高中数学平面向量及其应用练习题百度文库

高中数学平面向量及其应用练习题百度文库
高中数学平面向量及其应用练习题百度文库

一、多选题1.题目文件丢失!

2.已知非零平面向量a ,b ,c ,则( )

A .存在唯一的实数对,m n ,使c ma nb =+

B .若0?=?=a b a c ,则//b c

C .若////a b c ,则a b c a b c =++++

D .若0a b ?=,则a b a b +=- 3.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A b

B a

=,则该三角形的形状是( ) A .等腰三角形

B .直角三角形

C .等腰直角三角形

D .等腰或直角三角形

4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列

ABC 有关的结论,正确的是( ) A .cos cos 0A B +>

B .若a b >,则cos2cos2A B <

C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径

D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 5.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ?=,则0b =

B .向量a 、b 为不共线的非零向量,则22

()a b a b ?=? C .若非零向量a 、b 满足2

2

2

a b

a b +=+,则a 与b 垂直

D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是

2

π 6.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点

时,点P 的坐标为( ) A .4,23??

???

B .4,33??

???

C .()2,3

D .8

,33?? ???

7.下列结论正确的是( )

A .在ABC 中,若A

B >,则sin sin A B >

B .在锐角三角形AB

C 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形

D .在ABC 中,若3b =,60A =?,三角形面积S =3

8.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且

AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( )

A .1A

B CE ?=-

B .0OE O

C +=

C .32

OA OB OC ++=

D .ED 在BC 方向上的投影为

76

9.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )

A .10,45,70b A C ==?=?

B .45,48,60b c B ===?

C .14,16,45a b A ===?

D .7,5,80a b A ===?

10.下列结论正确的是( )

A .已知a 是非零向量,b c ≠,若a b a c ?=?,则a ⊥(-b c )

B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为

12

b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形 11.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、

c ,不解三角形,确定下列判断错误的是( )

A .

B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解

C .B =60°,c =4,b =3,有一解

D .B =60°,c =4,b =2,无解

12.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ?=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ?≤ D .若,a b 共线,则||||a b a b ?=±

13.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ?= B .()

()

a b c a b c ??=?? C .0a b a b ?=?⊥

D .(

)(

)

22

b b a b a a +-=?-

14.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量

B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个

C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得

()11122122e e e e λμλλμ+=+

D .若存在实数,λμ使得120e e λμ+=,则0λμ==15.题目文件丢失!

二、平面向量及其应用选择题

16.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15?的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60?和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)

A .

33

23

B .

53

23

C .

3

23

D .

83

23

17.O 为ABC ?内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知

0a OA b OB c OC ?+?+?=,且tan tan tan 0A OA B OB C OC ?+?+?=,若3a =边BC 所对的ABC ?外接圆的劣弧长为( ) A .

23

π B .

43

π C .

6

π D .

3

π 18.在ABC ?中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ?的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ?的形状为( ) A .不确定 B .直角三角形 C .钝角三角形

D .等边三角形

19.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )

A .30

B .45?

C .60?

D .90?

20.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =,42c =45B =?,则sin C 的值等于( )

A .

441

B .

45

C .

425

D 441

21.ABC ?内有一点O ,满足3450OA OB OC ++=,则OBC ?与ABC ?的面积之比为( ) A .1:4

B .4:5

C .2:3

D .3:5

22.如图,在ABC 中,60,23,3C BC AC ?===

,点D 在边BC 上,且

27

sin BAD ∠=

,则CD 等于( )

A 23

B 3

C 33

D 43

23.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )

A .33A

B A

C HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+

D .24AB AC HM MO +=-

24.在ABC ?中,E ,F 分别为AB ,AC 的中点,P 为EF 上的任一点,实数x ,y 满足0PA xPB yPC ++=,设ABC ?、PBC ?、PCA ?、PAB ?的面积分别为S 、1S 、2S 、3S ,记

i

i S S

λ=(1,2,3i =),则23λλ?取到最大值时,2x y +的值为( ) A .-1

B .1

C .32

-

D .

32

25.已知ABC 的面积为30,且12

cos 13

A =,则A

B A

C ?等于( ) A .72

B .144

C .150

D .300

26.设ABC ?中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( )

A .1233

AB AC -

+ B .2133AB AC -

C .1233AB AC -

D .2133

AB AC -+

27.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若

()2

2S a b c +=+,则cos A 等于( )

A .

45

B .45

-

C .

1517

D .1517

-

28.已知1a =,3b =,且向量a 与b 的夹角为60?,则2a b -=( ) A 7B .3

C 11

D 19

29.在矩形ABCD

中,3,2AB BC BE EC ===,点F 在边CD 上,若

AB AF 3→→=,则AE BF

→→的值为( ) A .0

B

3

C .-4

D .4

30.已知菱形ABCD 边长为2,∠B =3

π

,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( ) A .

12

B .-

12

C .

13

D .-

13

31.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且

a b =,则cos B 等于( )

A

B .

14

C

D

32.在ABC 中,AB AC BA BC CA CB →

?=?=?,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形

D .不确定

33.已知ABC

中,1,30a b A ?===,则B 等于( )

A .60°

B .120°

C .30°或150°

D .60°或120°

34.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点

C ,

D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )

A .10,2?? ???

B .10,3?? ???

C .1,02??

-

??? D .1

,03??- ???

35.在ABC 中,CB a =,CA b =,且sin sin a b OP OC m a B b A ??

?=++ ???

,m R ∈,则点P 的轨迹一定通过ABC 的( ) A .重心

B .内心

C .外心

D .垂心

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.无

2.BD 【分析】

假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】

A 选项,若与共线,与,都 解析:BD 【分析】

假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】

A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;

B 选项,因为a ,b ,c 是非零平面向量,若0?=?=a b a c ,则a b ⊥,a c ⊥,所以

//b c ,即B 正确;

C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出

a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;

D 选项,若0a b ?=,则(

)

2

2

2

2

2

2a b a b

a b a b a b

+=+=++?=

+,

()

2

2

2

2

2

2a b a b a b a b a b -=

-=+-?=

+,所以a b a b +=-,即D 正确.

故选:BD. 【点睛】

本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.

3.D 【分析】

在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.

故是直角三角形或等腰三角形. 故选: D. 【点睛】

本题主要考查

解析:D 【分析】 在ABC 中,根据

cos cos A b B a =,利用正弦定理得cos sin cos sin A B

B A

=,然后变形为sin 2sin 2A B =求解.

【详解】

在ABC 中,因为

cos cos A b

B a =, 由正弦定理得cos sin cos sin A B

B A

=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,

解得A B =或2

A B π

+=.

故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】

本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.

4.ABD 【分析】

对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【

解析:ABD 【分析】

对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得

sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 1

2

s S ab C =

和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】

对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得

()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;

对于B ,若sin sin a b A B >?>,则22sin sin A B >,则2212sin 12sin A B -<-,即

cos2cos2A B <,故B 正确;

对于C ,2

11sin 2sin 2sin sin 2sin sin sin 22

S ab C R A R B C R A B C ==???=,故C 错

误;

对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B C

A B C B C

+=-+=-

-?,则

tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】

本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.

5.CD 【分析】

对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解

解析:CD 【分析】

对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出

()

()()

2

2

2

a b a b ?≠?,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题

是真命题;对于D 由条件推出向量a b +与a b -的夹角是2

π

,所以该命题是真命题. 【详解】

对于A ,若0a ≠,0a b ?=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()(

)

2

2

2

2

2cos cos a b

a b a b α

α?==,而()()

2

2

2

2

a b

a b ?=,

由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()

()()

2

2

2

a b a b ?≠?,

所以该命题是假命题;

对于C ,若非零向量a 、b 满足2

2

2

a b

a b +=+,22222a b a b a b ++?=+,所以

0a b ?=,则a 与b 垂直,所以该命题是真命题;

对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2

π

,所以该命题是真命题. 故选:CD. 【点睛】

本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.

6.AD

【分析】

设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,

当点P 靠近点时,, 则, 解得, 所以,

当点P 靠近点时,, 则, 解得, 所以, 故选:

解析:AD 【分析】

设(),P x y ,则()()1

2,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】

设(),P x y ,则()()1

2,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,121

2

PP

PP =, 则()()1421142x x y y ?=-????-=-??

解得432

x y ?=???=?,

所以4,23P ??

???

, 当点P 靠近点2P 时,122PP PP =,

则()()24124x x y y ?=-??-=-??

解得833

x y ?=???=?,

所以8,33P ?? ???

, 故选:AD 【点睛】

本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.

7.AB 【分析】

由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】

中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,

解析:AB 【分析】

由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】

ABC 中,A B a b >?>,由

sin sin a b A B

=得sin sin A B >,A 正确; 锐角三角形ABC 中,222

cos 02b c a A bc

+-=>,∴2220b c a +->,B 正确;

ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=?,即A B =或90A B +=?,ABC 为等腰三角形或直角三角形,C 错; ABC 中,若3b =,60A =?

,三角形面积S =

11

sin 3sin 6022

S bc A c ==??=4c =,∴2222cos 13a b c bc A =+-=

a =,

∴2sin sin 603a R A =

==

?

,3

R =,D 错. 故选:AB . 【点睛】

本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.

8.BCD 【分析】

以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】

由题E 为AB 中点,则,

以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示: 所以,,

解析:BCD 【分析】

以E 为原点建立平面直角坐标系,写出所有点的坐标求解即可. 【详解】

由题E 为AB 中点,则CE AB ⊥,

以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示:

所以,123

(0,0),(1,0),(1,0),3),(,

)33

E A B C D -, 设123

(0,),3),(1,),(,3

O y y BO y DO y ∈==-,BO ∥DO , 所以3133y y -

=-,解得:3

2

y =

, 即O 是CE 中点,0OE OC +=,所以选项B 正确;

3

22

OA OB OC OE OC OE ++=+==

,所以选项C 正确; 因为CE AB ⊥,0AB CE ?=,所以选项A 错误;

123(,33

ED =,(1,3)BC =,

ED 在BC 方向上的投影为12

7326BC BC

ED +?==,所以选项D 正确.

故选:BCD 【点睛】

此题考查平面向量基本运算,可以选取一组基底表示出所求向量的关系,对于特殊图形可以考虑在适当位置建立直角坐标系,利于计算.

9.BC 【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两

解析:BC 【分析】

根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】

对于选项A 中:由45,70A C =?=?,所以18065B A C =--=?,即三角形的三个角是确定的值,故只有一解;

对于选项B 中:因为csin sin 1B C b =

=<,且c b >,所以角C 有两解;

对于选项C 中:因为sin sin 17

b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b A

B a

=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】

本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.

10.ABD

【分析】

利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】

对:因为,又,故可得, 故,故选项正确;

对:因为||=1,||=2,与的夹角为

解析:ABD 【分析】

利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】

对A :因为()a b c a b a c ?-=?-?,又a b a c ?=?,故可得()

0a b c ?-=, 故()

a b c ⊥-,故A 选项正确;

对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1

212

a b ?=?

=. 故a 在b 上的投影向量为12a b b b b ??

?

?= ???

,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,

故C 选项错误;

对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -,

则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ?=?+?-=,则AB AD ⊥,故四边形ABCD 是矩形. 故D 选项正确;

综上所述,正确的有:ABD . 故选:ABD . 【点睛】

本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题.

11.ABC 【分析】

根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解. 【详解】

对于,因为为锐角且,所以三角

解析:ABC 【分析】

根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当

sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角

形有唯一解.逐个判断即可得解. 【详解】

对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;

对于B ,因为B 为锐角且sin 4 3.92

c B b c =?==<,所以三角形ABC 有两解,故B 错误;

对于C ,因为B 为锐角且 sin 432

c B b =?=>=,所以三角形ABC 无解,故C 错误;

对于D ,因为B 为锐角且sin 42c B b ==>=,所以三角形ABC 无解,故D 正确. 故选:ABC. 【点睛】

本题考查了判断三角形解的个数的方法,属于基础题.

12.ACD 【分析】

利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】

由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确; 当共线同向时,, 当共线反

解析:ACD 【分析】

利用向量数量积的定义和运算法则逐项判断后可得正确的选项. 【详解】

由向量加法的三角形法则可知选项A 正确; 当a b ⊥时,0a b ?=,故选项B 错误;

因为||cos ||||a b a b a b θ?=≤,故选项C 正确; 当,a b 共线同向时,||||cos 0||||a b a b a b ?==,

当,a b 共线反向时,||||cos180||||a b a b a b ?=?=-,所以选项D 正确. 故选:ACD. 【点睛】

本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.

13.AB 【分析】

利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】

对于A 选项,,A 选项错误;

对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误; 对于C 选项,

解析:AB 【分析】

利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】

对于A 选项,00a ?=,A 选项错误;

对于B 选项,()

a b c ??表示与c 共线的向量,()

a b c ??表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;

对于C 选项,0a b a b ?=?⊥,C 选项正确;

对于D 选项,(

)()

2

2

22a b a b a b a b +?-=-=-,D 选项正确. 故选:AB. 【点睛】

本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题.

14.AD 【分析】

根据平面向量基本定理可知,A ?D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确. 【详解】

由平面向量基本定理可知,A ?D 是正确的. 对于B,由平面向量基本

解析:AD 【分析】

根据平面向量基本定理可知,A ?D 是正确的,选项B 不正确;对于选项C ,当两个向量均为

0时,λ有无数个,故不正确.

【详解】

由平面向量基本定理可知,A ?D 是正确的.

对于B ,由平面向量基本定理可知,如果一个平面的基底确定, 那么任意一个向量在此基底下的实数对是唯一的,所以不正确; 对于C ,当两向量的系数均为零,即12120λλμμ====时, 这样的λ有无数个,所以不正确.

故选:AD . 【点睛】

本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.

15.无

二、平面向量及其应用选择题

16.B 【分析】

如解析中图形,可在HAB ?中,利用正弦定理求出HB ,然后在Rt HBO ?中求出直角边

HO 即旗杆的高度,最后可得速度. 【详解】

如图,由题意45,105HAB HBA ∠=?∠=?,∴30AHB ∠=?, 在HAB ?中,

sin sin HB AB HAB AHB =∠∠,即102

sin 45HB =

?,20HB =. ∴sin 20sin 60103OH HB HBO =∠=?=,

10353

v =

=

/秒). 故选B . 【点睛】

本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件. 17.A 【分析】 根据题意得出

tan tan tan A B C

a b c

==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ?为等边三角形,进而可求得BC 所对的ABC ?外接圆的劣弧

长. 【详解】

0a OA b OB c OC ?+?+?=,a b

OC OA OB c c

∴=--,

同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a

A c C

b B

c C ?-=-??∴??-=-??,

tan tan tan A B C

a b c

==, 由正弦定理得

tan tan tan sin sin sin A B C A B C ==,所以,111

cos cos cos A B C

==, cos cos cos A B C ∴==,

由于余弦函数cos y x =在区间()0,π上单调递减,所以,3

A B C π

===

, 设ABC ?的外接圆半径为R

,则22

sin a

R A

=

==,1R ∴=, 所以,边BC 所对的ABC ?外接圆的劣弧长为222133

R A ππ?=?=. 故选:A. 【点睛】

本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 18.D 【分析】

先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状. 【详解】

因为cos cos b A a B =,所以sin cos sin cos =B A A B , 所以()sin 0B A -=,所以A B =, 又因为2B A C B π=+=-,所以3

B π

=,

所以3

A B π

==,所以ABC 是等边三角形.

故选:D. 【点睛】

本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 19.C 【分析】

首先根据题的条件27a b +=

,得到2()7a b +=,根据a ,b 为单位向量,求得

1

2a b ?=

,进而求得向量夹角. 【详解】 因为27a b +=

,所以2()7a b +=,

即2

2

447a a b b +?+=, 因为2

2

1a b ==,所以12

a b ?=, 所以1

cos ,2

a b <>=

,因为向量a ,b 夹角的范围为[0,180]??,

所以向量a ,b 夹角的范围为60?, 故选:C. 【点睛】

该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目. 20.B 【分析】

在三角形ABC 中,根据1a =,c

=45B =?,利用余弦定理求得边b ,再利用正弦

定理

sin sin b c

B C =求解. 【详解】

在三角形ABC 中, 1a =

c =45B =?, 由余弦定理得:2222cos b a c ac B =+-,

13221

252

=+-??=, 所以5b =, 由正弦定理得:

sin sin b c

B C

=, 所以

2

sin 42sin 55

c B

C b

=

==, 故选:B 【点睛】

本题主要考查余弦定理和正弦定理的应用,所以考查了运算求解的能力,属于中档题. 21.A 【解析】

分析:由题意,在ABC ?内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.

详解:由题意,在ABC ?内有一点O ,满足3450++=OA OB OC ,

由奔驰定理可得::3:4:5BOC AOC BOA S S S ???=,所以:3:121:4BOC ABC S S ??==, 故选A .

点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决. 22.A 【分析】

首先根据余弦定理求AB ,再判断ABC 的内角,并在ABD △和ADC 中,分别用正弦定理表示AD ,建立方程求DC 的值. 【详解】

222cos AB AC BC AC BC C =+-??

1

312232332

=+-??

=, 2223

cos 222323

AB BC AC B AB BC +-∴===

???, 又因为角B 是三角形的内角,所以6

B π

=

90BAC ∴∠=,

27sin 7BAD ∠=

,221

cos 1sin 7

BAD BAD ∴∠=-∠=, 21

sin cos DAC BAD ∴∠=∠=

, 在ABD △中,由正弦定理可得sin sin BD B

AD BAD ?=∠,

在ADC 中,由正弦定理可得sin sin DC C

AD DAC

?=

∠,

(

)

13

23222721DC DC ?

=,解得:23DC =

. 故选:A 【点睛】

本题考查正余弦定理解三角形,重点考查数形结合,转化与化归,推理能力,属于中档题型. 23.D 【分析】

构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解. 【详解】

解:如图所示的Rt ABC ?,其中角B 为直角,则垂心H 与B 重合,

O 为ABC ?的外心,OA OC ∴=,即O 为斜边AC 的中点,

M 为BC 中点,∴2AH OM =,

M 为BC 中点,

∴22()2(2)AB AC AM AH HM OM HM +==+=+.

4224OM HM HM MO =+=-

故选:D . 【点睛】

本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力. 24.D 【分析】

根据三角形中位线的性质,可得P 到BC 的距离等于△ABC 的BC 边上高的一半,从而得到1231

2

S S S S =

=+,由此结合基本不等式求最值,得到当23λλ?取到最大值时,P 为EF 的中点,再由平行四边形法则得出11

022

PA PB PC ++=,根据平面向量基本定理可

求得1

2

x y ==,从而可求得结果. 【详解】 如图所示:

因为EF 是△ABC 的中位线,

所以P 到BC 的距离等于△ABC 的BC 边上高的一半, 所以1231

2

S S S S =

=+,

2021年高中数学-平面向量专题

第一部分:平面向量的概念及线性运算 欧阳光明(2021.03.07) 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 的(或称) 平面向量是自由向量 零向量长度为的向量;其方向是任意的记作0 单位向量长度等于的 向量 非零向量a的单位向量为± a |a| 平行向量方向或的非零向量 0与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0的相反向量为0 2.向量的线性运算 向量运算定义法则(或几何 意义) 运算律 加法求两个向量和的运算(1)交换律: a+b=b+a. (2)结合律: (a+b)+c=a+(b+c). 减法求a与b的相反向量-b 的和的运算叫做a与b 的差 法则 a-b=a+(-b) 数乘求实数λ与向量a的积的 运算 (1)|λa|=|λ||a|. (2)当λ>0时,λa的方向与a的方向; 当λ<0时,λa的方向与a的方向;当λ =0时,λa=0. λ(μa)=λμa; (λ+μ)a=λa+μa; λ(a+b)=λa+λb. 向量a(a≠0)与b共线的条件是存在唯一一个实数λ,使得b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线

段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线(或重合)的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 三.基础自测 1.化简OP →-QP →+MS →-MQ → 的结果等于________. 2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量一定共线.其中不正确命题的序号是_______. 3.在△ABC 中,AB →=c ,AC →=b.若点D 满足BD →=2DC →,则AD → =________(用b 、c 表示). 4.如图,向量a -b 等于() A .-4e1-2e2 B .-2e1-4e2 C .e1-3e2 D .3e1-e2 5.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 () A .A 、B 、DB .A 、B 、C C .B 、C 、DD .A 、C 、D 四.题型分类深度剖析 题型一 平面向量的有关概念 例1 给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a|=|b|且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c.其中正确的序号是________. 变式训练1 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a|=|b|,则a>b ; (2)若|a|=|b|,则a 与b 的长度相等且方向相同或相反; (3)若|a|=|b|,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等 题型二 平面向量的线性运算 例2 如图,以向量OA →=a ,OB →=b 为边作?OADB ,BM →=13BC →,CN →=13 CD →,用a 、b 表示OM →、ON →、MN → . 变式训练2 △ABC 中,AD →=23 AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N.设AB →=a ,AC → =b ,用a 、b 表示向 量AE →、BC →、DE →、DN →、AM →、AN →. 题型三 平面向量的共线问题 例3 设e1,e2是两个不共线向量,已知AB →=2e1-8e2,CB →=e1+3e2,CD → =2e1-e2. (1)求证:A 、B 、D 三点共线; (2)若BF → =3e1-ke2,且B 、D 、F 三点共线,求k 的值.

高中数学平面向量测试题及答案[001]

平面向量测试题 一、选择题: 1。已知ABCD 为矩形,E 是DC 的中点,且?→?AB =→a ,?→?AD =→b ,则?→ ?BE =( ) (A ) →b +→a 2 1 (B ) →b -→a 2 1 (C ) →a +→b 2 1 (D ) →a -→ b 2 1 2.已知B 是线段AC 的中点,则下列各式正确的是( ) (A ) ?→?AB =-?→?BC (B ) ?→?AC =?→?BC 2 1 (C ) ?→?BA =?→?BC (D ) ?→?BC =?→ ?AC 2 1 3.已知ABCDEF 是正六边形,且?→?AB =→a ,?→?AE =→b ,则?→ ?BC =( ) (A ) )(2 1→→-b a (B ) )(2 1 →→-a b (C ) →a +→b 2 1 (D ) )(2 1→ →+b a 4.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→ ?CD = -5→ a -3→ b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→ ?BC (C )?→?AD =-?→ ?BC (D )?→?AD =-2?→ ?BC 5.将图形F 按→ a =(h,k )(其中h>0,k>0)平移,就是将图形F ( ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。 (D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。 6.已知→a =()1,2 1,→ b =(), 2 22 3- ,下列各式正确的是( ) (A ) 2 2?? ? ??=??? ??→ →b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→ 1e 与→ 2e 是不共线的非零向量,且k → 1e +→ 2e 与→ 1e +k → 2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→ ?PN =-2?→ ?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法),(y x yj xi a 向 量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的, 0 与任意向量平行零向量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即自 由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a 大 小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

高中数学平面向量公式(精选课件)

高中数学平面向量公式1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤

2、向量的数量积不满足消去律,即:由a?b=a? c (a≠0),推不出 b=c。 3、|a?b|≠|a|?|b| 4、由 |a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b ∣=|a|?|b|?sin〈a,b>;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。...文档交流仅供参考... 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c。 注:向量没有除法,“向量AB/向量CD”是没有意义的. 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四)

2019年爱云校西藏高考模拟高中数学试卷(12月份组卷)(四) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 设集合M ={m ∈Z|?3b >c B.b >c >a C.a >c >b D.c >b >a

高中数学平面向量doc

专题讲座 高中数学“平面向量” 一、整体把握“平面向量”教学内容 (一)平面向量知识结构图 (二)重点难点分析

本专题内容包括:平面向量的概念、运算及应用. 课标要求: 平面向量(约12课时) (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。(2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义。 ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义。 ②掌握平面向量的正交分解及其坐标表示。 ③会用坐标表示平面向量的加、减与数乘运算。 ④理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积

①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 ②体会平面向量的数量积与向量投影的关系。 ③掌握数量积的坐标表达式,会进行平面向量数量积的运算。 ④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用 经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。 依据课标要求,并结合前面的分析可知:新概念、新运算的定义,向量运算和向量运算的几何意义是本专题的重点,平面向量基本定理是坐标表示(几何代数化)的关键,也是本专题教学的难点。 二、“平面向量”教与学的策略 (一)在概念教学中,依据概念教学的方法,建构概念知识体系 本专题的教学中,向量、向量的运算等都是新定义的概念,如何让这些概念的出现自然轻松,还能让学生迅速把握住本质,达成理解?不妨遵循概念教学的方法。 比如说:“向量的概念”教学中,可从力、位移等实例引入,进行抽象概括,形成向量的概念。之后,提出“温度、功是不是向量?”这样的问题,通过比较,对向量的概念进行辨析,在此基础上,抓住向量的两个要点:大小、方向进行拓展,按如下表格整理,将向量概念精致化。 概念辨析:

(完整word版)高中数学-平面向量专题.doc

第一部分:平面向量的概念及线性运算 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 平面向量是自由向量的(或称) 零向量长度为的向量;其方向是任意的记作 0 单位向量长度等于的非零向量 a 的单位向量为± a 向量|a| 平行向量方向或的非零向量 0 与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算 向量运算定义法则 (或几何 运算律意义 ) 加法求两个向量和的运算 求 a 与 b 的相反向量- b 减法的和的运算叫做 a 与 b 的差 (1)交换律: a+ b= b+ a. (2)结合律: (a+ b)+ c= a+ (b+c). a- b= a+ (- b) 法则 求实数λ与向量 a 的积的(1)|λa|= |λ||a|. ;λ(μa)=λμa; 数乘 (2)当λ>0 时,λa 的方向与 a 的方向 运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa; =0 时,λa= 0. λ(a+ b)=λa+λb. 3.共线向量定理 向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说, 即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。A、B、C、D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、B、 C、D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2

(4)(b ) -( a )b 与 不一定垂直。其中真命题的个数是( )。 A 、1 B 、2 C 、3 D 、4 9.在ΔABC 中,A=60°,b=1, ,则 等 于( )。 A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2+b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶 向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹角 为 。(10分)

数列高中数学组卷

SM数列高中数学组卷1 一.选择题(共1小题) 1.已知定义在R上的函数f(x)对任意的实数x1,x2满足f(x1+x2)=f(x1)+f (x2)+2,数列{a n}满足a1=0,且对任意n∈N*,a n=f(n),则f(2010)=()A.4012 B.4018 C.2009 D.2010 二.填空题(共4小题) 2.记集合P={ 0,2,4,6,8 },Q={ m|m=100a1+10a2+a3,且a1,a2,a3∈P },将集合Q中的所有元素排成一个递增的数列,则此数列的第68项是.3.在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,. (Ⅰ)求a n与b n; (Ⅱ)求数列{c n}满足,求{c n}的前n项和T n. 4.已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为. 5.已知数列{a n}满足a1=1,a n+1=,则a n= 三.解答题(共25小题) 6.已知f(x)=(x﹣1)2,g(x)=4(x﹣1).数列{a n}中,对任何正整数n,﹣a n)g(a n)+f(a n)=0都成立,且a1=2,当n≥2时,a n≠1;设b n=a n 等式(a n +1 ﹣1. (Ⅰ)求数列{b n}的通项公式; (Ⅱ)设S n为数列{nb n}的前n项和,,求的值.7.设正项等比数列{a n}的首项a1=,前n项和为S n,且210S30﹣(210+1)S20+S10=0.(Ⅰ)求{a n}的通项;

(Ⅱ)求{nS n}的前n项和T n. 8.已知{a n}是等差数列,{b n}是等比数列,其中n∈N*. (1)若a1=b1=2,a3﹣b3=9,a5=b5,试分别求数列{a n}和{b n}的通项公式;(2)设A={k|a k=b k,k∈N*},当数列{b n}的公比q<﹣1时,求集合A的元素个数的最大值. 9.已知数列{a n}是公差为d(d≠0)的等差数列,数列{b n}是公比为q的(q∈R)的等比数列,若函数f(x)=x2,且a1=f(d﹣1),a5=f(2d﹣1),b1=f(q﹣2),b3=f(q). (1)求数列{a n}和{b n}的通项公式; (2)设数列{c n}的前n项和为S n,对一切n∈N*,都有 成立,求S n. 10.已知函数f(x)=x2+2x. (Ⅰ)数列a n满足:a1=1,a n+1=f'(a n),求数列a n的通项公式; (Ⅱ)已知数列b n满足b1=t>0,b n+1=f(b n)(n∈N*),求数列b n的通项公式;(Ⅲ)设的前n项和为S n,若不等式λ<S n对所有的正整数n恒成立,求λ的取值范围. 11.设等比数列{a n}的前n项和为S n=2n+1﹣2;数列{b n}满足6n2﹣(t+3b n)n+2b n=0(t∈R,n∈N*). (1)求数列{a n}的通项公式; (2)①试确定t的值,使得数列{b n}为等差数列; ②在①结论下,若对每个正整数k,在a k与a k+1之间插入b k个2,符到一个数列{c n}.设T n是数列{c n}的前n项和,试求满足T m=2c m+1的所有正整数m.12.已知函数f (x)=log a x (a>0且a≠1),若数列:2,f (a1),f (a2),…,f (a n),2n+4 (n∈N﹡)为等差数列. (1)求数列{a n}的通项公式a n; (2)若a=2,b n=a n?f (a n),求数列{b n}前n项和S n; (3)在(2)的条件下对任意的n∈N﹡,都有b n>f ﹣1(t),求实数t的取值范

高中数学平面向量习题及答案

第二章 平面向量 一、选择题 1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .与相等 D .与相等 2.下列命题正确的是( ). A .向量与是两平行向量 B .若a ,b 都是单位向量,则a =b C .若=,则A ,B ,C , D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同 3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足=α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ). A .3x +2y -11=0 B .(x -1)2+(y -1)2=5 C .2x -y =0 D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A . 6 π B . 3 π C . 23 π D . 56 π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则=( ). A .λ(+),λ∈(0,1) B .λ(+),λ∈(0,22 ) C .λ(-),λ∈(0,1) D .λ(-),λ∈(0, 2 2) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则=( ). A .+ B .- C .+ D .+ 7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ). (第1题)

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

高一数学必修4平面向量练习题及答案(完整版)

平面向量练习题 一、选择题 1、若向量a = (1,1), b = (1,-1), c =(-1,2),则 c 等于( ) A 、21-a +23b B 、21a 23-b C 、23a 2 1-b D 、2 3-a + 21b 2、已知,A (2,3),B (-4,5),则与共线的单位向量是 ( ) A 、)10 10 ,10103(- = B 、)10 10 ,10103()1010,10103(-- =或 C 、)2,6(-= D 、)2,6()2,6(或-= 3、已知k 3),2,3(),2,1(-+-==垂直时k 值为 ( ) A 、17 B 、18 C 、19 D 、20 4、已知向量=(2,1), =(1,7), =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA ?的最小值是 ( ) A 、-16 B 、-8 C 、0 D 、4 5、若向量)1,2(),2,1(-==分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( ) A 、 -1 ,2 B 、 -2 ,1 C 、 1 ,2 D 、 2,1 6、若向量a =(cos α,sin β),b =(cos α ,sin β ),则a 与b 一定满足 ( ) A 、a 与b 的夹角等于α-β B 、(a +b )⊥(a -b ) C 、a ∥b D 、a ⊥b 7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i θθsin 3cos 3+=,i -=∈),2 ,0(π θ。若用 来表示与的夹角,则 等于 ( ) A 、θ B 、 θπ +2 C 、 θπ -2 D 、θπ- 8、设πθ20<≤,已知两个向量()θθsin ,cos 1=,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是 ( ) A 、2 B 、3 C 、23 D 、 二、填空题 9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使BP AP ?取得最小值的点P 的坐标

排列组合高中数学组卷

排列组合高中数学组卷 一.选择题(共9小题) 1.(2016?衡阳校级一模)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有() A.90种B.180种C.270种D.540种 2.(2016?黄冈校级自主招生)方程3x2+y2=3x﹣2y的非负整数解(x,y)的组数为()A.0 B.1 C.2 D.3 3.(2016?新余二模)7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为()A.120 B.240 C.360 D.480 4.(2016?内江四模)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有() A.24种B.36种C.48种D.60种 5.(2016?邯郸一模)现有6个白球、4个黑球,任取4个,则至少有两个黑球的取法种数是() A.90 B.115 C.210 D.385 6.(2016?成都校级模拟)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有()个. A.324 B.216 C.180 D.384 7.(2016?湖南校级模拟)某中学拟安排6名实习老师到高一年级的3个班实习,每班2人,则甲在一班、乙不在一班的不同分配方案共有() A.12种B.24种C.36种D.48种 8.(2016?陕西模拟)某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有() A.3种B.6种C.9种D.18种 9.(2016?福建模拟)四位男生和两位女生排成一排,男生有且只有两位相邻,则不同排法的种数是() A.72 B.96 C.144 D.240 二.填空题(共3小题) 10.(2016?黄冈校级自主招生)若p和q为质数,且5p+3q=91,则p=, q=. 11.(2016?黄冈校级自主招生)设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是. 12.(2016?绵阳模拟)从数字0、1、2、3、4、5这6个数字中任选三个不同的数字组成的三位偶数有个.(用数字作答) 三.解答题(共4小题) 13.(2016?新余三模)如图,四棱锥P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点. (1)证明:EF∥平面PCD;

(完整版)高中数学平面向量专题训练

高中数学平面向量专题训练 一、选择题: 1、若向量方程23(2)0x x a --=r r r r ,则向量x r 等于 A 、65 a r B 、6a -r C 、6a r D 、65 a -r 2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a r 和b r ,那么下列命题中错误的一个是 A 、a r 与b r 为平行向量 B 、a r 与b r 为模相等的向量 C 、a r 与b r 为共线向量 D 、a r 与b r 为相等的向量 3、AB BC AD +-=u u u r u u u r u u u r A 、AD u u u r B 、CD uuu r C 、DB u u u r D 、DC u u u r 4、下列各组的两个向量,平行的是 A 、(2,3)a =-r ,(4,6)b =r B 、(1,2)a =-r ,(7,14)b =r C 、(2,3)a =r ,(3,2)b =r D 、(3,2)a =-r ,(6,4)b =-r 5、若P 分AB u u u r 所成的比为4 3 ,则A 分BP u u u r 所成的比为 A 、7 3 - B 、3 7 - C 、73 D 、 3 7 6、已知(6,0)a =r ,(5,5)b =-r ,则a r 与b r 的夹角为 A 、045 B 、060 C 、0135 D 、0120 7、已知i r ,j r 都是单位向量,则下列结论正确的是 A 、1i j ?=r r B 、22 i j =r r C 、i r ∥j i j ?=r r r D 、0i j ?=r r 8、如图,在四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r , BC c =u u u r r ,则DC =u u u r A 、a b c -+r r r B 、()b a c -+r r r C 、a b c ++r r r D 、b a c -+r r r 9、点),0(m A )0(≠m ,按向量a r 平移后的对应点的坐标是)0,(m ,则向量a r 是 C B A D

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学平面向量知识点总结及常见题型(供参考)

平面向量 一.向量的基本概念与基本运算 1 ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法,(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ? |a |=0 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同),(),(2211y x y x =?? ?==?2 12 1y y x x 2 求两个向量和的运算叫做向量的加法 设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:

(完整版)高一数学必修四平面向量基础练习题及答案

平面向量的基本定理及坐标表示 一、选择题 1、若向量a = (1,1), b = (1,-1), c =(-1,2),则 c 等于( ) A 、21 a +23 b B 、21a 23 b C 、23a 2 1 b D 、2 3 a + 21b 2、已知,A (2,3),B (-4,5),则与AB 共线的单位向量是 ( ) A 、)10 10 ,10103( e B 、)10 10 ,10103()1010,10103( 或e C 、)2,6( e D 、)2,6()2,6(或 e 3、已知b a b a k b a 3),2,3(),2,1( 与垂直时k 值为 ( ) A 、17 B 、18 C 、19 D 、20 4、已知向量OP =(2,1),OA =(1,7),OB =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA 的最小值是 ( ) A 、-16 B 、-8 C 、0 D 、4 5、若向量)1,2(),2,1( n m 分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( ) A 、 -1 ,2 B 、 -2 ,1 C 、 1 ,2 D 、 2,1 6、若向量a =(cos ,sin ),b =(cos ,sin ),则a 与b 一定满足 ( ) A 、a 与b 的夹角等于 - B 、(a +b )⊥(a -b ) C 、a ∥b D 、a ⊥b 7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i OP sin 3cos 3 , i OQ ),2 ,0( 。若用来表示OP 与OQ 的夹角,则等于 ( ) A 、 B 、 2 C 、 2 D 、 8、设 20 ,已知两个向量 sin ,cos 1 OP , cos 2,sin 22 OP ,则向

相关文档
最新文档