地下厂房方案,

水电站建筑物分思考题--武汉大学2011

水电站思考题 一、管道部分 1.水电站有哪些类型(以取得水头方式划分)?各适用于什么条件? 2.电站一般由哪些建筑物组成?各种建筑物的作用如何? 3.进水口有哪几种类型?各适用于什么条件? 4.有压进水口有哪几种类型?各适用于什么条件? 5.根据对进水口要求,如何选择确定进水口位置与高程? 6.在靠近进水口工作闸门的下游必须设置通气孔,它的作用是什么? 7.水电站进水口工作闸门和检修闸门的作用是什么?它们在运行上有什么要求? 8.有压进水口包括哪些设备?其作用是什么? 9.压力前池的作用?组成?在进行压力前池布置时,需特别引起注意的是什么问题?10.压力水管的类型及其适用条件是什么? 11.水电站压力水管的供水方式主要有哪几种方式?它们优缺点和适用条件如何?12.地面明钢管的支墩型式有哪几种类型? 13.地面明钢管上镇墩的作用是什么?镇墩的型式有哪几类? 14.为什么压力水管上要设伸缩节?设在什么位置?为什么? 15.地面明钢管承受的最主要荷载是什么?它主要引起什么应力? 16.地面明钢管设计时应选择哪几个控制断面?用图表示各控制断面的位置?受力特点?17.某地面压力钢管:内径D=3m镇墩间距80m,滚动式支墩间距10m,管轴与地面倾角300,上镇墩以下2m处设伸缩节,长b 1 =0.3m;μ=0.25。钢材允许应力[σ]膜 =1200kg/cm2 ;[σ] 局 =1600kg/cm2,未跨中心处H =62m,水击压力, 3.0 H H= ?试对未 跨支承环断面进行强度校核。 18.导致地下埋管抗外压失稳的主要原因是什么?改善地下埋管抗外压稳定的措施有哪些? 19.地下埋管现行设计理论主要存在哪些问题?有哪些改进措施? 20.坝内埋管主要有哪几种结构型式?其受力特点有什么不同? 21.与坝内埋管相比,坝下游面管有什么优缺点?其适用条件如何? 22.采用的岔管结构形式有哪些?各有什么特点?其适用条件如何?

水力-机械过渡过程计算分析总结

大波动过渡过程计算分析总结水电站输水系统和机组过渡过程的计算分析具有重要的意义,该计算分析对于机组参数GD2的选择、导叶关闭规律的确定、调压室参数的选择和管道线路的布置等方面都有重要的指导作用。 水电站过渡过程计算分析由大波动过渡过程计算分析和小波动过渡过程计算分析两部分组成。以下对大波动过渡过程计算分析进行总结说明。 大波动过渡过程计算分析主要包含以下几个部分:①该类系统数学计算模型的建立和求解;②仿真计算程序的编制;③具体输水系统有关原始数据的准备(包含实际系统概化问题);④各种大波动控制工况的计算分析;⑤《水力过渡过程计算分析报告》的撰写。一.数学计算模型的建立 水电站输水系统数学模型由输水道数学模型和边界数学模型两部分构成。 1.输水道数学模型 目前,输水道数学模型是根据一元总流流体的运动方程和连续方程,建立有压管道水力瞬变的弹性水锤基本方程组,然后利用特征线法对方程组进行简化、求解(这里暂不讨论无压输水道); 由于在建立和求解模型的过程中,存在一些简化和假定条件,因此存在以下几个值得研究的问题: ①现模型采用一元流假定,该假定在某些情况下不适用,应该改

用“二元流”或“三元流”原理构造数模。 ②该模型要求“同一段管道为单特性管”,因此须对非单特性管进行合理概化。 ③该模型中管道阻力系数采用的是阀门关闭前稳态流动的值,实际应该采用动态的阻力系数。 ④计算时间步长和波速调整的优化。 ⑤含气水锤模型的建立。 2.边界数学模型 不同边界具有不同的数学模型,目前基本边界的数学模型已较成熟,满足仿真计算精度要求。 3.数模的求解方法 有压输水道数学模型采用特征线法求解;简单边界数学模型(如一元非线性代数方程)采用改进的不动点迭代法求解;复杂边界数学模型(如二元非线性代数方程组)采用牛顿-莱甫生法求解。二.仿真计算程序的编制 利用FORTRAN语言将已建立的数学模型和所选的求解方法编制成仿真计算程序。同时,须注意以下几个问题: ①水轮机特性曲线的变换(目前采用改进的Suter法)。 ②水轮机特性曲线数据的插值方法。 ③计算过程中小开度工况的处理(目前采用数学模型处理)。 ④管网系统初始恒定流参数的确定。 三.原始数据的准备

相关文档
最新文档