高考一轮复习专题:导数及其应用(含答案)

高考一轮复习专题:导数及其应用(含答案)
高考一轮复习专题:导数及其应用(含答案)

导数及其应用

考点一:导数概念与运算

(一)知识清单

1.导数的概念

函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值

x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x

y

??=x x f x x f ?-?+)()(00。如果当0→?x 时,x

y ??有极限,我们就说函数y=f(x)在点x 0处可

导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →?x x y

??=0lim →?x x

x f x x f ?-?+)()(00。

说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x

y

??不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0);

(2)求平均变化率

x

y ??=x x f x x f ?-?+)

()(00;

(3)取极限,得导数f’(x 0)=x

y

x ??→?0lim 。

2.导数的几何意义

函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f /

(x 0)(x -x 0)。 3.几种常见函数的导数:

①0;C '= ②()1

;n n x

nx

-'= ③(sin )cos x x '=; ④(cos )sin x x '=-;

⑤();x x

e e '=⑥()ln x

x

a a a '=; ⑦()1ln x x '=

; ⑧()1

l g log a a o x e x

'=. 4.两个函数的和、差、积的求导法则

法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),

即: (.)'

''v u v u ±=±

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('

'

'

uv v u uv +=

若C 为常数,则'

'

'

'

'

0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)('

'

Cu Cu =

法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:??

? ??v u ‘=

2

'

'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|X = y '|U ·u '|X

(二)典型例题分析

题型一:导数的概念及其运算 例1.

如果质点A 按规律32s t =运动,则在t =3 s 时的瞬时速度为( ) A. 6m/s B. 18m/s C. 54m/s D. 81m/s

变式:定义在D 上的函数)(x f ,如果满足:x D ?∈,?常数0M >, 都有|()|f x ≤M 成立,则称)(x f 是D 上的有界函数,其中M 称为函数的上界. 【文】(1)若已知质点的运动方程为at t t S ++=

1

1

)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围.

【理】(2)若已知质点的运动方程为at t t S -+=

12)(,要使在[0,)t ∈+∞上的每一时

刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围.

例2.

已知x

f x f x x f x ?-?+=

→?)

2()2(lim

,1)(0则的值是( )

A. 4

1

- B. 2 C. 41 D. -2

变式1:()()()为则设h

f h f f h 233lim ,430--='→( )

A .-1

B.-2

C .-3

D .1

变式2:()()()

0000

3,lim x f x x f x x f x x x

?→+?--??设在可导则等于( )

A .()02x f '

B .()0x f '

C .()03x f '

D .()04x f '

例3. 求所给函数的导数:

()

33

2991log ; ; sin ((1); 2; 2sin 25n x

x x y x x y x e y x y x y e y x x --=+==

=+==+(文科)理科)

变式:设f (x )、g(x )分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()f x g x f x g x ''+>0.且g(3)=0.则不等式f (x )g(x )<0的解集是( ) A .(-3,0)∪(3,+∞)

B .(-3,0)∪(0, 3)

C .(-∞,- 3)∪(3,+∞)

D .(-∞,- 3)∪(0, 3)

题型二:导数的几何意义

① 已知切点,求曲线的切线方程;

注:此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.

例4. 曲线3231y x x =-+在点(1

1)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =-

② 已知斜率,求曲线的切线方程;

注:此类题可利用斜率求出切点,再用点斜式方程加以解决.

例5.

与直线240x y -+=的平行的抛物线2y x =的切线方程是( )

A.230x y -+=

B.230x y --= C.210x y -+=

D.210x y --=

③ 已知过曲线外一点,求切线方程;

此类题可先设切点,再求切点,即用待定切点法来求解.

例6. 求过点(20),且与曲线1

y x =相切的直线方程.

变式1、已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1

22

y x =

+,则(1)(1)f f '+= 。

变式2、

考点二:导数应用

(一)知识清单

1. 单调区间:一般地,设函数)(x f y =在某个区间可导, 如果'f )(x 0>,则)(x f 为增函数;

如果'f 0)(

如果在某区间内恒有'f 0)(=x ,则)(x f 为常数;

2.极点与极值:

曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值:

一般地,在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。 ①求函数?)(x 在(a ,b)内的极值; ②求函数?)(x 在区间端点的值?(a)、?(b);

③将函数? )(x 的各极值与?(a)、?(b)比较,其中最大的是最大值,其中最小的是最小值。 4.定积分

(1)概念:设函数f (x )在区间[a ,b ]上连续,用分点a =x 0

I n =∑n

i f 1

=(ξi )△x (其中△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函

数f (x )在区间[a ,b ]上的定积分,记作:

?

b

a

dx x f )(,即?b

a

dx x f )(=∑=∞

→n

i n f 1

lim (ξi )△x 。

这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式。 基本的积分公式:

?dx 0=C ;

?dx x m =

11

1

++m x m +C (m ∈Q , m ≠-1)

; ?x 1

dx =ln x +C ;

?

dx e x

=x e +C ; ?dx a x

=a a x

ln +C ;

?xdx cos =sin x +C ;

?xdx sin =-cos x +C (表中C 均为常数)。 (2)定积分的性质 ①?

?=b

a b

a

dx x f k dx x kf )()((k 为常数);

?

??±=±b

a

b a

b

a

dx x g dx x f dx x g x f )()()()(;

?

??+=b

a

c a

b

c

dx x f dx x f dx x f )()()((其中a <c <b )。

(3)定积分求曲边梯形面积

由三条直线x =a ,x =b (a

=

b

a

dx x f S )(。

如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,

x =b (a

?

?-b

a

b

a

dx x f dx x f )()(21。

(二)典型例题分析

题型一:单调性

例7. 判断下列函数的单调性,并求出单调区间:

3232(1)()3; (2) ()23; (3) ()sin ,(0,);(4)()2324 1.

f x x x f x x x f x x x x f x x x x π=+=--=-∈=+-+

变式1:函数x

e

x x f -?=)(的一个单调递增区间是( )

A.[]0,1-

B. []8,2

C. []2,1

D. []2,0

变式2:已知函数53

123

-++=

ax x x y (1)若函数的单调递减区间是(-3,1),则a 的是 .

(2)若函数在),1[+∞上是单调增函数,则a 的取值范围是 . 变式3: 设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=2

3

)()(与的图象的一个公

共点,两函数的图象在点P 处有相同的切线. (Ⅰ)用t 表示a ,b ,c ;

(Ⅱ)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围. 解:(Ⅰ)∵函数,

的图象都过点(t ,0), ∴,即

, ∵t ≠0, ∴,

∵ ∴

又∵,

在点(t ,0)处有相同的切线,

∴而

代入上式,得b=t , ∴c=ab=-t 3, 故,b=t ,c=-t 3。

(Ⅱ),

∵函数在在(-1,3)上单调递减, ∴

在(-1,3)上恒成立,

∴即,

解得:t ≤-9或t ≥3, ∴t 的取值范围是

例8.

设函数

若曲线的斜率最小的切线与直

线平行,求:(Ⅰ)a 的值;(Ⅱ)函数f (x )的单调区间. 解:(Ⅰ)因

所以,

即当时,f ′(x )取得最小值,

)0(19)(2

3<--+=a x ax x x f )(x f y =612=+y x

因斜率最小的切线与12x+y=6平行,即该切线的斜率为-12,

所以

,解得a=±3,

由题设a <0,所以a=-3。 (Ⅱ)由(Ⅰ)知a=-3,因此,

, 令f ′(x )=0,解得

当x ∈(-∞,-1)时,f ′(x )>0,故f (

x )在(-∞,-1)上为增函数; 当x ∈(-1,3)时,f ′(x )<0,故f (x )在(-∞,-1)上为减函数; 当x ∈(3,+∞)时,f ′(x )>0,故f (x )在(3,+∞)上为增函数, 由此可见,函数f (x )的单调递增区间为(-∞,-1)和(3,+∞),

单调递减区间为(-1,3)。

例9.

已知函数

,函数的图像在点的切线方程是.

(Ⅰ)求函数

的解析式;

(Ⅱ)若函数在区间

上是单调函数,求实数的取值范围.

32

()1()f x x ax bx x R =+++∈()y f x =(1,(1))P f 4y x =+()f x ()f x 2,3k k ?

?+ ???k

题型二:极值与最值

例10. 求函数31

()443f x x x =-+的极值.

求函数31

()443

f x x x =-+在[]0,3上的最大值与最小值..

变式1: 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点(A )

A .1个

B .2个

C .3个

D .4个

变式2:已知函数3

2

()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0),如图所示.求:

(Ⅰ)0x 的值;(Ⅱ),,a b c 的值.

变式3:若函数4)(3

+-=bx ax x f ,当2=x 时,函数)(x f 极值3

4

-, (1)求函数的解析式;

(2)若函数k x f =)(有3个解,求实数k 的取值范围.

例11. 设函数

3

()3(0)f x x ax b a =-+≠

精编导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线y x 在点1,1 处的切线方程为() x 2 (A)y2x1(B)y2x1(C)y2x 3(D)y 2x2 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选A.因为y 2 2,所以,在点 1,1 处的切线斜率 2) (x 2 22 ,所以,切线方程为 y1 2(x 1) ,即 y2x1 ,故选A. ky x1 (12) 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为y 1x3 81x 234,则使该生产厂 3 家获得最大年利润的年产量为() (A)13万件(B)11 万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析 问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C,y' x2 81,令y0得x 9或x 9(舍去),当x 9 时y' 0;

当x9时y'0,故当x 9时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=x 2,y= x 3围成的封闭图形面积为() (A)1 (B) 1 (C) 1 (D) 7 12 4 3 12 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

面积,考查了考生的想象能力、推理论证能力和运算求解能力. 【思路点拨】先求出曲线y=x2,y=x3的交点坐标,再利用定积分求面积. 【规范解答】选A,由题意得:曲线y=x2,y=x3的交点坐标为(0,0) ,(1,1),故 所求封闭图形的面积为1(x2-x3)dx= 1 1 1 0 1- 1= 故选A. 3 4 12 4 4.(2010·辽宁高考理科·T10)已知点P在曲线y= x 上,为曲线在点 e 1 P处的切线的倾斜角,则的取值范围是() (A)[0, )(B)[ , )( ,3 ](D)[ 3 ,) 4 4 2 2 4 4 【命题立意】本题考查了导数的几何意义,考查了基本等式,函数的值域,直线的倾斜角与斜率。 【思路点拨】先求导数的值域,即tan的范围,再根据正切函数的性质求的范围。 【规范解答】选 D. 5.(2010·湖南高考理科·T4) 4 1 dx等于()2x A、2ln2 B、2ln2 C、ln2 D、ln2 【命题立意】考查积分的概念和基本运算. 【思路点拨】记住1 的原函数. x 1 4 【规范解答】选D. dx=(lnx+c)|42=(ln4+c)-(ln2+c)=ln2. 2 x 【方法技巧】关键是记住被积函数的原函数.

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高考真题导数第一问分类汇总

切线问题 1 已知函数31()4 f x x ax =++,()ln g x x =-.当a 为何值时,x 轴为曲线()y f x =的切线; 2 设函数1 (0ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. 3已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.求a 、b 的值; 4 设函数()()23x x ax f x a R e +=∈若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程; 5已知函数f(x)=e x -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1. 求a 的值及函数f(x)的极值; 6设函数,曲线在点处的切线方程为, 7已知函数.求曲线在点处的切线方程; 8设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.求a ,b ,c ,d 的值; ()a x f x xe bx -=+()y f x =(2,(2))f (1)4y e x =-+()e cos x f x x x =-()y f x =(0,(0))f

单调性问题 1已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-.求)(x f 的解析式及单调区间; 2 讨论函数2()2 x x f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; 3已知函数()2x x f x e e x -=--. 讨论()f x 的单调性; 4 设1a >,函数a e x x f x -+=)1()(2.求)(x f 的单调区间 ; 5已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的 切线的斜率为4-c . (1)确定a ,b 的值; (2)若c =3,判断f (x )的单调性; 6设,已知定义在R 上的函数在区间内有一个零点,为的导函数.求的单调区间; 7已知函数()ln()x f x e x m =-+. 设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; a ∈Z 432 ()2336f x x x x x a =+--+(1,2)0x ()g x ()f x ()g x

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

高考数学难点突破_难点35__导数的应用问题

难点35 导数的应用问题 利用导数求函数的极大(小)值,求函数在连续区间[a ,b ]上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为新高考的又一热点.本节内容主要是指导考生对这种方法的应用. ●难点磁场 (★★★★★)已知f (x )=x 2+c ,且f [f (x )]=f (x 2+1) (1)设g (x )=f [f (x )],求g (x )的解析式; (2)设φ(x )=g (x )-λf (x ),试问:是否存在实数λ,使φ(x )在(-∞,-1)内为减函数,且在 (-1,0)内是增函数. ●案例探究 [例1]已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值; (2)试判断x =±1是函数的极小值还是极大值,并说明理由. 命题意图:利用一阶导数求函数的极大值和极小值的方法是导数在研究函数性质方面的继续深入.是导数应用的关键知识点,通过对函数极值的判定,可使学生加深对函数单调性与其导数关系的理解.属★★★★★级题目. 知识依托:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发,根据题设结构进行逆向联想,合理地实现了问题的转化,使抽象的问题具体化.这是解答本题的闪光点. 错解分析:本题难点是在求导之后,不会应用f ′(±1)=0的隐含条件,因而造成了解决问题的最大思维障碍. 技巧与方法:考查函数f (x )是实数域上的可导函数,可先求导确定可能的极值,再通过极值点与导数的关系,建立由极值点x =±1所确定的相等关系式,运用待定系数法求值. 解:(1)f ′(x )=3ax 2+2bx +c ∵x =±1是函数f (x )的极值点, ∴x =±1是方程f ′(x )=0,即3ax 2+2bx +c =0的两根. 由根与系数的关系,得???????-==-13032a c a b 又f (1)=-1,∴a +b +c =-1, ③ 由①②③解得a =2 3,0,21==c b , (2)f (x )=21x 3-2 3x , ∴f ′(x )=23x 2-23=2 3(x -1)(x +1) 当x <-1或x >1时,f ′(x )>0 当-1<x <1时,f ′(x )<0 ∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数. ∴当x =-1时,函数取得极大值f (-1)=1, 当x =1时,函数取得极小值f (1)=-1. [例2]在甲、乙两个工厂,甲厂位于一直线河岸的岸边A 处,乙厂与甲厂在河的同侧,① ②

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

08高考数学导数的应用问题

难点35导数的应用问题 利用导数求函数的极大(小)值,求函数在连续区间[a,b ]上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为新高考的又一热点?本节内容主要是指导考生对这种方法的应用??难点磁场 2 2 (★★★★★)已知f(x)=x +C,且f [f(x)]=f(x +1) ⑴设g(x)=f : f(x)],求g(x)的解析式; (2)设0 (x)=g(x)-入f(x),试问:是否存在实数入,使0 (x)在(一8,- 1)内为减函数,且在(-1, 0)内是增函数? ?案例探究 [例1]已知f(x)=ax3+bx2+cx(a 工0)在x=± 1 时取得极值,且f(1)= - 1. (1) 试求常数a、b、c的值; (2) 试判断x= ± 1是函数的极小值还是极大值,并说明理由. 命题意图:利用一阶导数求函数的极大值和极小值的方法是导数在研究函数性质方面的 继续深入?是导数应用的关键知识点,通过对函数极值的判定,可使学生加深对函数单调性与 其导数关系的理解?属★★★★★级题目? 知识依托:解题的成功要靠正确思路的选择?本题从逆向思维的角度出发,根据题设结构进行逆向联想,合理地实现了问题的转化,使抽象的问题具体化?这是解答本题的闪光点?错解分析:本题难点是在求导之后,不会应用f' (土1)=0的隐含条件,因而造成了解决 问题的最大思维障碍? 技巧与方法:考查函数f(x )是实数域上的可导函数,可先求导确定可能的极值,再通过 极值点与导数的关系,建立由极值点x= ± 1所确定的相等关系式,运用待定系数法求值?解:(1)f' (x)=3ax2+2bx+c x= ± 1是函数f(x)的极值点, ??? x= ± 1 是方程f' (x)=0,即3ax2+2bx+c=0 的两根? 二=0 ①由根与系数的关系,得3a ② ,3a 又f(1)= - 1,.?. a+b+c= -1, ③ 由①②③解得a=丄,b = 0,c =色, 2 2 1 3 (2) f(x)= x3-x, 2 2 3 2 3 3 …f (x)= x —= —(x- 1)(x+1) 2 2 2 当x v- 1 或x> 1 时,f' (x)> 0 当一1v x v 1 时,f' (x)v 0 ?函数f(x)在(-8 , - 1)和(1,+8)上是增函数,在(—1, 1)上是减函数? ? ??当x= - 1时,函数取得极大值f( -1)=1, 当x=1时,函数取得极小值f(1)= - 1.

高中数学导数及其应用

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数, 这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。 事实上,在点处的增量

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

高中数学导数经典题型解题技巧(运用方法)

高中数学导数及其应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中·期末还是会考·高考,都是高中数学的必考内容之一。因此,针对这两各部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们有更多·更好·更快的方法解决高中数学问题。好了,下面就来讲解常用逻辑用语的经典解题技巧。 第一·认识导数概念和几何意义 1.导数概念及其几何意义 (1)了解导数概念的实际背景。 (2)理解导数的几何意义。 2.导数的运算 (1)能根据导数定义求函数的导数。 (2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 (3)能求简单的复合函数(仅限于形如的复合函数)的导数。 3.导数在研究函数中的应用 (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。

(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。 4.生活中的优化问题 会利用导数解决某些实际问题 5.定积分与微积分基本定理 (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。 (2)了解微积分基本定理的含义。 总结:先搞清楚导数概念以及几何意义,才能更好地运用其解题技巧! 第二·导数运用和解题方法 一、利用导数研究曲线的切线 考情聚焦:1.利用导数研究曲线的切线是导数的重要应用,为近几年各省市高考命题的热点。 2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。

2020高考数学最后冲刺 导数及其应用

最后冲刺 【高考预测】 1.导数的概念与运算 2.导数几何意义的运用 3.导数的应用 4.利用导数的几何意义 5.利用导数探讨函数的单调性 6.利用导数求函数的极值勤最值 易错点 1导数的概念与运算 1.(2020精选模拟)设f 0(x)=sinx,f 1(x)=f ’0(x),f 2(x)=f ’1(x),…,f n+1(x)=f ’n (x),n ∈N,则f 2020(x) ( ) A.sinx B.-sinx C.cosx D.-cosx 【错误解答】 选A 【错解分析】由 f ’1(x)=f ’0(x)=(sinx)’=cosx,f2(x)=(cosx)’=-sinx,f3(x)=(-sinx)’=-cosx,f4(x)=(-cosx)’=sinx,…, f2020(x)=f ’2020(x)=…=f0(x0=sinx 前面解答思路是正确的,但在归纳时发生了错误。因f4(x)=f0(x)=f8(x0=…=f2020(x),所以f2020(x)=f1(x)=cosx. 【错误解答】 选B ∵f(x)=2x+1,∴f ’(x)=(2x+1)’=2x+1|x=1=3. 【错解分析】上面解答错误原因是导数公式不熟悉,认为(2x+1)’=2x+1.正确的是(2x+1)’=2,所以x=1时的导数是2,不是3。 【正确解答】 选A ∵f(x)=(x-1)3+3(x-1)f ’(x)=3(x-1)2+3,当 x=1时,f ’(1)=3 3.(2020精选模拟题) 已知f(3)=2f ’(3)=-2,则3) (32lim 3--→x x f x x 的值为 ( ) A .-4 B .0 C .8 D .不存在 【错误解答】 选D ∵x →3,x-3→0 ∴3) (32lim 3--→x x f x x 不存在。 【错解分析】限不存在是错误的,事实上,求00 型的极限要通过将式子变形的可求的。 [对诊下药] 选C

二阶导数在解高考函数题中的应用

浅谈二阶导数在解高考函数题中的应用 河南省郸城县第三高中 胡友全 (邮编:477150) 在历年高考试题中,导数部分是高考重点考查的内容,在六道解答题中必有一题是导数题。这类题主要考察函数的单调性、求函数的极值与最值以及利用导数的有关知识解决恒成立、不等式证明等问题。解决这类题的常规解题步骤为:①求函数的定义域;②求函数的导数;③求)('x f 的零点;④列出)(),(',x f x f x 的变化关系表;⑤根据列表解答问题。 而在有些函数问题中,如含有指数式、对数式的函数问题,求导之后往往不易或不能直接判断出导函数的符号,从而不能进一步判断函数的单调性及极值、最值情况,此时解题受阻。若遇这类问题,则可试用求函数的二阶导数加以解决。本文试以2010年全国高考试题为例,说明函数的二阶导数在解高考函数题中的应用。 例1.(全国卷Ⅰ第20题) 已知函数1ln )1()(+-+=x x x x f . (1) 若1)('2++≤ax x x xf ,求a 的取值范围; (2) 证明:0)()1(≥-x f x . 原解答如下: 解(1)函数的定义域为(0,+∞),x x x f 1ln )('+ = , 11ln 1)('22++≤+?++≤ax x x x ax x x xf , max )(ln ln x x a x x a -≥?-≥? . 令,11)('ln )(-= -=x x g x x x g 则 递减, 时,当递增;时,当)(,0)('1)(,0)('10x g x g x x g x g x <>><< 从而当1=x 时,1)1()(max -==g x g , 故所求a 的范围是[-1,+∞﹚. 证明(2)由(1)知,01ln ≤+-x x ,则 ① 10<

高考文科数学专题复习导数训练题(汇编)

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 2.导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 3.求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

相关文档
最新文档