先来先服务FCFS和短作业优先SJF进程调度算法

先来先服务FCFS和短作业优先SJF进程调度算法
先来先服务FCFS和短作业优先SJF进程调度算法

先来先服务FCFS和短作业优先SJF进程调度算法

【实验题目】:先来先服务FCFS和短作业优先SJF进程调度算法通过这次实验,加深对进程概念的理解,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。

【实验内容】

问题描述:

设计程序模拟进程的先来先服务FCFS和短作业优先SJF调度过程。假设有n个进程分别在T1, …,T n时刻到达系统,它们需要的服务时间分别为S1, … ,S n。分别采用先来先服务FCFS和短作业优先SJF 进程调度算法进行调度,计算每个进程的完成时间,周转时间和带权周转时间,并且统计n个进程的平均周转时间和平均带权周转时间。【实验要求】要求如下:

1)进程个数n;每个进程的到达时间T1, …,T n和服务时间S1, … ,S n;选择算法1-FCFS,2-SJF。

2)要求采用先来先服务FCFS和短作业优先SJF分别调度进程运行,计算每个进程的周转时间,带权周转时间,并且计算所有进程的平均周转时间,带权平均周转时间;

3)输出:要求模拟整个调度过程,输出每个时刻的进程运行状态,如“时刻3:进程B开始运行”等等;

4)输出:要求输出计算出来的每个进程的周转时间,带权周转时间,所有进程的平均周转时间,带权平均周转时间。

程序代码:

#include

#include

#define Number 5

void main()

{

int n;

int daoda[Number],fuwu[Number],i;

cout<<"请依次输入各个进程的到达时间并以空格间隔:";

for(i=0;i

{

cin>>daoda[i];

}

cout<<"请依次输入各个进程的服务时间,并以空格间隔:";

for(i=0;i

{

cin>>fuwu[i];

}

cout<<"请输入n=1选择FCFS或者n=2选择SJF或者n=3同时调用FCFS 和SJF,n=";

cin>>n;

while(n<1||n>3){

cout<<"输入的n有误,请重新输入n,n=";

cin>>n;

}

struct statedd //声明结构

{

bool doneF,doneS;

int daoda,fuwu;

float wancheng,zhouzhuan,daiquan,wan,zhou,dai;

};

statedd process[Number];//声明结构变量,这里为数组

int timeflyF=0,timeflyS=0;//定义两个类似于秒表的变量

int j,k,l,nextproF,nextproS;

// 获取数据

for(i=0;i

{

process[i].doneF = false;

process[i].doneS = false;

process[i].wancheng = 0;

process[i].zhouzhuan = 0;

process[i].daiquan = 0;

process[i].wan = 0;

process[i].zhou = 0;

process[i].dai =0;

process[i].daoda = daoda[i];

process[i].fuwu = fuwu[i];

}

// 获取最先到达的进程下标first

int first=0;

l=first;

for(i=1;i

{

if(daoda[first]>daoda[i])

first=i;

}

process[first].doneF=true;

process[first].doneS=true;

process[first].wancheng = process[first].fuwu + process[first].daoda;

process[first].wan = process[first].fuwu + process[first].daoda;

timeflyF += process[first].daoda+process[first].fuwu;

timeflyS += process[first].daoda+process[first].fuwu;

// 接下去到达的进程

//************************************************************* // fcfs ******************************************************** for(j=1;j

{

nextproF = Number+1;

for(k =0 ; k

{

if( !process[k].doneF )

{

if( process[k].daoda <= timeflyF ) // 到达

{

if( nextproF ==Number+1)

nextproF = k;

else

{

if( process[nextproF].daoda > process[k].daoda )

nextproF = k; //获取到达时刻最先的进程

}//else

}//if2

}//if1

}//for

// 处理

process[nextproF].wancheng = process[nextproF].fuwu + timeflyF;

timeflyF += process[nextproF].fuwu;

process[nextproF].doneF=true;

} // circle2

// SJF **********************************************

for(j=1;j

{

nextproS = Number+1;

for(k=0 ; k

{

if(!process[k].doneS)

{

if( process[k].daoda <= timeflyS ) // 到达

{

if( nextproS ==Number+1 )

nextproS = k;

else

{

if( process[nextproS].fuwu > process[k].fuwu )

nextproS = k; //获取服务时间最小的进程

}//else

}//if2

}//if1

}//for

// 处理

process[nextproS].wan = process[nextproS].fuwu + timeflyS;

timeflyS += process[nextproS].fuwu;

process[nextproS].doneS=true;

} // circle2

//**************************************************************** float Fz=0,Fdq=0,Sz=0,Sdq=0;//

for(i=0;i

{ //----------------------------------------------------

process[i].zhouzhuan=process[i].wancheng-process[i].daoda;

Fz += process[i].zhouzhuan;

process[i].daiquan=process[i].zhouzhuan/process[i].fuwu;

Fdq += process[i].daiquan;

//----------------------------------------------------

process[i].zhou=process[i].wan-process[i].daoda;

Sz += process[i].zhou;

process[i].dai=process[i].zhou/process[i].fuwu;

Sdq += process[i].dai;

}

//=========================输出

==================================

//-------------------------------------------------------------------

if(n==1||n==3){

cout<<"\t"<

cout<<"FCFS:"<

for(i=0;i

{

if(i<1)

{

cout<<"时刻"<

}

else

{

cout<<"时刻"<

}

}

cout<

cout<

cout<

cout<

for(i=0;i

{

cout<

cout<

cout<

cout<

}

cout<<"平均周转时间为:"<

cout<<"平均带权周转时间为:"<

}

//-------------------------------------------------------------------

if(n==2||n==3){

cout<<"\t"<

cout<<"SJF:"<

for(i=0;i

{

if(i<1)

{

cout<<"时刻"<

}

else

{

cout<<"时刻"<

}

}

cout<

cout<

cout<

cout<

for(i=0;i

{

cout<

cout<

cout<

cout<

}

cout<<"平均周转时间为:"<

cout<<"平均带权周转时间为:"<

cout<<"\t"<

}

}

实例截图:

五个进程,到达时间分别为0,1,3,4,6

服务时间分别为5,7,3,8,2

设置选择量n,

当n=1时,选择FCFS

当n=2时,选择SJF

当n=3时,同时分别调用FCFS和SJF

n不为1或2或3时提示错误,重新输入n;1-FCFS 算法

2-SJF算法

3同时调用FCFS和SJF

短作业优先调度算法

青岛理工大学 操作系统课程设计报告 院(系):计算机工程学院 专业:计算机科学与技术专业 学生姓名: 班级:__学号: 题目:短作业优先调度算法的进程调度程序_ 起迄日期:________ 设计地点: 指导教师: 2011—2012年度第 1 学期 完成日期: 2012 年 1 月日

一、课程设计目的 进行操作系统课程设计主要是在学习操作系统课程的基础上,在完成操作系统各部分实验的基础上,对操作系统的整体进行一个模拟,通过实践加深对各个部分的管理功能的认识,还能进一步分析各个部分之间的联系,最后达到对完整系统的理解。同时,可以提高运用操作系统知识解决实际问题的能力;锻炼实际的编程能力、开发软件的能力;还能提高调查研究、查阅技术文献、资料以及编写软件设计文档的能力。 二、课程设计内容与要求 设计目的:在多道程序和多任务系统中,系统内同时处于就绪状态的进程可能有若干个,且进程之间也存在着同步与互斥的关系,要求采用指定的调度策略,使系统中的进程有条不紊地工作,通过观察诸进程的运行过程,以巩固和加深处理机调度的概念。 2、设计要求(多道、单处理机): 1)每一个进程有一个PCB,其内容可以根据具体情况设定。 2)可以在界面设定的互斥资源(包括两种:输入设备与输出设备)的数目 3)进程数、进入内存时间、要求服务时间可以在界面上进行设定 4)进程之间存在一定的同步与互斥关系,可以通过界面进行设定,其表示方法如下: 进程的服务时间由三段组成:I2C10O5(表示进程的服务时间由2个时间片的输入,10个时间片的计算,5个时间片的输出) 进程间的同步关系用一个段表示:W2,表示该进程先要等待P2进程执行结束后才可以运行 因此,进程间的同步与互斥关系、服务时间可以统一用四段表示为:I2C10O5W2 5)可以在运行中显示各进程的状态:就绪、阻塞、执行 6)采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相 应的阻塞队列 7)具有一定的数据容错性 三、系统分析与设计 1、系统分析 本系统主要是采用短作业优先算法进程的进程调度过程。短作业优先调度算法,是指对短作业或短进程优先调度的算法。他们可以分别用于作业调度和进程调度,短作业优先的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将他们调入内存运行。而短进程优先调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给他,,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再度重新调度。本程序采用了非抢占式短作业优先调度。而非抢占式这种方式,一旦把处理机分配给某进程后,便让该进程一直执行,直至该进程完成或发生某事件而被阻塞时,才再把处理机分配给其它进程,决不允许某进程抢占已经分配出去的处理机。这种调度方式的优点是实现简单,系统开销小,适用于大多数的批处理系统环境。但它难以满足紧急任务的要求——立即执行,因而可能造成难以预料的后果。因此,在要求比较严格的实时系统中,不宜采用这种调度方式本系统的主要是在满足要求多道单处理机的情况下进行短作业的优先调度。 本系统在测试时输入了五个进程,按实验要求如I2C10O5(表示进程的服务时间由2个时间片的输入,10个时间片的计算,5个时间片的输出,5个时间片的计算组成)的方式输入,各进程的信息如下:(0 0 1 1 1 )(1 2 1 2 2 )(2 4 1 1 1 )

操作系统作业(1-4)答案

操作系统作业 (第一章—第四章) 一、单项选择 1 在计算机系统中配置操作系统的目的是【】。 A 增强计算机系统的功能 B 提高系统资源的利用率 C 合理组织工作流程以提高系统吞吐量 D 提高系统的运行速度 2 在操作系统中采用多道程序设计技术,能有效提高CPU、内存和I/O设备的【】。 A 灵活性 B 可靠性 C 兼容性 D 利用率 3 在操作系统中,并发性是指若干事件【】发生。 A 在同一时刻 B 一定不在同一时刻 C 在某一时间间隔内 D 依次在不同时间间隔内 4 以下不属于衡量操作系统性能指标的是【】。 A 作业的大小 B 资源利用率 C 吞吐量 D 周转时间 5 下列选项中,操作系统提供给应用程序的接口是【】。 A 系统调用 B 中断 C 函数 D 原语 6 在分时系统中,当用户数为50时,为了保证响应时间不超过1s,选取的时间片最大值为【】。 A 10ms B 20ms C 50ms D 100ms 7 假设就绪队列中有10个就绪进程,以时间片轮转方式进行进程调度,如果时间片为180ms,切换开销为20ms。如果将就绪进程增加到30个,则系统开销所占的比率为【】。 A 10% B 20% C 30% D 90% 8 中断系统一般由相应的【】组成。 A 硬件 B 软件 C 硬件和软件 D 固件 9 以下工作中,【】不是创建进程所必须的。 A 创建进程的PC B B 为进程分配内存 C 为进程分配CPU D 将PCB插入就绪队列 10 系统中有5个用户进程且CPU工作于用户态,则处于就绪状态或阻塞状态的进程数最多分别为【】。 A 5,4 B 4,0 C 0,5 D 4,5 11 如果系统中有n个进程,则就绪队列中进程的个数最多为【】。 A 1 B n-1 C n D n+1

随机进程调度算法

《操作系统原理》实验报告 实验名称:Linux随机进程调度算法实现 班级: 学号: 姓名: 日期: 2012/12/31

一、实验名称 Linux随机进程调度算法实现 二、所属课程名称 《操作系统原理》 三、实验原理 linux 0.11内核目录linux/kernel中的sched.c函数是内核中进程调度管理的程序,其中schedule()函数负责选择系统中下一个要运行的进程。 schedule()函数首先对所有任务(进程)进行检测,唤醒任何一个已经得到信号的进程。具体方法是任务数组中的每个进程,检查其报警定时值alarm。如果进程的alarm时间已经过期(alarm

NR_TASKS:系统能容纳的最大进程数(64个); task[]:任务(进程)数组; 更改代码如下:(linux 0.11内核目录下linux/kernel/sched.c 源文件的scheduling()函数while(1)循环)while (1) { //定义c用来判断系统中是否可运行的任务(进程)存在; c=-1; //c初值设为-1,默认不存在可运行进程; next = 0;//next记录下一个即将运行的进程; i=jiffies % NR_TASKS+1; //i的值是随机产生的; p=&task[i];//p指向在task表中下标为i的进程; while (--i) { //遍历task[]; if(!*--p)continue; //如果task[i]不包含进程,跳过; //如果task[i]包含进程且该进程处于就绪状态,记录 //该任务(进程)序号,跳出无限循环while(1),转向 //switch_to()函数执行该任务(进程); if ((*p)->state == TASK_RUNNING) { next = i; c=i; break; } } if (c) break;//如果没有任何任务(进程)要执行,则跳出, //转向switch_to(),执行0号进程(idle)。 }

操作系统作业参考答案2

应用题参考答案 第二章 1、下列指令中哪些只能在核心态运行? (1)读时钟日期;(2)访管指令;(3)设时钟日期;(4)加载PSW;(5)置特殊 寄存器;(6) 改变存储器映象图;(7) 启动I/O指令。 答:(3),(4),(5),(6),(7)。 2、假设有一种低级调度算法是让“最近使用处理器较少的进程”运行,试解释这种算法对“I/O繁重”型作业有利,但并不是永远不受理“处理器繁重”型作业。 答:因为I/O繁忙型作业忙于I/O,所以它CPU用得少,按调度策略能优先执行。同样原因一个进程等待CPU足够久时,由于它是“最近使用处理器较少的进程”,就能被优先调度,故不会饥饿。 6、若有一组作业J1,…,Jn,其执行时间依次为S1,…,Sn。如果这些作业同时到达系统,并在一台单CPU处理器上按单道方式执行。试找出一种作业调度算法,使得平均作业周转时间最短。 答:首先,对n个作业按执行时间从小到大重新进行排序,则对n个作业:J1’,…,J n’,它们的运行时间满足:S1’≤S2’≤…≤S(n-1)’≤S n’。那么有: T=[S1’+( S1’+S2’)+ (S1’ + S2’+ S3’)+…+(S1’ + S2’+ S3’+…+ S n’)]/n =[n×S1’+( n-1)×S2’+ (n-3)×S3’]+…+ S n’]]/n =(S1’ + S2’+ S3’+…+ S n’)-[0×S1’+1×S2 ’+2×S3’+…+(n-1) S n’]/n 由于任何调度方式下,S1’ + S2’+ S3’+…+ S n’为一个确定的数,而当S1’≤S2’≤…≤S(n-1)’≤S n’时才有:0×S1’+1×S2 ’+2×S3’+…+(n-1) S n’的值最大,也就是说,此时T值最小。所以,按短作业优先调度算法调度时,使得平均作业周转时间最短。 10、有5个待运行的作业,预计其运行时间分别是:9、6、3、5和x,采用哪种运行次序可以使得平均响应时间最短? 答:按照最短作业优先的算法可以使平均响应时间最短。X取值不定,按照以下情况讨论: 1)x≤3 次序为:x,3,5,6,9 2)3

作业调度算法(先来先服务算法,短作业算法)

《操作系统》实验报告 题目:作业调度算法 班级:网络工程 姓名:朱锦涛 学号:E31314037

一、实验目的 用代码实现页面调度算法,即先来先服务(FCFS)调度算法、短作业优先算法、高响应比优先调度算法。通过代码的具体实现,加深对算法的核心的理解。 二、实验原理 1.先来先服务(FCFS)调度算法 FCFS是最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,系统将按照作业到达的先后次序来进行调度,或者说它是优先考虑在系统中等待时间最长的作业,而不管该作业所需执行的时间的长短,从后备作业队列中选择几个最先进入该队列的作业,将它们调入内存,为它们分配资源和创建进程。然后把它放入就绪队列。 2.短作业优先算法 SJF算法是以作业的长短来计算优先级,作业越短,其优先级越高。作业的长短是以作业所要求的运行时间来衡量的。SJF算法可以分别用于作业和进程调度。在把短作业优先调度算法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,优先将它们调入内存。 3、高响应比优先调度算法

高响应比优先调度算法则是既考虑了作业的等待时间,又考虑了作业的运行时间的算法,因此既照顾了短作业,又不致使长作业等待的时间过长,从而改善了处理机调度的性能。 如果我们引入一个动态优先级,即优先级是可以改变的令它随等待的时间的延长而增加,这将使长作业的优先级在等待期间不断地增加,等到足够的时间后,必然有机会获得处理机。该优先级的变化规律可以描述为: 优先权 = (等待时间 + 要求服务时间)/要求服务时间 三、实验内容 源程序: #include #include #include struct work { i nt id; i nt arrive_time;

操作系统作业参考答案及其知识点

操作系统作业参考答案及其知识点 第一章 思考题: 10、试叙述系统调用与过程调用的主要区别? 答: (一)、调用形式不同 (二)、被调用代码的位置不同 (三)、提供方式不同 (四)、调用的实现不同 提示:每个都需要进一步解释,否则不是完全答案 13、为什么对作业进程批处理可以提高系统效率? 答:批处理时提交程序、数据和作业说明书,由系统操作员把作业按照调度策略,整理为一批,按照作业说明书来运行程序,没有用户与计算机系统的交互;采用多道程序设计,可以使CPU和外设并行工作,当一个运行完毕时系统自动装载下一个作业,减少操作员人工干预时间,提高了系统的效率。 18、什么是实时操作系统?叙述实时操作系统的分类。 答:实时操作系统(Real Time Operating System)指当外界事件或数据产生时,能接收并以足够快的速度予以处理,处理的结果又能在规定时间内来控制监控的生产过程或对处理系统做出快速响应,并控制所有实时任务协调一致运行的操作系统。 有三种典型的实时系统: 1、过程控制系统(生产过程控制) 2、信息查询系统(情报检索) 3、事务处理系统(银行业务) 19、分时系统中,什么是响应时间?它与哪些因素有关? 答:响应时间是用户提交的请求后得到系统响应的时间(系统运行或者运行完毕)。它与计算机CPU的处理速度、用户的多少、时间片的长短有关系。 应用题: 1、有一台计算机,具有1MB内存,操作系统占用200KB,每个用户进程占用200KB。如果用户进程等待I/0的时间为80%,若增加1MB内存,则CPU的利用率提高多少? 答:CPU的利用率=1-P n,其中P为程序等待I/O操作的时间占其运行时间的比例1MB内存时,系统中存放4道程序,CPU的利用率=1-(0.8)4=59% 2MB内存时,系统中存放9道程序,CPU的利用率=1-(0.8)9=87% 所以系统CPU的利用率提高了28% 2、一个计算机系统,有一台输入机和一台打印机,现有两道程序投入运行,且程序A先开始做,程序B后开始运行。程序A的运行轨迹为:计算50ms,打印100ms,再计算50ms,打印100ms,结束。程序B的运行轨迹为:计算50ms,输入80ms,再计算100ms,结束。

进程调度算法实验报告

操作系统实验报告(二) 实验题目:进程调度算法 实验环境:C++ 实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较 各种算法的性能优劣。 实验内容:编程实现如下算法: 1.先来先服务算法; 2.短进程优先算法; 3.时间片轮转调度算法。 设计分析: 程序流程图: 1.先来先服务算法 开始 初始化PCB,输入进程信息 各进程按先来先到的顺序进入就绪队列 结束 就绪队列? 运行 运行进程所需CPU时间 取消该进程 2.短进程优先算法

3.时间片轮转调度算法 实验代码: 1.先来先服务算法 #include #define n 20 typedef struct { int id; //进程名

int atime; //进程到达时间 int runtime; //进程运行时间 }fcs; void main() { int amount,i,j,diao,huan; fcs f[n]; cout<<"请输入进程个数:"<>amount; for(i=0;i>f[i].id; cin>>f[i].atime; cin>>f[i].runtime; } for(i=0;if[j+1].atime) {diao=f[j].atime; f[j].atime=f[j+1].atime; f[j+1].atime=diao; huan=f[j].id; f[j].id=f[j+1].id; f[j+1].id=huan; } } } for(i=0;i #define n 5 #define num 5 #define max 65535 typedef struct pro { int PRO_ID; int arrive_time;

操作系统短作业优先调度算法

课程设计 采用短作业优先调度算法调度程序 学号: 姓名: 专业: 指导老师: 日期:

目录 一、实验题目 (3) 二、课程设计的目的 (3) 三、设计内容 (3) 四、设计要求 (3) 五、主要数据结构及其说明 (4) 六、程序运行结果 (5) 七、流程图 (7) 八、源程序文件 (9) 九、实验体会 (13) 十、参考文献 (13)

摘要 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目。这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统性能(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。 在多道程序系统中,一个作业被提交后必须经过处理机调度后,方能获得处理机执行。对于批量型作业而言,通常需要经历作业调度和进程调度两个过程后方能获得处理机。作业调度是对成批进入系统的用户作业,根据作业控制块的信息,按一定的策略选取若干个作业使它们可以去获得处理器运行的一项工作。而对每个用户来说总希望自己的作业的周转时间是最小的,短作业优先(SJF)便是其中一种调度方法。本次课程设计主要是模拟短作业优先(SJF)调度算法。

一、实验题目 采用短作业优先算法的的进程调度程序 二、课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 进一步巩固和复习操作系统的基础知识。 培养学生结构化程序、模块化程序设计的方法和能力。 提高学生调试程序的技巧和软件设计的能力。 提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 三、设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 四、设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定 3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化 4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态) 5. 采用可视化界面,可在进程调度过程中随时暂停调度,查看当前进程的状态以及相应的阻塞队列

操作系统作业题及答案

《操作系统》课程作业 (2013年春) 姓名: 学号: 专业: 年级: 学校: 日期:

作业一:作业管理 1、有三道程序A、B、C在一个系统中运行,该系统有输入、输出设备各1台。三道程序 A、B、C构成如下: A:输入32秒,计算8秒,输出5秒 B:输入21秒,计算14秒,输出35秒 C:输入12秒,计算32秒,输出15秒 问:(1)三道程序顺序执行的总时间是多少? (2)充分发挥各设备的效能,并行执行上述三道程序,最短需多少时间(不计系统开销)?并给出相应的示意图。 2、假设一个单CPU系统,以单道方式处理一个作业流,作业流中有2道作业,共占用CPU 计算时间、输入卡片数和打印输出行数如下: 其中,卡片输入机速度为1000张/分钟,打印机输出速度为1000行/分钟,试计算:(1)不采用spooling技术,计算这两道作业的总运行时间(从第1道作业输入开始到最后一个作业输出完毕)。 (2)如采用spooling技术,计算这2道作业的总运行时间(不计读/写盘时间),并给出相应的示意图。

作业二:进程管理 1、 请写出两程序S1和S2可并发执行的Bernstein 条件。 2、 有以下5条语句,请画出这5条语句的前趋图。 S1:y=x+1 R(x) W(y) S2:c=f-w R(f,w) W(c) S3:d=r-y R(r,y) W(d) S4:x=a+b R(a,b) W(x) S5:r=c+y R(c,y) W(r) 3、 设在教材第62页3.6.4节中所描述的生产者消费者问题中,其缓冲部分为m 个长度相等 的有界缓冲区组成,且每次传输数据长度等于有界缓冲区长度以及生产者和消费者可对缓冲区同时操作。重新描述发送过程deposit(data)和接收过程remove(data)。 P P P i P .. .. 1 2 i k 4、 设有k 个进程共享一临界区,对于下述情况,请说明信号量的初值、含义,并用P ,V 操作写出有关互斥算法。 (1) 一次只允许一个进程进入临界区; (2) 一次允许m (m

进程模拟调度算法课程设计

一.课程概述 1.1.设计构想 程序能够完成以下操作:创建进程:先输入进程的数目,再一次输入每个进程的进程名、运行总时间和优先级,先到达的先输入;进程调度:进程创建完成后就选择进程调度算法,并单步执行,每次执行的结果都从屏幕上输出来。 1.2.需求分析 在多道程序环境下,主存中有着多个进程,其数目往往多于处理机数目,要使这多个进程能够并发地执行,这就要求系统能按某种算法,动态地把处理机分配给就绪队列中的一个进程,使之执行。分配处理机的任务是由处理机调度程序完成的。由于处理机是最重要的计算机资源,提高处理机的利用率及改善系统必(吞吐量、响应时间),在很大程度上取决于处理机调度性能的好坏,因而,处理机调度便成为操作系统设计的中心问题之一。本次实验在VC++6.0环境下实现先来先服务调度算法,短作业优先调度算法,高优先权调度算法,时间片轮转调度算法和多级反馈队列调度算法。 1.3.理论依据 为了描述和管制进程的运行,系统为每个进程定义了一个数据结构——进程控制块PCB(Process Control Block),PCB中记录了操作系统所需的、用于描述进程的当前情况以及控制进程运行的全部信息,系统总是通过PCB对进程进行控制,亦即,系统是根据进程的PCB 而不是任何别的什么而感知进程的存在的,PCB是进程存在的惟一标志。本次课程设计用结构体Process代替PCB的功能。 1.4.课程任务 一、用C语言(或C++)编程实现操作模拟操作系统进程调度子系统的基本功能;运用多 种算法实现对进程的模拟调度。 二、通过编写程序实现进程或作业先来先服务、高优先权、按时间片轮转、短作业优先、多 级反馈队列调度算法,使学生进一步掌握进程调度的概念和算法,加深对处理机分配的理解。 三、实现用户界面的开发

先来先服务和短作业优先调度算法

《操作系统》实验一实验报告 【实验题目】:先来先服务FCFS和短作业优先SJF进程调度算法【实验目的】 通过这次实验,加深对进程概念的理解,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。 【实验内容】 问题描述: 设计程序模拟进程的先来先服务FCFS和短作业优先SJF调度过程。假设有n个进程分别在T1, …,T n时刻到达系统,它们需要的服务时间分别为S1, … ,S n。分别采用先来先服务FCFS和短作业优先SJF 进程调度算法进行调度,计算每个进程的完成时间,周转时间和带权周转时间,并且统计n个进程的平均周转时间和平均带权周转时间。 程序要求如下: 1)进程个数n;每个进程的到达时间T1, …,T n和服务时间S1, … ,S n;选择算法1-FCFS,2-SJF。 2)要求采用先来先服务FCFS和短作业优先SJF分别调度进程运行,计算每个进程的周转时间,带权周转时间,并且计算所有进程的平均周转时间,带权平均周转时间; 3)输出:要求模拟整个调度过程,输出每个时刻的进程运行状态,如“时刻3:进程B开始运行”等等; 4)输出:要求输出计算出来的每个进程的周转时间,带权周转时间,

所有进程的平均周转时间,带权平均周转时间。【实验过程】 #include using namespace std; #define MaxNum 100 int ArrivalTime[MaxNum]; double ServiceTime[MaxNum]; double FinishTime[MaxNum]; double WholeTime[MaxNum]; double A VEWholeTime[MaxNum]; double A VEWeightWholeTime[MaxNum]; double WeightWholeTime[MaxNum]; double AverageWT_FCFS,AverageWT_SJF; double AverageWWT_FCFS,AverageWWT_SJF; double AllTime,WeightAllTime; double a[MaxNum]; int b[MaxNum]; int c[MaxNum]; int d[MaxNum]; void FCFS(); void SJF();

操作系统实验-FCFS和短作业优先SJF调度算法模拟

题目先来先服务FCFS和短作业优先SJF进程调度算法 姓名: 学号: 专业: 学院: 指导教师:林若宁 二零一八年十一月

一、实验目的 模拟单处理器系统的进程调度,分别采用短作业优先和先来先服务的进程调度算法作为进程设计算法,以加深对进程的概念及进程调度算法的理解. 二、实验内容 1. 短作业优先调度算法原理 短作业优先调度算法,是指对短作业或断进程优先调度的算法。它们可以分别可以用于作业调度和进程调度。短作业优先调度算法,是从后备队列中选择一个或若干个运行时间最短的作业,将它们调入内存运行。短进程优先调度算法,是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。 2. 先来先服务调度算法原理 先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。 三、程序设计 1.概要设计 程序包括主函数、FCFS算法函数、SJF算法函数、输出函数;主函数流程:输入文件中的数据—显示各进程数据—选择算法—调用相应算法的函数—输出结果 2.算法流程

SJF算法流程图:

3.详细设计 (1)定义一个结构体 typedef struct PCB { char job_id[10]; //作业ID float Arr_time; //到达时刻 float Fun_time; //估计运行时间 float Wait_time; //等待时间 float Start_time; //开始时刻 float Fin_time; //完成时刻 float Tur_time; //周转时间 float WTur_time; //带权周转时间 int Order; //优先标记 }list; (2)先来先服务算法函数 void fcfs(list *p,int count) //先来先服务算法 { list temp; //临时结构体变量int i; int j;

计算机操作系统习题及答案()

第3章处理机调度1)选择题 (1)在分时操作系统中,进程调度经常采用_D_ 算法。 A. 先来先服务 B. 最高优先权 C. 随机 D. 时间片轮转 (2)_B__ 优先权是在创建进程时确定的,确定之后在整个进程运行期间不再改变。 A. 作业 B. 静态 C. 动态 D. 资源 (3)__A___ 是作业存在的惟一标志。 A. 作业控制块 B. 作业名 C. 进程控制块 D. 进程名 (4)设有四个作业同时到达,每个作业的执行时间均为2小时,它们在一台处理器上按单道方式运行,则平均周转时间为_ B_ 。 A. l小时 B. 5小时 C. 2.5小时 D. 8小时 (5)现有3个同时到达的作业J1、J2和J3,它们的执行时间分别是T1、T2和T3,且T1<T2<T3。系统按单道方式运行且采用短作业优先算法,则平均周转时间是_C_ 。 A. T1+T2+T3 B. (T1+T2+T3)/3 C. (3T1+2T2+T3)/3 D. (T1+2T2+3T3)/3 (6)__D__ 是指从作业提交给系统到作业完成的时间间隔。 A. 运行时间 B. 响应时间 C. 等待时间 D. 周转时间 (7)下述作业调度算法中,_ C_调度算法与作业的估计运行时间有关。 A. 先来先服务 B. 多级队列 C. 短作业优先 D. 时间片轮转 2)填空题 (1)进程的调度方式有两种,一种是抢占(剥夺)式,另一种是非抢占(非剥夺)式。 (2)在_FCFS_ 调度算法中,按照进程进入就绪队列的先后次序来分配处理机。 (3)采用时间片轮转法时,时间片过大,就会使轮转法转化为FCFS_ 调度算法。 (4)一个作业可以分成若干顺序处理的加工步骤,每个加工步骤称为一个_作业步_ 。 (5)作业生存期共经历四个状态,它们是提交、后备、运行和完成。 (6)既考虑作业等待时间,又考虑作业执行时间的调度算法是_高响应比优先____ 。 3)解答题 (1)单道批处理系统中有4个作业,其有关情况如表3-9所示。在采用响应比高者优先调度算法时分别计算其平均周转时间T和平均带权周转时间W。(运行时间为小时,按十进制计算) 表3-9 作业的提交时间和运行时间

短作业优先算法

短作业(进程)优先调度算法 1.短作业(进程)优先调度算法SJ(P)F,是指对短作业或 短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。SJ(P)F 调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。该算法对长作业不利,完全未考虑作业的紧迫程度。 2.流程图 3.代码

#include<> #include<> #include<> struct sjf{ char name[10]; float arrivetime; float servicetime; float starttime; float finishtime; float zztime; float dqzztime; }; sjf a[100]; void input(sjf *p,int N) { int i; printf("intput the process's name & arrivetime & servicetime:\nfor exmple: a 0 100\n"); for(i=0;i<=N-1;i++) { printf("input the %dth process's information:\n",i+1); scanf("%s%f%f",&p[i].name,&p[i].arrivetime,&p[i].servicetim e);

短作业优先调度

实验一进程调度 一、实验目的 编写并调试一个模拟的进程调度程序,以加深对进程的概念及进程调度算法的理解. 二、实验内容 1.采用“短进程优先”调度算法对五个进程进行调度。每个进程有一个进 程控制块( PCB)表示。进程控制块可以包含如下信息:进程名、到达 时间、需要运行时间、已用CPU时间、进程状态等等。 2.每个进程的状态可以是就绪 W(Wait)、运行R(Run)、或完成F(Finish) 三种状态之一。每进行一次调度程序都打印一次运行进程、就绪队列、 以及各个进程的 PCB,以便进行检查。重复以上过程,直到所要进程都 完成为止。 三、实现思路 主函数-输入函数-短作业优先调度函数-输出函数。 这是一条最基础的思路。输入函数使用文本导入完成数据输入,输出函数输出调度结果,主函数完成各子函数连接,最主要的是短作业优先的调度函数。我想到的方法就是排序,不断选择需要运行时间最短的作业,接着进行数据输入计算输出等,遍历全部数据并完成调度。 四、主要的数据结构 struct Process_struct{ char name[MaxNum]; //进程名称 int arrivetime; //到达时间 int servertime; //开始运行时间 int finishtime; //运行结束时间 int runtime; //运行时间 int runflag; //调度标志 int order; //运行次序

double weightwholetime; //周转时间 double averagewt_FCFS,averagewt_SJF; //平均周转时间 double averagewwt_FCFS,averagewwt_SJF; //平均带权周转时间 }pro[MaxNum]; 五、算法流程图 六、运行与测试 用书上数据对程序进行测试,结果如下:

操作系统作业答案

习题一 1、举例说明为什么对并发执行的程序不加控制会产生与执行时间有关的错误? 解:程序在并发执行时由于资源是共享的,而且常常资源数少于程序对这些资源的需求数,致使这些并发执行的程序之间因为竞争资源导致存在间接制约关系,这种间接制约使得并发执行的程序具有随机性(异步性),即“执行—暂停—执行”,它们何时启动、何时停止是未知的。例如:飞机售票系统、堆栈的存数与取数过程等(示例说明略)。 2、程序并发执行为什么会失去顺序执行时的封闭性和可再现性? 解:所谓“封闭性”是指程序执行得到的最终结果由给定的初始条件决定,不受外界因素的影响。在程序并发执行时由于资源共享,导致这些资源的状态将由多个程序来改变,又由于存在程序执行的随机性,所以程序的运行失去封闭性。由于失去了封闭性,也将导致其失去可再现性。即虽然它们执行时的环境和初始条件相同,但得到的结果却可能各不相同。 习题二 1、试用加锁的方法解决飞机售票系统的问题。 例:民航售票系统,n个售票处 2、用机器指令(testAndset)解决飞机售票系统中任一进程的算法。

习题三 1、进程在做P、V操作时对自己和其他进程有何影响? 进程在信号量上执行P操作后,若信号量的值为正,当前进程继续执行;若信号量的值为负,当前进程变为等待状态、放弃处理机,其它进程则有机会获得CPU。 进程在信号量上执行V操作后,不会对自己有任何影响,但当信号量的值不大于0时,需要唤醒在该信号量上所对应的等待队列中的进程。 2、设课程的前驱、后继关系如下,若每修一门课程看作进程Px(x∈1..6)试用P、V操作算法描述这种前驱与后继关系。 答: Semaphore:S1:=S2:=S3:=S4:=S5:=S6:=0; Begin Cobegin P1、P2、P3、P4、P5、P6 coend; end. P1()P2()P3() Begin begin begin 修计算机导论;P(S1);P(S2); V(S1);修高级语言程序设计修计算机组成原理; V(S2);V(S3)V(S4); End; End; End; P4()P5()P6() Begin begin begin P(S3);P(S4);P(S5); 修数据结构;修86汇编语言;P(S6); V(S5);V(S6);修操作系统; End; End; End; 习题四 1、有三个进程R、W1、W2,进程R 从输入设备上读数据送缓冲区B,若是奇数由W1 进程从B 取数输出;若

短作业优先调度算法 (1)

短作业优先调度算法 学院计算机科学与技术 专业 学号 学生姓名 指导教师姓名 2014-3-18目录

九参考文献……………………………………………………………………………………………………… 实验题目 采用短作业优先算法的进程调度程序 课程设计的目的 操作系统课程设计是计算机专业重要的教学环节,它为学生提供了一个既动手又动脑,将课本上的理论知识和实际有机的结合一起,独立分析和解决实际问题的机会。 进一步巩固和复习操作系统的基础知识。 培养学生结构化程序、模块化程序设计的方法和能力。 提高学生调试程序的技巧和软件设计的能力。 提高学生分析问题、解决问题以及综合利用C语言进行程序设计的能力。 设计内容 设计并实现一个采用短作业优先算的进程调度算法演示程序 设计要求 1. 每一个进程有一个PCB,其内容可以根据具体情况设定。 2. 进程数、进入内存时间、要求服务时间、优先级等均可以在界面上设定

3. 可读取样例数据(要求存放在外部文件中)进行进程数、进入内存时间、时间片长度、进程优先级的初始化 4. 可以在运行中显示各进程的状态:就绪、执行(由于不要求设置互斥资源与进程间同步关系,故只有两种状态) 5. 具有一定的数据容错性 主要数据结构及其说明 算法的简要说明:短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。优点是SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。缺点是该算法对长作业不利;完全未考虑作业的紧迫程度,因而不能保证紧迫性作业(进程)长期不被调度;由于作业(进程)的长短只是根据用户所提供的估计执行时间而定的,而用户又可能会有意或无意地缩短其作业的估计运行时间,致使该算法不一定能真正做到短作业游戏那调度。 该程序定义了一个进程数据块(struct spf),该数据块有进程名(name)、到达时间(arrivetime)、服务时间(servicetime)、开始执行时间(starttime)、完成时间 (finishtime)、周转时间(zztime)、带权周转时间(dqzztime)。用到的公式有:完成时间=到达时间+服务时间;周转时间=完成时间-到达时间;带权周转时间=周转时间/服务时间;(第一次执行的进程的完成时间=该进程的到达时间;下一个进程的开始执行时间=上一个进程的完成时间)。运行进程的顺序需要对进程的到达时间和服务时间进行比较。如果某一进程是从0时刻到达的,那么首先执行该进程;之后就比较进程的服务时间,谁的服务时间短就先执行谁(如果服务时间相同则看它们的到达时间,到达时间短的先执行);如果到达时间和服务时间相同,则按先来先服务算法执行。

操作系统模拟进程调度算法

操作系统 ——项目文档报告 进程调度算法 专业: 班级: 指导教师: 姓名: 学号:

一、核心算法思想 1.先来先服务调度算法 先来先服务调度算法是一种最简单的调度算法,该算法既可以用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将他们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。 2.短作业(进程)优先调度算法 短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机再重新调度。SJ(P)F调度算法能有效地降低作业(进程)的平均等待时间,提高系统吞吐量。该算法对长作业不利,完全未考虑作业的紧迫程度。 3.高响应比优先调度算法 在批处理系统中,短作业优先算法是一种比较好的算法,其主要不足之处是长作业的运行得不到保证。如果我们能为每个作业引人动态优先权,并使作业的优先级随着等待时间的增加而以速率a提高,则长作业在等待一定的时间后,必然有机会分配到处理机。该优先权的变化规律可描述为: 优先权=(等待时间+要求服务时间)/要求服务时间 即优先权=响应时间/要求服务时间 如果作业的等待时间相同,则要求服务的时间越短,其优先权越高,因而该算法有利于短作业。 当要球服务的时间相同时,作业的优先权决定于其等待时间,等待时间越长,优先权越高,因而它实现的是先来先服务 对于长作业,作业的优先级可以随着等待时间的增加而提高,当其等待时间足够长时,其优先级便可以升到很高,从而也可获得处理机。 4.时间片轮转算法 在时间片轮转算法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU分配给队首进程,并令其执行一个时间片。当执行的时间片用完时,由一个计数器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。换言之,系统能在给定的时间内响应所有用户的请求。 二、核心算法流程图

相关文档
最新文档