温度传感器系列-产品选型

温度传感器系列-产品选型
温度传感器系列-产品选型

产品及介绍型号、分度号、精度等级、安装固定形式、保护管材质、长度或插入长度

一、铠装热电偶IEC584 GB/T18404-2001

应用:与显示仪表、记录仪表、电子计算机等配套使用。1m绝缘电阻为1000M?

范围:0℃—1300℃液体、蒸汽、气体、固体表面20 ±15℃湿度≤80% 500V±50V

1、防水式铠装热电偶特点:热响应时间少,减小动态误差

2、圆接插式铠装热电偶可弯曲安装使用

3、扁接插式铠装热电偶测量范围大

4、补偿导线式铠装热电偶机械强度高,耐压性能好

5、手柄式铠装热电偶

二、装配热电偶IEC584 JB/T9238-1999

应用:与显示仪表、记录仪表、电子计算机等配套使用。1m绝缘电阻为1000M?

范围:0℃—1300℃液体、蒸汽、气体、固体表面20 ±15℃湿度≤80% 500V±50V

1、无固定装置热电偶特点:装备简单,更换方便

2、固定螺纹式热电偶压簧式感温元件,抗振性能好

3、活动法兰式热电偶测量范围大

4、固定法兰式热电偶机械强度高,耐压性能好

5、固定螺纹锥式热电偶

6、活络管接头式热电偶

7、直形管接头式热电偶

8、固定螺纹管接头式热电偶

应用:与显示仪表、记录仪表、电子计算机等配套使用。1m绝缘电阻为1000M?

范围:0℃—1300℃液体、蒸汽、气体、固体表面20 ±15℃湿度≤80% 500V±50V

三、防暴热电偶IEC584 GB/T16839-1997 JB/T5518-1991 GB3836

应用:与显示仪表、记录仪表、电子计算机等配套使用。1m绝缘电阻为1000M?

范围:0℃—1300℃液体、蒸汽、气体、固体表面20 ±15℃湿度≤80% 500V±50V 直接测量碳氢化合物等爆炸物绝缘电阻≥1000M?·m

1、固定螺纹式热电偶特点:多种防爆形式,防暴性能好

2、固定法兰式热电偶压簧式感温元件,抗振性能好

3、活络管接头式热电偶测量范围大

4、直形管接头式热电偶机械强度高,耐压性能好

5、固定螺纹管接头式热电偶通过NEPSI(防暴认证系国家级仪表防暴安全监督检疫站)

dⅡBT4 GYB997151;dⅡCT5 GYB02475 ;iaⅡCT6 GYB05363X d:隔爆型ia:本质安全型

四、铠装热电阻IEC751 JB/T8622-1997

应用:与显示仪表、记录仪表、电子计算机等配套使用。绝缘电阻≥1000M?

范围:-200℃—500℃液体、蒸汽、气体、固体表面15~35℃湿度≤80% 10~100V

1、防水式铠装热阻特点:热响应时间少,减小动态误差

2、圆接插式铠装热电阻直径小,长度不受限制

3、扁接插式铠装热电阻测量精确度高

4、补偿导线式铠装热电阻进口薄膜电阻元件,性能可靠稳定

五、装配热电阻IEC751 JB/T8622-1997 JB/T8623-1997

应用:与显示仪表、记录仪表、电子计算机等配套使用。绝缘电阻≥100M?

范围:-200℃—500℃液体、蒸汽、气体、固体表面15~35℃湿度≤80% 10~100V

1、无固定装置热电阻特点:压簧式感温元件,抗振性能好

2、固定螺纹式热电阻毋须补偿导线,节省费用

3、活动法兰式热电阻测量精度高

4、固定法兰式热电阻机械强度高,耐压性能好

5、固定螺纹锥式热电阻进口薄膜电阻元件,性能可靠稳定

6、活络管接头式热电阻型号分度号测温范围℃精度等级允许偏差℃

7、直形管接头式热电阻WZP Pt100 -200~—+500 A/B ±(0.15+0.002ltl)/±(0.30+0.005ltl)

8、固定螺纹管接头式热电阻WZC Cu50/Cu100 -50~+100 ---- ±(0.30+0.006ltl)

六、防暴热电阻IEC751 JB/T8622-1997 JB/T8623-1997 JB/T5518-1991

应用:与显示仪表、记录仪表、电子计算机等配套使用。绝缘电阻≥100M?

范围:-200℃—500℃液体、蒸汽、气体、固体表面15~35℃湿度≤80% 10~100V 直接测量碳氢化合物等爆炸物

1、固定螺纹式热电阻特点:压簧式感温元件,抗振性能好

2、固定法兰式热电阻测量精度高

3、活络管接头式热电阻毋须补偿导线,节省费用

4、直形管接头式热电阻进口薄膜电阻元件,性能可靠稳定

5、固定螺纹管接头式热电阻测温范围及允差(见五)

七、带温度变送器防爆热电偶(阻)IEC584 IEC751 JB/T5518-1991 JB/T7391-1994

应用:与显示仪表、记录仪表、电子计算机等配套使用。

范围:-200℃—1300℃液体、蒸汽、气体、固体表面4~20mA 湿度≤80% 10~100V 直接测量碳氢化合物等爆炸物

1、固定螺纹式特点:二线制输出4~20mA,抗干扰能力强

2、固定法兰式节省补偿导线及安装温度変器费用

3、活络管接头式安全可靠,使用寿命长

4、直形管接头式冷端温度自动补偿,非线性校正电路

SBW系列温度变送器

一、电站热电偶(阻)IEC584、IEC751、GB/T16839-1997、JB/T8622-1997、JB/T8623-1997、JB/T9238-1999

应用:专业针对电站设计,30W、60W、100W千瓦-200℃~800℃

液体、蒸汽、气体、固体表面

热套热电偶(阻)电偶:20 ±15℃湿度≤80% 500V±50V 绝缘电阻≥1000M?·m

1、炉顶热电偶(阻)

2、炉壁热电偶(阻)电阻:15~35℃湿度≤80% 10~100V 绝缘电阻≥100M?

3、轴承热电偶(阻)

4、端面热电阻

5、耐磨热电偶

二、石油化工热电偶(阻)IEC584、IEC751、JB/T8622、JB/T8623、JB/T9238、JB/T5518-1991

应用:专业针对、-200℃~1600℃液体、蒸汽、气体、固体表面

1、裂解炉专用热电偶

2、高温高压热电偶

3、耐磨切断热电偶

4、耐磨阻漏热电偶

5、吹气热电偶

6、多点热电偶

7、多点隔爆热电偶

8、防腐热电阻

9、高温防腐热电偶

10、炉管刀刃热电偶

三、特殊热电偶(阻)IEC584、IEC751、JB/T5518-1991

应用:-200℃~1600℃液体、蒸汽、气体、固体表面

1、微型热电偶(阻)电偶:20 ±15℃湿度≤80% 500V±50V 绝缘电阻≥1000M?·m

2、微细铠装热电偶

3、压簧固定热电偶电阻:15~35℃湿度≤80% 10~100V 绝缘电阻≥100M?

4、插座式热电偶

5、直角弯头热电偶

6、高温贵金属热电偶

四、双金属温度计中低温

应用:-80℃~500℃液体、蒸汽、气体、固体表面

1、轴向型特点:现场显示温度,直观方便

2、径向性安全可靠,使用寿命长

3、135°向性多种结构形式,可满足不同需要

4、万向性

5、电接点双金属温度计

6、带热电偶(阻)双金属温度计

国际品牌温度传感器介绍一..

一、霍尼韦尔 公司简介: 霍尼韦尔是《财富》百强公司,总部位于美国。致力于发明制造先进技术以应对全球宏观趋势下的严苛挑战,例如生命安全、安防和能源。公司在全球范围内拥有大约130,000 名员工,其中包括19,000 多名工程师和科学家。 霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。1973年美国总统尼克松访华时,应中国政府之邀从十大领域推荐精英企业来华推动两国双向交流,并促进中国的现代化建设。其中炼油石化领域唯一被选中推荐给中国政府的美国环球油品公司,正是霍尼韦尔旗下的子公司。80年代的改革开放成为了霍尼韦尔融入中国经济发展的又一个新起点,作为首批在北京设立代表处的跨国企业,霍尼韦尔在彼时开始了一系列的高品质投资。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。目前,霍尼韦尔在中国的投资总额超10亿美金,员工人数超过12,000名。 主要产品及服务: 家具与消费品——环境自控解决方案及产品 航空与航天——航空航天UOP中国传感与控制 生命安全与安防——霍尼韦尔安全产品安防气体探测技术 建筑、施工与维护——环境自控解决方案及产品安防英诺威发泡剂极冷致制冷剂 传感与控制——扫描与移动生产力扫描与移动技术 工业过程控制——无线自动化解决方案环境自控解决方案及产品传感与控制气体探测技术 能效与公共事业——环境自控解决方案及产品无线自动化解决方案传感与控制 汽车与运输——极冷致制冷剂传感与控制 石油、天然气、炼油、石油化工与生物燃料——环境自控解决方案及产品UOP中国无线自动化解决方案传感与控制气体探测技术安防 医疗保健——扫描与移动技术阿克拉薄膜传感与控制Burdick & Jackson 溶剂和试剂 化学品、特殊材料与化肥——Burdick & Jackson 溶剂和试剂阿克拉薄膜尼龙6树脂UOP中国极冷致制冷剂OS有机硅密封胶添加剂 制造——环境自控解决方案及产品尼龙6树脂A-C高性能添加剂传感与控制 无线自动化解决方案

第二章--系统需求分析

第二章系统需求分析 一.需求分析 (一)背景分析 随着以信息技术为主要标志的科技进步日新月异,以数字化和网络化为主要特征的信息化浪潮正以汹涌之势席卷全球,对人类的未来产生着难以估量的深刻影响。世界信息技术的飞速发展,计算机信息网络及其应用系统在全世界的迅速推广和使用使人们在管理、获取、交流和处理信息的手段发生了巨大变化,信息化发展也为教育行业的工作带来了新的挑战和机遇。为适应我国改革开放和社会主义现代化建设的新形势提出的新要求,有待组建一个技术先进、安全可靠的信息平台。计算机网络的应用已经深入到社会生活的各个方面,校园网络的用户数量联网的计算机或服务器的数量是逐步增加的,网络技术也是日新月异,新产品新技术不断涌现。校园网建立在资金相对紧张的前提下,校园网的建设方面希望成本较底,因此尽量采用当前最新的网络技术,并且要分步实施,校园网络的建设应该是一个循序渐进的过程。这就要求选择具有良好可扩充性能的网络互联设备,这样才能充分保护现在的投资。 在校园网络中,视频、音频、数据集于一身,如果保证不了高带宽、又多种视频、音频、数据流混杂在一起进行传输,就没法对流做出最高优先级和次高优先级及底优先级的分类,这样就不能保证重要业务的畅通,造成网络延迟、服务不可用。所以要想真正改变网络的效率,更有效的保证应用服务的运营,需要通过端到端的QOS,智能到边缘的方式来保证。通过智能到边缘,端到端的应用方式,可以减少对网络核心设备的消耗,这样保证了网络的有效畅通。可以对园区网应用中的,多媒体视频点播服务、数据备份服务、文献传递服务、E-mail服务、数据库服务器等服务。对不同服务流进行详细的分类,划分优先级,以及尽可能地避免发生拥塞。同时保证网络的高效运行,充分利用现有的带宽。 (二)网络需求分析 在园区网络中,存在多样的网络设备及系统应用环境,并且要考虑在用户迅速增长的今天,考虑到网络设备的可扩展性。保证在多样网络设备,用户不断增加的环境中,仍能保证网络畅通。所以万兆骨干网络平台就应具有良好的兼容性和可扩展性,能与当前校园网络无缝衔接,同时预留空间符合当前和以后的信息建设需要和足够的升级空间。 在校园网络建设中存在多用户,多服务的现状。带来了对网络系统要求具有高效率等,以保证大数据量访问下有效的处理能力。针对需求设备要能对数据做到分布式处理,这样的分布式

温度传感器简介与选型

温度监控的I/O解决方案 选择和采购温度传感器 监测温度和采集数据的传感器种类繁多。从单一房间的温度监测到复杂的批次过程控制应用都依赖精准的温度获取。电阻温度计(RTD),热电偶,积体电路温度计(ICTD),热敏电阻,红外线传感器是用于以上目的的主要传感器类型。 RTD决定于材料电阻和温度的关系,它读数精确(一般小数点后2-3位),具有多种封装形式。他们一般由镍,铜及其他金属制造,但是较早前,RTD是由铂制造的,很大程度上因为铂的电阻在较宽的温度区间里与温度成线性关系。但是由于铂价格昂贵且当温度超过660°C时不能适用,因为在这范围以外铂的惰性会失效导致读数不准。RTD需要一个小功率激励源才能进行操作,且RTD应用性很强,在较大范围内它侦测温度非常准确漂移很小。 热电偶是由双金属导体制备,受热时产生的电压与温度成比例.同RTD一样,热电偶常用于工业设置里。其种类丰富(B,J,K,R,T等),提供不同的温度敏感范围。热电偶读数没有RTD那么精确,有时可能高达一度之差。热电偶和RTD一样本身及其脆弱,使用时它通常附有一根耐用探针。一般热电偶价格不贵,但若装了特殊外壳或装置,其价格将大大上升。因为热电偶种类繁多测温范围很大,最高可达1800°C,能用在高温条件下(但值得注意的是,高温使用一般需要特殊外壳、包装或绝热材料)。 ICTD是常见的通用温度传感器,其价格不贵,类似2线晶体管装置,工作电压在5-30V之间,由此产生的电流与温度成线性比例。也和RTD一样,ICTD低噪音,但比RTD更易使用,因为其无需电阻测量电路。ICTD的特点在于其简易,工业应用偏少,在-50~100°C范围内温度测量较准确,例如在HVAC,制冷机和室内温度监控等应用上。 热敏电阻工作原理是由电阻调节获得不同温度。这样看来热敏电阻和RTD的工作原理类似,差别在于前者使用2线互连,对温度更加敏感,但是一定程度上读数不准。除此,电热调节器所用材料通常是陶瓷或聚合物(而RTD使用纯金属),这样使其具有价格上的优势。热敏电阻适应于大容量的温度监测,范围在-40~200°C,并且允许一定量的漂移的场合。 红外传感器代表了温度监测设备中最新前沿的仪器。红外辐射通过监测物体的电磁辐射(也叫做热摄影或高温测量)来对其进行远程温度测定,红外监测对快速移动的物体或难以测得高温易变化的环境有很好的效果红外广泛应用在制造流程中,如对金属、玻璃、水泥、陶瓷半导体、塑料、纸品、织物及涂层的温度。 重要提示:在决定使用哪种测温器件时,需着重考虑的是价格、温度测量所需达到的精度、设备对环境的适用性以及布线。例如:对ICTD来说,一般双绞电缆,最简单的布线方案就能使它正常工作,几千米的布线也不会造成信号损失。;而相比较RTD,则需要3或4线制。对于RTD,线的规格也同样重要。直径必须相配,接合无误,即使在最佳的条件下,也易受噪音的影响,尤其在线过长的情况下。热电偶的应用通常都有严格的布线要求。每种热电偶有其匹配的线,和它的材料组成相搭配。这种专业线价格昂贵,所以在热电偶应用时,以短程布线为多。 Opto 22 的解决方案 SNAP输入模块 Opto 22的特点在于能为所有类型温度监测设备---RTD,热电偶,ICTD,热敏电阻,红外监测提供解决方案。方案包括一套完整的多通道模拟输入模块,能与以上设备连接用于远程监控和数据采集。 更值得注意的是,Opto 22的I/O模块有多种构造,从双通道到八通道一应俱全。八通道的模块是需要多通道温度采集的最佳经济选择。应用包括水处理、制冷系统、杀菌、巴氏消毒及焊接等。 Opto 22的SNAP AICTD-8模块是特别为能源管理相关应用而设计的,能从标准ICTD中获得八通道模

选择ntc温度传感器的注意事项

ntc温度传感器是温度测量仪表的核心部分,品种繁多。我们在选购ntc温度传感器的时候需要通过多个方面来考虑,如果选购的ntc温度传感器不合适在使用的时候很容易造成一定的损坏。那么我们具体要怎样选用呢?下面就让艾驰商城小编对选择ntc温度传感器的注意事项来一一为大家做介绍吧。 一是要根据应用的工作温度范围不同来选材.ntc温度传感器作为测温用的敏感元器件。根据其工作温度范围的不同来选择不同的材质至关重要。传感器一般由感温头(金属外壳或塑胶外壳),线材,端子及连接器,环氧树脂或其他填充材料等组成。要根据不同的工作环境温度来选择不同的材质。如:工作温度在105度以内的,我们会选用耐温105度pvc线,工作温度到125度的,我们会选用耐温125度左右的辐照线,温度高达200度时,我们会选用铁氟龙线或硅胶线。 二是要根据工作场合所要求测温的精度来选型。精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以。决定ntc温度传感器精度的有两个因素:一是热敏电阻本身的误差。热敏电阻的阻值误差,b值误差越小,测量精度越高。二是传感器的感温头与测温对象的接触方式。直接接触的比间接接触的测量精度要高。另因ntc热敏电阻的r-t曲线是非线性的。它不可能保证在很宽的工作温度范围内的精度都是一样的。因此,要想得到较高的测量精度。选定工作场合的中心工作温度点(一般中心工作温度点精度最高,根据r-t曲线的离散性,离中心工作温点越远的温度点,精度误差会逐渐加大)。如:用于测人体体温的传感器,一般会选择37度左右作为中心工作温度点。 三是要根据所使用的工作场合所要求的灵敏度来选型。不同的应用场合要求ntc温度传感器的响应速度快慢不一。而不同的材料有不同的导热系数。. 影响ntc温度传感器响应速度的有几个因素:,一是热敏电阻芯片的热时间常数。热时间常数小的,响应速度快。二是感温头外壳材质的导热系数,。导热系数高的材料热传导性能优良。三是感温头尺寸的大小,感温头尺寸小的,热传导时间会相应短,反应速度会快一点。四是感温头内部填充的导热胶。感温头内填充了导热系数高的导热硅脂的会比没填充\填充了导热系数低的导热硅脂反应速度快。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/8619056396.html,/

AD590温度传感器简介

AD590温度传感器简介 AD590就是一种集成温度传感器(类似的芯片还有LM35等),其实质就是一种半导体集成电路。它利用晶体管的b-e结压降的不饱与值VRE与热力学温度T与通过发射极电流I的下述关系实现对温度的检测。 式中,k就是波耳兹曼常数;q就是电子电荷绝对值。 集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出与电流输出两种。电压输出型的灵敏度一般为10mV/K(温度变化热力学温度1度输出变化10mV),温度0K时输出0,温度25℃时输出2、9815V。电流输出型的灵敏度一般为1μA/K,25℃时输出298、15μA。 AD590就是美国模拟器件公司生产的单片集成两端温度传感器。它主要特性如下: 1) 流过器件电流的微安数等于器件所处环境温度的热力学温度(开尔文)度数,即 式中,IT为流过器件(AD590)的电流,单位为μA;T为温度,单位为K。 2) AD590的测量范围为-55~+150℃。 3) AD590的电源电压范围为4~30V。电源电压从4~6V变化,电流IT 变化1μA,相当温度变化1K。AD590可以承受44V正向电压与20V 的反向电压。因而器件反接也不会损坏。

4) 输出电阻为710MΩ。 5) AD590在出厂前已经校准,精度高。AD590共有I、J、K、L、M 五挡。其中M档精度最高,在-55~+150℃范围内,非线性误差为±0.3℃。I档误差较大,误差为±10℃,应用时应校正。 由于AD590的精度高、价格低、不需辅助电源、线性度好,因此常用于测量与热电偶的冷端补偿。

网络工程设计中交换机选型

网络工程设计中交换机选型 在网络工程设计中,特别是大中型网络工程设计[1]的应用,合理的选择网络设备是必然的,对相关设备进行测试[2]也是不可缺少的。网络工程设计的主要任务是:按计划进行的网络综合性工作,包括网络的需求分析、网络设备的选择、网络拓扑结构的设计、施工技术要求等。 1 交换机选型 (1) 交换机的相关指标 交换机类型:机架式交换机与固定配置式 端口:端口类型 传输速率:如10Mbit/s、100Mbit/s、1000Mbit/s等 传输模式:全/半双工自适应模式 是否支持网管:包括配置管理、性能和记账管理、问题管理、操作管理和变化管理等。 背板吞吐量:接口处理器和数据总线之间所能吞吐的最大数据量 安全性及VLAN支持:MAC地址过滤、MAC地址与固定端口绑定,是否具有端口速率限制等。支持VLAN配置方式、数量。 冗余支持:管理卡、交换结构、接口模块、电源、冷却系统、机箱风扇等等。 (2) 交换机选型的基本原则 适用性与先进性相结合的原则:不同品牌的交换机产品价格差异较大,功能也不一样,因此选择时不能只看品牌或追求高价,也不能只看价钱低的,应该根据应用的实际情况,选择性能价格比高,既能满足目前需要,又能适应未来几年网络发展的交换机。 选择市场主流产品的原则:选择交换机时,应选择在国内市场上有相当的份额,具有高性能、高可靠性、高安全性、高可扩展性、高可维护性的产品,如思科、H3C、华为的产品市场份额较大。

安全可靠的原则:交换机的安全决定了网络系统的安全,选择交换机时这一点是非常重要的,交换机的安全主要表现在VLAN的划分、交换机的过滤技术。 产品与服务相结合的原则:选择交换机时,既要看产品的品牌又要看生产厂商和销售商品是否有强大的技术支持、良好的售后服务。 (3) 选择三层交换机时的基本原则 选择三层交换机时,首先要分析各种产品的性能指标,然而面对诸如交换容量(Gbps)、背板带宽(Gbps)、处理能力(Mpps)、吞吐量(Mpps)等众多技术指标,用户必须紧紧抓住“满配置时的吞吐量”这个指标,因为其他技术指标用户一般没有能力进行测量,惟有吞吐量是用户可以使用Smart Bits和IXIA等测试仪表直接测量和验证的指标。 分布式优于集中式:不同品牌的交换机所采用的交换机技术也不同,主要可分为集中式和分布式两类。传统总线式交换结构模块是集中式,现代交换矩阵模块是分布式。 关注延时与延时抖动指标:企业网、校园网几乎都是高速局域网,其目的之一就是为了音频和视频等大容量多媒体数据的传输,而这些大容量多媒体数据包最忌因延时较长和数据包丢失使信息传输产生抖动。有些传统集中式交换机的延时高达2s,而某些现代分布式交换机的延时只有10ms左右,两者相差上百倍。导致延时过高的原因通常包括阻塞设计的交换结构和过量使用缓冲等,所以,关注延时实际上需要关注产品的模块结构。 性能稳定:三层交换机多用于骨干和汇聚层,如果性能不稳定,则会波及网络系统的大部分主机,甚至整个网络系统。所以,只有性能稳定的第三层交换机才是网络系统连续、可靠、安全和正常运行的保证。当然,性能稳定看似抽象,似乎需要历史检测才能有说服力。其实不然,由于设备性能实际上是通过多项基本技术指标和市场声誉来实现的。所以,用户可以通过吞吐量、延迟、丢帧率、地址表深度、线端阻塞和多对一功能等多项指标以及市场应用调查来确定。 安全可靠:作为网络核心设备的第三层交换机,是被攻击的重要对象,要求必须将第三层交换机纳入网络安全防护的范围。 功能齐全:产品不但要满足现有需求,还应满足未来一段时间内的需求,从

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

选择温度传感器的注意事项

首先,必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅是敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。 在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题: (1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (5)被测对象的环境条件对测温元件是否有损害。 (6)价格如何,使用是否方便。 温度传感器的选择主要是根据测量范围。当测量范围预计在总量程之内,可选用铂电阻传感器。较窄的量程通常要求传感器必须具有相当高的基本电阻,以便获得足够大的电阻变化。热敏电阻所提供的足够大的电阻变化使得这些敏感元件非常适用于窄的测量范围。如果测量范围相当大时,热电偶更适用。最好将冰点也包括在此范围内,因为热电偶的分度表是以此温度为基准的。已知范围内的传感器线性也可作为选择传感器的附加条件。 响应时间通常用时间常数表示,它是选择传感器的另一个基本依据。当要监视贮槽中温度时,时间常数不那么重要。然而当使用过程中必须测量振动管中的温度时,时间常数就成为选择传感器的决定因素。珠型热敏电阻和铠装露头型热电偶的时间常数相当小,而浸入式探头,特别是带有保护套管的热电偶,时间常数比较大。 动态温度的测量比较复杂,只有通过反复测试,尽量接近地模拟出传感器使用中经常发生的条件,才能获得传感器动态性能的合理近似。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/8619056396.html,。

温度传感器的选用

温度传感器的选用 温度传感器 1、温度传感器的分类 1)接触式温度传感器 特点:传感器直接与被测物体接触进行温度测量,由于被测物体的热量传递给传感器,降低了被测物体温度,特别是被测物体热容量较小时,测量精度较低。因此采用这种方式要测得物体的真实温度的前提条件是被测物体的热容量要足够大。 2)非接触式温度传感器 特点:利用被测物体热辐射而发出红外线,从而测量物体的温度,可进行遥测。其制造成本较高,测量精度却较低。优点是:不从被测物体上吸收热量;不会干扰被测对象的温度场;连续测量不会产生消耗;反应快等。 表2-1 温度传感器的种类及特点 测量方法传感器机理和类型测温范围℃特点 接触式体积热膨胀玻璃水银温度计 双金属片温度计 气体温度计 液体压力温度计 -50~350 -50~300 -250~1000 -200~350 不需要电源,耐用;但感 温部件体积较大 接触热电势钨铼热电偶 铂铑热电偶 其他热电偶 1000~2100 50~1800 -200~1200 自发电型,标准化程度较 高,品种多,可根据需要 选择;须进行冷端温度补 偿 电阻变化铂热电阻 铜热电阻 热敏电阻 -200~850 -50~150 -50~450 标准化程度高;但需要接 入桥路才能得到电压输 出 PN结结电 压 半导体集成温度 传感器 -50~150 体积小,线性好,-2mV /℃;但测量范围小 温度?颜色试温材料 液晶 -50~1300 0~100 面积大,可得到温度图 像;但易衰老,准确度低 非接触式光辐射 热辐射 红外辐射温度计 光学高温温度计 热释电温度计 光子探测器 -80~1500 500~3000 0~1000 0~3500 响应快;但易受环境及被 测体表面状态影响,标定 困难 2、温度传感器的物理原理 1)、随物体的热膨胀相对变化而引起的体积变化

网络设备选型

网络设备选型,网络方案,整体解决方案 网络工程集语音、数据、图像、监控设备,各线布线于一体的综合系统工程,统一布线设计、网络设计及安装施工和集中管理维护。为楼宇大厦和企业提供了先进、可靠的信息化管理,它是通讯、计算机网络以及智能大厦的基础。 根据用户单位的需求及具体情况,结合现代网络技术的发展水平及产品化的程度,经过充分的需求分析和市场调研,从而确定网络建设方案,依据方案的步骤、有计划的实施网络建设活动。 网络工程建设是一项综合的系统工程,一般可分为网络规划和设计阶段、工程组织和实施阶段以及系统运行维护阶段。 需求分析: 经过实地考察和分析,初步确定建设规模、定位技术水平、预计投资总额、计划建设周期等。 网络总体目标和设计原则: 1)确定网络总体实现的目标:采用的网络技术和网络标准;分期目标、时间和进度计划等;网络实施成本、网络运行成本。 2)总体设计原则:实用性、开放型、高可用性/可靠性、安全性、先进性、易用性、可扩展性原则。拓扑结构与网络总体规划: 主要因素:费用、灵活性、可靠性。 网络拓扑结构的规划设计和网络规模息息相关。一个规模较小的星型局域网没有主干网和外围网之分。规模较大的网络通常呈倒树状分层拓扑结构。 分层设计规划的优点是可以有效的将全局通信问题分解考虑,分层还有助于分配和规划带宽。 核心层(核心交换机,高速传送数据,对数据不作任何处理)——汇聚层(交换机、路由器设备,访问层的汇接点,路由数据、分割广播域/多点传送域、介质转换、安全性、远程访问的接入点)——接入层(交换机、集线器设备,端接设备到网络的接入点) 资源子网的规划设计: 服务器接入服务器系统是网络的核心设备,服务器在网络中的位置直接影响网络应用效果和网络运行效率。 服务器一般分为两类: 1)为全网提供公共信息服务、文件服务和通信服务,为企业网提供集中统一的数据库服务。它由网络中心管理维护,服务对象为网络全局,适宜放在网管中心; 2)部门业务和网络服务结合,主要由部门管理维护。如财务部服务器等。 服务器接入的几种方案: 1)千兆以太网端口接入或光纤接入(接到核心交换机上,速度快,对核心交换机端口要求比较高,成本比较高) 2)并行快速以及网冗余接入(成本低,速度会受到一些影响。) 某企业网络解决方案实例: 需求分析及总体设计目标和设计原则: 网络的连通性

网络设备选型

3.3.7防火墙 H3C SecPath F100-S-AC防火墙支持标准网管SNMPv3, 并且兼容SNMP v2c, SNMP v1, 支持NTP时间同步, 支持Web方式进行远程配置管理,支持外部攻击防范, 内网安全, 流量监控, 邮件过滤, 网页过滤, 应用层过滤等验证。 3.3.8服务器 IBM System x3650 M3(7945I75)采用2U机架式结构设计,拥有不错的扩展能力,特别适合大批量集群式部署。标配提供1颗英特尔最新32纳米至强X5670处理器,拥有6个物理内核,并且支持英特尔超线程技术,使处理器内核可以达到12个,核心频率为2.93GHz,拥有12MB三级缓存,由于采用了最新的32纳米制程,使得功耗得到了一定的降低,最高为95W,最大可支持双路英特尔至强六核处理器。内存方面,标配提供2条4GB DDR3 RDIMM内存,主板提供18个RDIMM DDR3内

存,最大可支持192GB的内存容量。 存储方面,标配并不提供内存容量,提供16个2.5英寸SAS/SATA/固态硬盘驱动器,最大可支持8TB的硬盘容量,集成ServerRAID M5015阵列卡,可以支持RAID 5磁盘阵列,并且提供512MB的缓存,但不带电池。I/O方面,服务器提供4个PCI Express二代插槽。集成双千兆以太网卡,标配2个RJ-45端口,用户可以根据需要选购额外2个端口。提供1个675W热插拔服务器电源。

硬盘大小标配不提供 硬盘类型SA TA/SAS/SSD 硬盘最大容 量 8TB 内部硬盘架最多16个2.5英寸热插拔SAS/SA TA 或固态硬盘驱动器 最大热插拔 硬盘数 支持热插拔 磁盘阵列卡ServerRAID M5015阵列卡,支持RAID5(512MB缓存,不带电池)网络 网络控制器集成的双口千兆以太网(2端口标配,2端口可选) 管理及安全性 管理工具IBM IMM, Virtual Media Key 用于可选的远程呈现支持、预测故障分析、诊断LED、光通路诊断、服务器自动重启、IBM Systems Director 和IBM Systems Director Active Energy Manager、IBM ServerGuide 电源性能 电源类型热插拔电源电源数量1个 电源功率675W 软件系统 系统支持Microsoft Windows Server 2008 R2 和2008 Red Hat Enterprise Linux SUSE Linux Enterprise Server VMware ESXi 4.0 嵌入式虚拟化管理程序 保修信息 保修政策全球联保,享受三包服务质保时间3年 质保备注3年有限保修 客服电话800-810-1818 电话备注周一至周五:8:30-17:30 详细内容服务不包括诸如电池,机架,机壳等机器的配件、供应件和一些特定的零部件。在IBM 更换机器或部件之前,您应将该台机器的不属于本协议维护服务范围内的所有部件、零件、可选件、变更件和附件拆除。还应确保对被替换件的更换不具有任何法律义务或限制等阻

温度传感器选用时的注意事项

温度传感器选用时的注意事项 本文转载于:工控商务网 温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有体。温度传感器是温度测量仪表的核心部分,品种繁多。那么我们该如何选择温度传感器,同时要注意哪些问题呢? 选择温度传感器比选择其它类型的传感器所需要考虑的内容更多。首先,必须选择传感器的结构,使敏感元件的规定的测量时间之内达到所测流体或被测表面的温度。温度传感器的输出仅仅是敏感元件的温度。实际上,要确保传感器指示的温度即为所测对象的温度,常常是很困难的。在大多数情况下,对温度传感器的选用,需考虑以下几个方面的问题:(1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (5)被测对象的环境条件对测温元件是否有损害。 (6)价格如保,使用是否方便。 容器中的流体温度一般用热电偶或热电阻探头测量,但当整个系统的使用寿命比探头的预计使用寿命长得多时,或者预计会相当频繁地拆卸出探头以校准或维修却不能在容器上开

口时,可在容器壁上安装永久性的热电偶套管。用热电偶套管会显著地延长测量的时间常数。当温度变化很慢而且热导误差很小时,热电偶套管不会影响测量的精确度,但如果温度变化很迅速,敏感元件跟踪不上温度的迅速变化,而且导热误差又可能增加时,测量精确度就会受到影响。因此要权衡考虑可维修性和测量精度这两个因素。 热电偶或热电阻探头的全部材料都应与可能和它们接触的流体适应。使用裸露元件探头时,必须考虑与所测流体接触的各部件材料(敏感元件、连接引线、支撑物、局部保护罩等)的适应性,使用热电偶套管时,只需要考虑套管的材料。电阻式热敏元件在浸入液体及多数气体时,通常是密封的,至少要有涂层,裸露的电阻元件不能浸入导电或污染的流体中,当需要其快速响应时,可将它们用于干燥的空气和有限的几种气体及某些液体中。电阻元件如用在停滞的或慢速流动的流体中,通常需有某种壳体罩住以进行机械保护。当管子、导管或容器不能开口或禁止开口,因而不能使用探头或热电偶套管时,可通过在外壁钳夹或固定一个表面温度传感器的方法进和测量。为了确保合理的测量精度,传感器必须与环境大气热隔离并与热辐射源隔离,而且必须通过传感器的适当设计与安装使壁对敏感元件的热传导达到到最佳状态。所测的固体材料可以是金属的或非金属的,任何类型的表面温度传感器都会在某种程度上改变被测物表面或表面下层的材料特性。因此,必须对传感器及其安装方法进行适当的选择以便将这种干扰减到最小程度。理想的传感器应该完全用与所测固体相同的材料制造并与材料形成一体,这样测量点或其周围的结构特征就不会以任何方式改变。可用的这类传感器有各种各样,其中包括电阻(薄膜热电阻、热敏电阻)型,也包括薄膜和细导线型的热电偶。用可埋入的小传感器或带螺纹的镶嵌件进行表面玉的温度测量,应使埋入的传感器或镶嵌件的外缘与所测材料的外表面平齐。镶嵌件的材料应与所测的材料相同,至少要非常相似。使用垫圈式传感器时,必须注意确保垫圈所能达到的温度尽可能接近欲测温度。

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

温度传感器封装及胶水的选择

浅谈温度传感器封装以及封装胶水的选择应用一温度传感器定义 温度传感器是指能感受规定的被测量的温度并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。温度传感器在实际使用时,一般都需要做防护外壳,比如不锈钢,刚玉,陶瓷等,传感器就装在这些外壳里面,放好传感器后,往这些外壳里灌装环氧树脂密封,一是固定传感器,二是为了延长传感器寿命。 二各种不锈钢封装温度传感器 1.全螺纹温度传感器是指测温探头部分全部采用螺纹结构封装,内部填充绝缘导热材料密封而成。通过调节螺纹部分长度来测量(以螺纹方式固定的)物体表面温度,也可测量轴承和轴瓦表面温度,一般螺纹部分长度较短。如果要求传感器探头较长,则采用螺纹和保护管组合在一起测温。 2.螺纹固定温度传感器可广泛应用于环境温度,管道内气、液体、固体表面温度,具有压力情况的温度以及需要通过螺纹方式固定安装的温度测量。 3.贴片式温度传感器主要用于测量物体表面的温度,贴片式温度传感器通过螺钉或其它固定方式将传感器贴在物体表面,实现较理想的测温效果。 贴片式温度传感器和被测物体接触面积大,接触紧密,所以在一些表面温度测量方面具有比较明显的优势: 测温准确性高、反应速度快,体积小方便固定安装。 4.带接线盒螺纹固定式温度传感器由接线盒、固定螺纹和保护管三部分组成。产品可广泛应用测量气温、液体温度、油温及物体表面温度等。 5.活定法兰式温度传感器由接线盒、活动法兰和保护管三部分组成。产品可广泛应用测量气温、液体温度、油温及物体表面温度等。 6.锥管螺纹固定式温度传感器由接线盒、固定螺纹部分和保护管三部分组成。产品可广泛应用测量气温、液体温度、油温及物体表面温度等。

校园网设备选型与设计

目录 第一章校园网概述.......................................................................................... - 1 - 第二章校园网设备选型 .................................................................................. - 2 - 2.1校园网设备选型对校园网建设的重要意义.......................................... - 2 - 2.2校园网设备的分类............................................................................... - 2 - 2.3校园网设备选型的原则 ....................................................................... - 2 - 2.4 校园网交换机选择.............................................................................. - 3 - 2.4.1交换机的分类标准 .................................................................... - 3 - 2.4.2交换机的性能参数 .................................................................... - 4 - 2.4.3交换机的网络参数 .................................................................... - 4 - 2.4.4交换机的接口............................................................................ - 4 - 2.4.5其它参数 ................................................................................... - 5 - 2.5校园网路由器选择............................................................................... - 5 - 2.5.1 路由器的分类标准 ................................................................... - 5 - 2.5.2 路由器的性能参数 ................................................................... - 5 - 第三章校园网网络规划与设计 ....................................................................... - 7 - 3.1 大学的背景......................................................................................... - 7 - 3.2 校园网用提供功能.............................................................................. - 7 - 3.3 校园网对主机系统的主要要求 ........................................................... - 7 - 3.4 校园网络系统设计方案应满足如下要求............................................. - 7 - 3.5校园网对网络设备的要求.................................................................... - 8 - 3.6 网络设计 ............................................................................................ - 8 - 3.6.1 目前各主流网络结构概述 ........................................................ - 8 - 3.6.2 千兆以太网技术 ....................................................................... - 8 - 3.7网络总体规划...................................................................................... - 9 - 3.8网络总体设计方案............................................................................... - 9 - 3.9网络产品定型.................................................................................... - 10 - 3.9.1网络设备中的产品定型 ........................................................... - 10 - 3.9.2校园网络出口设备定型 ........................................................... - 11 - 第四章网络技术介绍 .................................................................................... - 12 - 4.1 VLAN构建........................................................................................ - 12 - 4.1.2 VLAN的介绍.......................................................................... - 12 - 4.1.3 VLAN的作用.......................................................................... - 12 - 4.1.4 VLAN在交换机上的实现方法 ................................................ - 12 -

相关文档
最新文档