高中物理知识点动能定理能量守恒

高中物理知识点动能定理能量守恒
高中物理知识点动能定理能量守恒

二、重点剖析

1、理解功的六个基本问题

(1)做功与否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。

(2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。

(3)关于求功率问题:①t

W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力与速度间的夹角。一般用于求某一时刻的瞬时功率。

(4)一对作用力和反作用力做功的关系问题:①一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。

(5)了解常见力做功的特点:①重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh ,当末位置低于初位置时,W >0,即重力做正功;反之重力做负功。②滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。在两个接触面上因相对滑动而产生的热量相对滑S F Q =,其中滑F 为滑动摩擦力,相对S 为接触的两个物体的相对路程。

(6)做功意义的理解问题:做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化。

2.理解动能和动能定理

(1) 动能22

1mV E k =是物体运动的状态量,而动能的变化ΔE K 是与物理过程有关的过程量。

(2)动能定理的表述:合外力做的功等于物体动能的变化。(这里的合外力指物体受到的所有外力的合力,包括重力)。表达式为K E mv mv W ?=-=21222

121合 动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。实际应用时,后一种表述比较好操作。不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。

①不管是否恒力做功,也不管是否做直线运动,该定理都成立;

②对变力做功,应用动能定理要更方便、更迅捷。 ③动能为标量,但21222

121mv mv E K -=?仍有正负,分别表动能的增减。 3.理解势能和机械能守恒定律

(1)机械能守恒定律的两种表述

①在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。

②如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。

(2) 对机械能守恒定律的理解

①机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v ,也是相对于地面的速度。

②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。

③“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功。

(3)系统机械能守恒的表达式有以下三种:

①系统初态的机械能等于系统末态的机械能

即:末初E E =或222

121v m h mg mv mgh '+'=+或k p k p E E E E '+'=+ ②系统重力势能的减少量等于系统动能的增加量,即:K P E E ?=?-或

0=?+?k P E E ③若系统内只有A 、B 两物体,则A 物体减少的机械能等于B 物体增加的机械能,即:B A E E ?=?-或0=?+?B A E E

4.理解功能关系和能量守恒定律

(1)做功的过程是能量转化的过程,功是能的转化的量度。

功是一个过程量,它和一段位移(一段时间)相对应;而能是一个状态量,它与一个时刻相对应。两者的单位是相同的(J ),但不能说功就是能,也不能说“功变成了能”。

(2)要研究功和能的关系,突出“功是能量转化的量度”这一基本概念。①物体动能的增量由外力做的总功来量度,即:K E W ?=外; ②物体重力势能的增量由重力做的功来量度,即:P G E W ?-=;③物体机械能的增量由重力以外的其他力做的功来量度,即:E W ?=/,当0/=W 时,说明只有重力做功,所以系统的机械能守恒;④一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。相对滑S F Q =,其中滑F 为滑动摩擦力,相对S 为接触物的相对路程。

六、规律整合

1.应用动能定理解题的步骤

⑴选取研究对象,明确它的运动过程。

⑵分析研究对象的受力情况。明确物体受几个力的作用,哪些力做功,哪些力做正功,哪

些力做负功。

⑶明确物体的初、末状态,应根据题意确定物体的初、末状态,及初、末状态下的动能。 ⑷依据动能定理列出方程:初末总-=K K E E E

⑸解方程,得出结果。

友情提醒:⑴动能定理适合研究单个物体,式中总E 应指物体所受各外力对物体做功的代数和,初末-=K K E E E ?是指物体末态动能和初态动能之差。

⑵在应用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程(例如加速、减速过程),此时也可分段考虑,也可对全程考虑,如能对整个过程列式,

则可以使问题简化,在把各力的功代入公式:21223212

121υυm m W W W W n -=+???+++时,要把它们的数值连同符号代入,解题要分清各过程中各个力的做功情况。

⑶动能定理问题的特征

①动力学和运动学的综合题:需要应用牛顿运动定律和运动学公式求解的问题,应用动能定理比较简便。

②变力功的求解问题和变力作用的过程问题:变力作用过程是应用牛顿运动定律和运动学公式难以求解的问题,变力的功也是功的计算式αcos FS W =难以解决的问题,都可以应用动能定理来解决。

2.应用机械能守恒定律解题的基本步骤

⑴根据题意,选取研究对象。

⑵明确研究对象的运动过程,分析研究对象在过程中的受力情况,弄清各力做功的情况,判断是否符合机械能守恒的条件。

⑶恰当地选取参考平面,确定研究对象在过程中初状态和末状态的机械能(包括动能和势能)。

⑷根据机械能守恒定律列方程,进行求解。

友情提醒:1.重力做功和重力势能:(1)重力势能具有相对性,随着所选参考平面的不同,重力势能的数值也不同。(2)重力势能是标量、是状态量,但也有正负。正值表示物体在参考平面上方,负值表示物体在参考平面下方。(3)重力对物体所做的功只跟始末位置的高度差有关,而跟物体运动路径无关。(4)重力对物体做正功,物体重力势能减小,减少的重力势能等于重力所做的功; 重力做负功(物体克服重力做功),重力势能增加,增加的重力势能等于克服重力所做的功。 即W G =-ΔEp

2.机械能守恒定律:单个物体和地球(含弹簧)构成的系统机械能守恒定律:在只有重力(或)(和)弹簧的弹力做功的条件下,物体的能量只在动能和重力势能(弹性势能)间发生相互转化,机械能总量不变,机械能守恒定律的存在条件是 :(1) 只有重力(或)(和)弹簧的弹力做功;(2)除重力(或)(和)弹簧的弹力做功外还受其它力的作用,但其它力做功的代数和等于零。

八、专题专练

一、选择题(共10小题,在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得4分,选不全的得2分,有选错的或不答的得0分)

1.一物体在竖直平面内做匀速圆周运动,下列物理量一定不会发生变化的是( )

A .向心力

B .向心加速度

C .动能

D .机械能

2.行驶中的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的光

焰;降落伞在空中匀速下降;条形磁铁在下落过程中穿过闭线圈,线圈中产生电流,上述不同现象中所包含的相同的物理过程是( )

A.物体克服阻力做功

B.物体的动能转化为其他形式的能量

C.物体的势能转化为其他形式的能量

D.物体的机械能转化为其他形式的能量

3.一个质量为m 的物体,以g a 2=的加速度竖直向下运动,则在此物体下降h 高度过程中,物体的( )

A .重力势能减少了mgh 2

B .动能增加了mgh 2

C .机械能保持不变

D .机械能增加了mgh

4.如图1所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转

动而未滑动。当圆筒的角速度增大以后,下列说法正确的是( )

A 、物体所受弹力增大,摩擦力也增大了

B 、物体所受弹力增大,摩擦力减小了

C 、物体所受弹力和摩擦力都减小了

D 、物体所受弹力增大,摩擦力不变

5.质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止开始通过位移时的动能为E 1,当物体受水平力2F 作用,从静止开始通过相同位移,它的动能为E 2,则( )

A .E 2=E 1 B. E 2=2E 1 C. E 2>2E 1 D. E 1<E 2<2E 1

6.如图2所示,传送带以0υ的初速度匀速运动。将质量为m 的物体无初速度放在传

送带上的A 端,物体将被传送带带到B 端,已知物体到达B

端之间已和传送带相对静止,则下列说法正确的是( )

A .传送带对物体做功为221υm

B .传送带克服摩擦做功221υm

C .电动机由于传送物体多消耗的能量为221υm

D .在传送物体过程产生的热量为22

1υm 7.利用传感器和计算机可以测量快速变化的力的瞬时值。如图3中的右图是用这种方

法获得的弹性绳中拉力随时间的变化图线。实验时,把小球举

高到绳子的悬点O 处,然后放手让小球自由下落。 由此图线

所提供的信息,以下判断正确的是( )

A.t 2时刻小球速度最大

B.t 1~t 2期间小球速度先增大后减小

C.t 3时刻小球动能最小

D.t 1与t 4时刻小球速度一定相同

8.如图4所示,斜面置于光滑水平地面上,其光滑斜面上有一物体由静止沿斜面下滑,

在物体下滑过程中,下列说法正确的是( )

A. 物体的重力势能减少,动能增加

B. 斜面的机械能不变

C.斜面对物体的作用力垂直于接触面,不对物体做功

D.物体和斜面组成的系统机械能守恒

9.如图5所示,粗糙的水平面上固定一个点电荷Q,在M点无初速度是放一带有恒定电量的小物块,小物块在Q的电场中运动到N点静止。则从M点运动到N点的过程中()A.小物块所受的电场力逐渐减小

B.小物块具有的电势能逐渐增大

C.M点的电势一定高于N点的电势

D.小物块电势能变化量的大小一定等于克服摩擦力做的功

10.如图6所示,在竖直平面内有一半径为1m的半圆形轨道,质量

为2kg的物体自与圆心O等高的A点由静止开始滑下,通过最低点B

时的速度为3m/s,物体自A至B的过程中所受的平均摩擦力为( )

A.0N B.7N C.14N D.28N

二、填空题(共2小题,共18分,把答案填在题中的横线上)

11.某一在离地面10m的高处把一质量为2kg的小球以10m/s的速率抛出,小球着地时的速率为15m/s。g取10m/s2,人抛球时对球做功是 J,球在运动中克服空气阻力做功是 J

12. 质量m=1.5kg的物块在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0s停在B点,已知A、B两点间的距离s=5.0m,物块与水平面间的动摩擦因数μ=0.20,恒力F等于(物块视为质点g取10m/s2). 三、计算题(共6小题,共92分,解答下列各题时,应写出必要的文字说明、表达式和重要步骤。只写最后答案的不得分。有数值计算的题,答案中必须明确写出数值和单位。)

13. (12分)某市规定:卡车在市区内行驶速度不得超过40km/h,一次一辆卡车在市区路面紧急刹车后,量得刹车痕迹s=18m,假设车轮与路面的滑动摩擦系数为0.4。问这辆车是否违章?试通过计算预以证明。

14. (13分)如图7所示,在光滑的平台上,有一质量为m的物体,物体与轻绳的一端相连,轻绳跨过定滑轮(定滑轮的质量和摩擦不计)另一端被滑轮正下方站在地面上的人拉住,人与绳的接触点和定滑轮的高度差为h,若此人以速度v0向右匀速前进s,求在此过程中人的拉力对物体所做的功。

15. (15分)一半径R=1米的1/4圆弧导轨与水平导轨相连,从圆弧导轨顶端A 静止释放一个质量m=20克的木块,测得其滑至底端B 的速度v B =3米/秒,以后又沿水平导轨滑行BC=3米而停止在C 点,如图8所示,试求(1)圆弧导轨摩擦力的功;(2)BC 段导轨摩擦力的功以及滑动摩擦系数(取g=10米/秒2)

16 (16分).如图9所示,在水平桌面的边角处有一轻质光滑的定滑轮K ,一条不可伸长的轻绳绕过K 分别与A 、B 连,A 、B 的质量分别为A m 、B m ,开

始时系统处于静止状态.现用一水平恒力F 拉物体A ,使物体B 上

升.已知当B 上升距离h 时,B 的速度为v .求此过程中物体A 克

服摩擦力所做的功.重力加速度为g .

17. (17分)儿童滑梯可以看成是由斜槽AB 和水平槽CD 组成,中间用很短的光滑圆弧槽BC 连接,如图10所示.质量为m 的儿童从斜槽的顶点A 由静止开始沿斜槽AB 滑下,再进入水

平槽CD ,最后停在水平槽上的E 点,由A 到E 的

水平距离设为L .假设儿童可以看作质点,已知儿童

的质量为m ,他与斜槽和水平槽间的动摩擦因数都

为μ,A 点与水平槽CD 的高度差为h .

(1)求儿童从A 点滑到E 点的过程中,重力做

的功和克服摩擦力做的功.

(2)试分析说明,儿童沿滑梯滑下通过的水平

距离L 与斜槽AB 跟水平面的夹角无关.

(3)要使儿童沿滑梯滑下过程中的最大速度不超过v ,斜槽与水平面的夹角不能超过多少?

18.(19分)质量为kg 3

100.1?的汽车,沿倾角为?30的斜坡由静止开始运动,汽车在运动过程中所受摩擦阻力大小恒为N 2000,汽车发动机的额定输出功率为W 4106.5?,开始

时以2/1s m a =的加速度做匀加速运动(2/10s m g =)。求:(1)汽车做匀加速运动的时间1t ;(2)汽车所能达到的最大速率;(3)若斜坡长m 5.143,且认为汽车达到坡顶之前,已达到最大速率,则汽车从坡底到坡顶需多少时间?

参考答案:

1.D

2.AD

3.BD

4.D

5. C

6.AD

7.B

8.AD

9.AD 10.B

11. 100J 75J 12. 15N

13. 解:设卡车运动的速度为v 0,刹车后至停止运动,由动能定理:-μmgs=0-2021mv 。得v=18104.022???=gs μ=12m/s=43.2km/h 。因为v 0>v 规,所以该卡车违章了。

14. 解:当人向右匀速前进的过程中,绳子与竖直

方向的夹角由0°逐渐增大,人的拉力就发生了变化,

故无法用W =Fscos θ计算拉力所做的功,而在这个过

程中,人的拉力对物体做的功使物体的动能发生了变

化,故可以用动能定理来计算拉力做的功。

当人在滑轮的正下方时,物体的初速度为零,

当人水平向右匀速前进s 时物体的速度为v 1 ,由图

1可知: v 1= v 0sin a

⑴根据动能定理,人的拉力对物体所做的功

W =m v 12/2-0

⑵由⑴、⑵两式得W =ms 2 v 12/2(s 2+h 2)

15. 解:(1)对AB 段应用动能定理:mgR+W f =

221B mv 所以:W f =221B mv -mgR=910202

13???--20×10-3×10×1=-0.11J (2)对BC 段应用动能定理:W f =0-221B mv =-910202

13???-=-0.09J 。又因W f =μmgBCcos1800=-0.09,得:μ=0.153。

16. 解:在此过程中,B 的重力势能的增量为gh m B ,A 、B 动能增量为2)(21v m m B A +,恒力F 所做的功为Fh ,用W 表示A 克服摩擦力所做的功,根据功能关系有: ()gh m v m m W Fh B B A ++=

-221 解得:()gh m v m m Fh W B B A -+-=221 17. 解:(1)儿童从A 点滑到E 点的过程中,重力做功W=mgh

儿童由静止开始滑下最后停在E 点,在整个过程中克服摩擦力做功W 1,由动能定理得, 1W mgh -=0,则克服摩擦力做功为W 1=mgh

(2)设斜槽AB 与水平面的夹角为α,儿童在斜槽上受重力mg 、支持力N 1和滑动摩擦 力f 1,αμcos 1mg f =,儿童在水平槽上受重力mg 、支持力N 2和滑动摩擦力f 2, mg f μ=2,儿童从A 点由静止滑下,最后停在E 点. v 0 α h s 图1 v 2 v 1 α

由动能定理得,0)cot (sin cos =--?

-αμα

αμh L mg h mg mgh 解得μh L =,它与角α无关. (3)儿童沿滑梯滑下的过程中,通过B 点的速度最大,显然,倾角α越大,通过B 点的速度越大,设倾角为0α时有最大速度v ,由动能定理得,

2002

1sin cos mv h mg mgh =?-ααμ 解得最大倾角)22cot(20gh

v gh arc μα-= 18. 解:(1)根据牛顿第二定律有:ma f mg F =-?-30sin

设匀加速的末速度为v ,则有:Fv P =、1at v =

代入数值,联立解得:匀加速的时间为:s t 71=

(2)当达到最大速度m v 时,有:m v f mg P )30sin (+?=

解得:汽车的最大速度为:s m v m /8=

(3)汽车匀加速运动的位移为:m at s 5.242

1211== 在后一阶段牵引力对汽车做正功,重力和阻力做负功,根据动能定理有: 22222

121)30sin (mv mv s f mg Pt m -=

+?- 又有12s s s -= 代入数值,联立求解得:s t 152=

所以汽车总的运动时间为:s t t t 2221=+=

初中八年级(初二)物理 动能和势能·知识点精解

动能和势能·知识点精解 1.动能的概念 物体由于运动而具有的能叫做动能,用Ek表示。 2.动能的量度公式 (1)物体的动能等于它的质量跟它的速度平方的乘积。 (3)从上式可知动能为标量,单位由m、v决定为焦耳。因为1[千克·米2/秒2]=1[千克·米/秒2][米]=1牛·米=1焦。 (4)物体的动能具有相对性,相对不同参考系物体动能不同,因而在同一问题中应选择同一参考系。一般物体速度都是对地球的。 (5)动能的变化量又叫动能增量,指的是未动能与初动能之差。ΔEk= 少。 (6)物体的动能与动量均与物体的质量和速度有关系,但表示的意义不同。动量表示运动效果,动能表示运动能量。且动量为矢量,动能为标量。它们之间的数值关系为P2=2mEk。 3.动能定理 (1)动能定理内容 外力对物体做功的代数和(或合外力对物体做的功),等于物体动能的增量。这就是动能定理。 动能定理也可以说成:外力对物体做功,等于物体动能的增量;物体克服外力做功,等于物体动能的减少。 (2)动能定理的表达式

(3)关于动能定理的理解 ①动能定理的计算为标量式,不能分方向,v为相对同一参考系的速度。 ②动能定理的研究对象是单一物体,或者可以看成单一物体的物体系。若相互作用的物体系统由几个物体组成,则应按隔离法逐一对物体列动能定理方程。 ③以上两式(1)式用的较少。(1)式中要求求出F合,则应用矢量合成较复杂,力F都应为恒力方可求合力,且物体在整个过程中物体受力保持不变。(2)式所要求的是物体所受各力做功的代数和,其中对力没做任何要求,力可以是各种性质的力(包括重力和弹力),既可以是变力也可以是恒力;既可以同时作用,也可以分段作用。只要求出在作用过程中各力做功的多少正负即可。这也正是动能定理的优越性所在。 ④功和动能均为标量,但功有正负之分,在求未知功时,一般认为是正值。若求得为正值,说明该力做正功,负值则为物体克服该力做功。 ⑤应用动能定理时应注意动能定理的形式。即等式一边为W合,另一边为ΔEk。若将功与动能写在一边就可能成为其他规律的形式。如功能原理,能量守恒等。 ⑥若物体运动过程中包含几个不同过程,应用动能定理时;可以分段考虑,这样对初学者较易掌握,也可以看全过程为一整体来处理。 4.势能的概念 由于物体之间相对位置所决定的能叫势能。由物体与地球相对位置所决定的能叫重力势能。势能都是物体系统所共同具有。物体的重力势能为物体和地球共同具有,习惯上说成某物体的势能。 5.重力势能的量度公式 (1)用EP表示势能,物体质量为m,高度为h,则重力势能为: E P=mgh (2)重力势能为标量,单位为焦耳。 (3)重力势能具有相对性。重力势能的大小与零势点的选取有关,选择不同零势点,物体势能不同。原则上设零势点的选取是任意的,一般题中选题中最低点为零势能点。但人们往往关心的是势能的变化而不是势能本身。 (4)由于零势点的选取,势能有正负之分。若物体在零势面以上h米处,其重力势能为EP=mgh;若物体在零势能以下h米处时,其重力势能为EP=-mgh。势能的正负表明势能的大小。 (5)重力做功,物体重力势能减少,物体重力做多少功,重力势能就减少多少。物体克服重力做功,物体重力势能就增加,克服重力做多少功,物体重力势能就增加多少。 6.弹性势能的初步概念

九年级物理下册 第十九章能源与能量守恒定律知识点 沪粤版要点

第19章能源与能量守恒定律知识点 学习要求 1.常识性了解什么是能源,什么是一次能源,什么是二次能源。什么是不可再生能源,什么是可再生能源。 2.常识性了解核能、裂变和聚变。 3.初步认识太阳的结构,知道太阳能是人类能源的宝库。大致了解太阳能的利用方式。 4.初步了解能量转移和能量转化的方向性。 5.知道能量守恒定律。 6.认识能源消耗对环境的影响。 学习重点 1.能源的分类。 2.太阳能、核能。 1.一次能源与二次能源 可以从自然界直接获取的能源,统称为一次能源,必须通过消耗一次能源才能得到的能源称为二次能源。 2.不可再生能源与可再生能源 凡是越用越少,不可能在短期内从自然界得到补充的能源,都属于不可再生能源,如化石能源、核能。凡是可以在自然界中源源不绝地得到的能源,都属于可再生能源。如水能、风能、太阳能、生物质能。 3.太阳能 在太阳的内部,氢原子核在超高温下发生聚变,释放出巨大的核能。大部分太阳能以热和光的形式向四周辐射出去。因此,太阳实际上是一个巨大的“核能火炉”。我们今天仍然使用的煤、石油、天然气这些化石燃料中的化学能,实际上是来自上亿年前地球所接受的太阳能。4.太阳能的利用

人类除了间接利用存贮在化石燃料中的太阳能外,还设法直接利用太阳能。目前直接利用太阳能的方式有两种:一种是利用集热器加热物质,另一种是用太阳电池把太阳能转化为电能。5.原子、原子核与核能 一切物质由分子组成,分子又由原子组成,原子则由质子和中子组成。当原子核分裂或聚合,就要放出惊人的能量,这就是核能。 6.分裂与聚变 当用中子轰击较大的原子核,原子核就变成两个中等大小的原子核,同时释放出巨大的能量。这个过程叫做裂变。 将质量很小的原子核在超高温下重新结合成新的原子核,会释放出更大的核能,这就是聚变。

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

高三物理《能量守恒定律》公式总结

高三物理《能量守恒定律》公式总结 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律w+Q=ΔU{,w:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出〔见第二册P44〕} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温

度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功w<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

动能定理 模块知识点总结

动能定理 模块知识点总结 一、动能:物体由于运动而具有的能叫动能,其表达式为: 2k mv 2 1 E = 和动量一样,动能也是用以描述机械运动的状态量。只是动量是从机械运动出发量化机械运动的状态动量确定的物体决定着它克服一定的阻力还能运动多久;动能则是从机械运动与其它运动的关系出发量化机械运动的状态,动能确定的物体决定着它克服一定的阻力还能运动多远。 二、动能定理:合外力所做的总功等物体动能的变化量。 K E mv mv W ?=-= 2 1222121合 (1) 式中W 合是各个外力对物体做功的总和, ΔE K 是做功过程中始末两个状态动能的增量. 动能定理实际上是在牛顿第二定律的基础上对空间累积而得: 在牛顿第二定律 F = ma 两端同乘以合外力方向上的位移,即可得 2 1222 121mv mv mas Fs W -= ==合 三、对动能定理的理解: ①如果物体受到几个力的共同作用,则(1)式中的W 合表示各个力做功的代数和,即合外力所做的功. W 合=W 1+W 2+W 3+…… ②应用动能定理解题的特点:跟过程的细节无关. 即不追究全过程中的运动性质和状态变化细节. ③动能定理的研究对象是质点. ④动能定理对变力做功情况也适用.动能定理尽管是在恒力作用下利用牛顿第二定律和运动学公式推导的,但对变力做功情况亦适用. 动能定理可用于求变力的功、曲线运动中的功以及复杂过程中的功能转换问题. ⑤应用动能定理解题的注意事项:

⑴要明确物体在全过程初、末两个状态时的动能; ⑵要正确分析全过程中各段受力情况和相应位移,并正确求出各力的功; ⑶动能定理表达式是标量式,不能在某方向用速度分量来列动能定理方程式: ⑷动能定理中的位移及速度,一般都是相对地球而言的. 动量定理与动能定理的区别: 【比较】两大是描述物体在空间运动的时间过程中: 动量定理:F ·t=P ′-P .合外力对物体的冲量与物体动量变化之间的关系 动能定理:F ·s = 2 1m υ22—21m υ12,或W = ΔE k 。合外力对物体所做的总功等于物体动能的变化。 两定理都是由牛顿第二定律与运动学公式结合推导得出的。但它们是从不同角度来描述力和物体运动状态的关系。 动量定理反映了力对时间的积累效果——使物体的动量发生了多少变化; 动能定理反映了力对空间的积累效应——使物体的动能发生了多少变化。 动量定理的表达式是矢量式,一般应采用矢量运算的平行四边形法则。当用于一维运动的计算时,应首先选定向。 动能定理的表达式是标量式,合力的功即为各力做正功或负功的代数和,所有运算为代数运算,不必规定向。 动量定理的研究对象是单个物体或物体系统,式中F 是合外力,不包含系统力。因为系统力是成对出现的,作用力和反作用力在任何情况下的冲量都是等值反向,不会改变系统的总动量。 动能定理的研究对象是单个物体,合力的功即为合外力的功。若扩展到系统,则合力的功亦包括力的功。因为系统力做功也可能改变系统的总动能。 (作用力与反作用力的冲量和一定为零,而作用力与反作用力的功的和却不一定为零) 动能定理和动量定理从不同的侧面(分别是位移过程和时间过程)反映了力学规律,是解决办学问题两条重要定理,一般来说,侧重于位移过程的力学问题用动能定量处理较为方便,侧重于时间过程的力学问题用动量定理处理较为方便. 动量定理和动能定理虽然是由牛顿第二定律推导出来的,但由于应用它们处理问题时无须深究过程细节,对恒力、

关于高中物理知识点总结之能量守恒定律与能源知识点

关于高中物理知识点总结之能量守恒定 律与能源知识点 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。这就是能量守恒定律,如今被人们普遍认同。 1.化学能:由于化学反应,物质的分子结构变化而产生的能量。 2.核能:由于核反应,物质的原子结构发生变化而产生的能量。 3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。 ●内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。 即 E机械能1+E其它1=E机械能2+E其它2 ●能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。 1.可再生能源:可以长期提供或可以再生的能源。 2.不可再生能源:一旦消耗就很难再生的能源。

3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。 1.太阳能 2.核能 3.核能发电 4、其它新能源:地热能、潮汐能、风能。 能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。 【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。 【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

高中物理的能量守恒定律知识点

高中物理的能量守恒定律知识点 能量守恒定律也称能的转化与守恒定律。 其内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体;在转化或转移的过程中,能量的总量不变。 高中物理都研究了哪些形式的能量? 研究能量守恒定律,要搞明白咱们主要研究哪些能量呢? 从解高中物理题的角度来分析,我们主要分析的是这五种形式的能量: 动能、弹性势能、重力势能、内能、电势能。 注:内能包括摩擦生热与焦耳热两种形式,高中不考磁能。动能、弹性势能、重力势能这三种形式能量之和称之为机械能。 当然,上述五种形式的能量,是力学与电磁学常考到的。 选修内容中的机械振动也是具有能量的,还有光子能量,核能等等,这些都不在本文讨论范围内,不过同学们需要知道,光电效应方程与波尔能级方程也

都是能量守恒定律的推导。 能量守恒定律的公式 E1=E2 即,初始态的总能量,等于末态的总能量。 或者说,能量守恒定律,就是说上文提到的五种形式的能量之和是恒定的。 机械能守恒定律与能量守恒定律关系 机械能守恒定律是能的转化与守恒定律的特殊形式。两者大多都是针对系统进行分析的。 (1)在只有重力、弹力做功时,系统对应的只有动能、弹簧弹性势能、重力势能三种形式能量之间的变化。 (2)在有重力、弹簧弹力、静电场力、摩擦力、安培力等等,众多形式的力做功时,系统对应的有动能、弹簧弹性势能、重力势能、电势能、摩擦热、焦耳热等等众多形式的能量变化,而这些能量也是守恒的。 从上述对比中不难看出,机械能守恒是能量守恒的一种特例。 因此,在熟练掌握能的转化与守恒定律内容的基础上,我们可以使用能量守恒来解决机械能守恒的问题。 或者说,能量守恒掌握的非常棒了,我们就可以

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

高中物理必修二---动能和动能定理

高中物理必修二动能和动能定理 【知识整合】 1、动能:物体由于_____________而具有的能量叫动能。 ⑴动能的大小:_________________ ⑵动能是标量。 ⑶动能是状态量,也是相对量。 2、动能定理: ⑴动能定理的内容和表达式:____________________________________________ ⑵物理意义:动能定理指出了______________________和_____________________的关系,即外力做的总功,对应着物体动能的变化,变化的大小由________________来度量。 我们所说的外力,既可以是重力、弹力、摩擦力,又可以是电场力、磁场力或其他力。物体动能的变化是指_____________________________________________。 ⑶动能定理的适用条件:动能定理既适用于直线运动,也适用于________________。 既适用于恒力做功,也适用于______________________。力可以是各种性质的力,既可以同时做用,也可以____________________,只要求出在作用过程中各力做功的多少和正负即可,这些正是动能定理解题的优越性所在。 【重难点阐释】 1、应用动能定理解题的基本步骤: ⑴选取研究对象,明确它的运动过程。 ⑵分析研究对象的受力情况和各力做功的情况:受哪些力?每个力是否做功?做正功还是负功?做多少功?然后求各力做功的代数和。 ⑶明确物体在过程的始末状态的动能E k1和E k2 ⑷列出动能定理的方程W合=E k2-E k1及其它必要的解题方程,进行求解。 2、动能定理的理解和应用要点: (1)动能定理的计算式为W合=E k2-E k1,v和s是想对于同一参考系的。 (2)动能定理的研究对象是单一物体,或者可以看做单一物体的物体系。 (3)动能定理不仅可以求恒力做功,也可以求变力做功。在某些问题中由于力F的大小发生变化或方向发生变化,中学阶段不能直接利用功的公式W=FS来求功,,此时我们利用动能定理来求变力做功。 (4)动能定理不仅可以解决直线运动问题,也可以解决曲线运动问题,而牛顿运动定律和运动学公式在中学阶段一般来说只能解决直线运动问题(圆周和平抛有自己独立的方法)。(5)在利用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程(如加速和减速的过程),此时可以分段考虑,也可整体考虑。如能对整个过程列动能定理表达式,则可能使问题简化。在把各个力代入公式:W1﹢W2﹢……﹢Wn=E k2-E k1时,要把它们的数值连同符号代入,解题时要分清各过程各力做功的情况。 【典型例题】 另一端施加大小为F1的拉力作用,在水平面上 做半径为R1的匀速圆周运动今将力的大小改变

初中物理知识点题库111能量守恒定律

1.用打桩机打桩,打桩锤从5m高处自由落下时,锤与桩因冲击力作用表面温度升高,这说明() A、机械能守恒 B、动能守恒 C、热能守恒 D、能量守恒 答案:D 解析:打桩时,锤和桩温度升高说明有内能产生,而锤的机械能减小,故发生了机械能和内能的转化,故只能说明是能量守恒. 题干评注:能量守恒定律 问题评注:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。 2.能量守恒定律是19世纪自然科学的三大发现之一,也是自然界最普遍、最重要的基本规律之一,小到原子世界,大到宇宙天体,只要有能的变化,无论是什么变化,都遵循它.此定律的内容是:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变. 答案:能量守恒;能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变. 解析:能量守恒定律:是各种能量形式互相转换是有方向和条件限制的,能量互相转换时其量值不变,表明能量是不能被创造或消灭的.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变.这就是能量守恒定律. 题干评注:能量守恒定律 问题评注:能量守恒定律:是各种能量形式互相转换是有方向和条件限制的,能量互相转换时其量值不变,表明能量是不能被创造或消灭的.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变.这就是能量守恒定律。 3.利用能的过程是把一种形式的能量为另一种形式的能的过程;或都是把能量从一个物体到另外一个物体.利用太阳灶烧水是利用能的,利用电水壶烧是能的答案:转化;转移;转化;转化. 解析:根据能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变,这就是能量守恒定律. 题干评注:能量守恒定律 问题评注:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。 4.各种能量在一定条件下可以相互转化.在能量转移、转化的过程中,能量的总量.这个规律称为 答案:一定条件;保持不变;能的转化和守恒定律. 解析:根据能量守恒定律的定义:各种能量形式互相转换是有方向和条件限制的,能量互相转换时其量值不变,表明能量是不能被创造或消灭的. 题干评注:能量守恒定律 问题评注:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。 5.学习了内能及能量的转化和守恒后,同学们在一起梳理知识时交流了以下想法,你认为其中不正确的是() A、能量在转化和转移的过程中总会有损耗,但能量的总量保持不变

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

高中物理实验知识点复习验证动能定理

高中物理实验知识点复习验证动能定理 实验仪器:电磁打点计时器(J0203型)、学生电源、长方形木块(约1074厘米3)、纸带、天平(学生天平或托盘天平)、带定滑轮的木板(长约1米)、细线、砝码盘、砝码 实验目的:验证在外力作用下物体做加速运动或减速运动时,动能的增量等于合外力所做的功。 实验原理:物体在恒力作用下做直线运动时,动能定理可表述为 F合s= mv22- mv12。只要实验测得F合s 和 m(v22-v12)在实验误差范围内相等,则动能定理被验证。F合可以由F 合=ma求得。 教师操作: (1)用天平测出木块的质量。把器材按图装置好。纸带固定在木块中间的方孔内。 (2)把木块放在打点计时器附近,用手按住。往砝码盘中加砝码。接通打点计时器电源,让它工作。放开木块,让它做加速运动。当木块运动到木板长的左右时,用手托住砝码盘,让木块在阻力作用下做减速运动。当木块到达定滑轮处(或静止)时,断开电源。 (3)取下纸带,在纸带上反映物体加速运动和减速运动的两部分点迹中较理想的一段,分别各取两点(其间点迹数不少于9点)。量出SA、SB、SC、SD和SAB、SCD。由SA、SB、

SC、SD及相应的时间间隔(图中为0.08秒)。算出VA、VB、VC、VD,利用VA、VB和A、B间的时间间隔求出A、B间木块运动的加速度aAB;同法求出aCD。则木块质量m与aAB、aCD的乘积分别表示在AB段和CD段木块受的合力。 (4)根据实验结果填好下表,看F合S与Ek是否相等。 (5)重新取计数点,重复步骤(3)和(4),再验证一次。 考生们只要加油努力,就一定会有一片蓝天在等着大家。以上就是查字典物理网的编辑为大家准备的高中物理实验知识点复习:验证动能定理

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

物理必修二_机械能守恒定律知识点总结

机械能知识点总结 一、功 1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。 2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θ W ——某力功,单位为焦耳(J ) F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m ) θ——力与位移的夹角 4功是标量,但它有正功、负功。某力对物体做负功,也可说成“物体克服某力做功”。 功的正负表示能量传递的方向,即功是能量转化的量度。 当)2,0[π θ∈时,即力与位移成锐角,力做正功,功为正; 当2π θ=时,即力与位移垂直,力不做功,功为零; 当],2(ππ θ∈时,即力与位移成钝角,力做负功,功为负; 5功是一个过程所对应的量,因此功是过程量。 6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。 7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。 即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ 二、功率 1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。 2公式:t W P =(平均功率) θυc o s F P =(平均功率或瞬时功率) 3单位:瓦特W 4分类: 额定功率:指发动机正常工作时最大输出功率

实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。 5应用: (1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值max υ,则f P /max =υ。 (2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续 增大,直至f F =时,汽车便达到最大速度max υ,则f P /max =υ。 三、重力势能 1定义:物体由于被举高而具有的能,叫做重力势能。 2公式:mgh E P = h ——物体具参考面的竖直高度 3参考面 a 重力势能为零的平面称为参考面; b 选取:原则是任意选取,但通常以地面为参考面 若参考面未定,重力势能无意义,不能说重力势能大小如何 选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。 4标量,但有正负。 重力势能为正,表示物体在参考面的上方; 重力势能为负,表示物体在参考面的下方; 重力势能为零,表示物体在参考面的上。 5单位:焦耳(J ) 6重力做功特点:物体运动时,重力对它做的功之跟它的初、末位置有关,而跟物体运动的路径无关。

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2= 3 2 m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ= 3 ,g 取10m/s 2. (1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ; (3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0

高三物理能量守恒定律详尽讲义

高三物理能量守恒定律详尽讲义 考纲解读1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 1.[功能关系的理解]用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是() A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 答案 C 2.[能的转化与守恒定律的理解]如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中() 图1 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 答案AD 解析在X-37B由较低轨道飞到较高轨道的过程中,必须启动助推器,对X-37B做正功,X-37B的机械能增大,A对,B错.根据能量守恒定律,

C错.X-37B在确定轨道上绕地球做圆周运动,其动能和重力势能都不会发生变化,所以机械能不变,D对. 3.[能量守恒定律的应用]如图2所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停 下来,则停下的位置到B的距离为() 图2 A.0.5 m B.0.25 m C.0.1 m D.0 答案 D 解析由mgh=μmgx,得x=3 m,而x d= 3 m 0.5 m=6,即3个来回后,小物块 恰停在B点,选项D正确. 一、几种常见的功能关系 1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增.

相关文档
最新文档