2017中考数学试题汇编:二次函数

2017中考数学试题汇编:二次函数
2017中考数学试题汇编:二次函数

2017中考试题汇编--------二次函数

(2017贵州铜仁)25.(14分)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).

(1)求该抛物线所表示的二次函数的表达式;

(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;

(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.

【分析】(1)利用待定系数法求二次函数的表达式;

(2)分三种情况:

①当△P1MP2≌△CMB时,取对称点可得点P1,P2的坐标;

②当△BMC≌△P2P1M时,构建?P2MBC可得点P1,P2的坐标;

③△P1MP2≌△CBM,构建?MP1P2C,根据平移规律可得P1,P2的坐标;

(3)如图3,先根据直径所对的圆周角是直角,以BC为直径画圆,与对称轴的交点即为点Q,这样的点Q有两个,作辅助线,构建相似三角形,证明△BDQ1∽△Q1EC,列比例式,可得点Q的坐标.

【解答】解:(1)把A(﹣1,0),B(0,﹣2)代入抛物线y=x2+bx+c中得:,

解得:,

∴抛物线所表示的二次函数的表达式为:y=x2﹣x﹣2;

(2)如图1,P1与A重合,P2与B关于l对称,

∴MB=P2M,P1M=CM,P1P2=BC,

∴△P1MP2≌△CMB,

∵y=x2﹣x﹣2=(x﹣)2﹣,

此时P1(﹣1,0),

∵B(0,﹣2),对称轴:直线x=,

∴P2(1,﹣2);

如图2,MP2∥BC,且MP2=BC,

此时,P1与C重合,

∵MP2=BC,MC=MC,∠P2MC=∠BP1M,

∴△BMC≌△P2P1M,

∴P1(2,0),

由点B向右平移个单位到M,可知:点C向右平移个单位到P2,当x=时,y=(﹣)2﹣=,

∴P2(,);

如图3,构建?MP1P2C,可得△P1MP2≌△CBM,此时P2与B重合,由点C向左平移2个单位到B,可知:点M向左平移2个单位到P1,∴点P1的横坐标为﹣,

当x=﹣时,y=(﹣﹣)2﹣=4﹣=,

∴P1(﹣,),P2(0,﹣2);

(3)如图3,存在,

作法:以BC为直径作圆交对称轴l于两点Q1、Q2,

则∠BQ1C=∠BQ2C=90°;

过Q1作DE⊥y轴于D,过C作CE⊥DE于E,

设Q1(,y)(y>0),

易得△BDQ1∽△Q1EC,

∴,

∴=,

y2+2y﹣=0,

解得:y1=(舍),y2=,

∴Q1(,),

同理可得:Q2(,);

综上所述,点Q的坐标是:(,)或(,).

【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、圆周角定理以及三角形全等的性质和判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的对称性解决三角形全等问

题;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,利用二次函数的对称性,再结合相似三角形、方程解决问题是关键.

(2017湖南)27.(12分)如图,正方形ABCD的边长为1,点E为边AB上一动点,连结CE并将其绕点C顺时针旋转90°得到CF,连结DF,以CE、CF为邻边作矩形CFGE,GE与AD、AC分别交于点H、M,GF交CD延长线于点N.(1)证明:点A、D、F在同一条直线上;

(2)随着点E的移动,线段DH是否有最小值?若有,求出最小值;若没有,请说明理由;

(3)连结EF、MN,当MN∥EF时,求AE的长.

【分析】(1)由△DCF≌△BCE,可得∠CDF=∠B=90°,即可推出∠CDF+∠CDA=180°,由此即可证明.

(2)有最小值.设AE=x,DH=y,则AH=1﹣y,BE=1﹣x,由△ECB∽△HEA,推出=,可得=,推出y=x2﹣x+1=(x﹣)2+,由a=1>0,y有最小值,最小值为.

(3)只要证明△CFN≌△CEM,推出∠FCN=∠ECM,由∠MCN=45°,可得∠FCN=∠ECM=∠BCE=22.5°,在BC上取一点G,使得GC=GE,则△BGE是等腰直角三角形,设BE=BG=a,则GC=GE=a,可得a+a=1,求出a即可解决问题;

【解答】(1)证明:∵四边形ABCD是正方形,

∴CD=CB,∠BCD=∠B=∠ADC=90°,

∵CE=CF,∠ECF=90°,

∴∠ECF=∠DCB,

∴∠DCF=∠BCE,

∴△DCF≌△BCE,

∴∠CDF=∠B=90°,

∴∠CDF+∠CDA=180°,

∴点A、D、F在同一条直线上.

(2)解:有最小值.

理由:设AE=x,DH=y,则AH=1﹣y,BE=1﹣x,∵四边形CFGE是矩形,

∴∠CEG=90°,

∴∠CEB+∠AEH=90°

CEB+∠ECB=90°,

∴∠ECB=∠AEH,

∵∠B=∠EAH=90°,

∴△ECB∽△HEA,

∴=,

∴=,

∴y=x2﹣x+1=(x﹣)2+,

∵a=1>0,

∴y有最小值,最小值为.

∴DH的最小值为.

(3)解:∵四边形CFGE是矩形,CF=CE,

∴四边形CFGE是正方形,

∴GF=GE,∠GFE=∠GEF=45°,

∵NM∥EF,

∴∠GNM=∠GFE,∠GMN=∠GEF,

∴∠GMN=∠GNM,

∴GN=GM,

∴FN=EM,

∵CF=CE,∠CFN=∠CEM,

∴△CFN≌△CEM,

∴∠FCN=∠ECM,∵∠MCN=45°,

∴∠FCN=∠ECM=∠BCE=22.5°,

在BC上取一点G,使得GC=GE,则△BGE是等腰直角三角形,设BE=BG=a,则GC=GE=a,

∴a+a=1,

∴a=﹣1,

∴AE=AB﹣BE=1﹣(﹣1)=2﹣.

【点评】本题考查四边形综合题、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会构建二次函数解决最值问题,学会用方程的思想思考问题,属于中考压轴题.

(2017辽宁)28.(14分)如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c 的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.

(1)填空:b=,c=4;

(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;

(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;

(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.

【分析】(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入可得到抛物线的解析式,从而可确定出b、c的值;

(2)连结QC.先求得点C的坐标,则PC=5﹣t,依据勾股定理可求得AC=5,CQ2=t2+16,接下来,依据CQ2﹣CP2=AQ2﹣AP2列方程求解即可;

(3)过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,首先证明△PAG ∽△ACO,依据相似三角形的性质可得到PG=t,AG=t,然后可求得PE、DF的长,然后再证明△MDP≌PEQ,从而得到PD=EQ=t,MD=PE=3+t,然后可求得FM和OF的长,从而可得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可;

(4)连结:OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.首先依据三角形的中位线定理得到RH=QO=t,RH∥OQ,NR=AP=t,则RH=NR,接下来,依据等腰三角形的性质和平行线的性质证明NH是∠QNQ′的平分线,然后求得直线NR和BC的解析式,最后求得直线NR和BC的交点坐标即可.

【解答】解:(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入得:

y=﹣x2+x+4,

∴b=,c=4.

(2)在点P、Q运动过程中,△APQ不可能是直角三角形.

理由如下:连结QC.

∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,

∴当△APQ是直角三角形时,则∠APQ=90°.

将x=0代入抛物线的解析式得:y=4,

∴C(0,4).

∵AP=OQ=t,

∴PC=5﹣t,

∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ 中,AQ2﹣AP2=PQ2,

∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2,解得:t=4.5.

∵由题意可知:0≤t≤4,

∴t=4.5不合题意,即△APQ不可能是直角三角形.

(3)如图所示:

过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°.∵PG∥y轴,

∴△PAG∽△ACO,

∴==,即==,

∴PG=t,AG=t,

∴PE=GQ=GO+OQ=AO﹣AG+OQ=3﹣t+t=3+t,DF=GP=t.

∵∠MPQ=90°,∠D=90°,

∴∠DMP+∠DPM=∠EPQ+∠DPM=90°,

∴∠DMP=∠EPQ.

又∵∠D=∠E,PM=PQ,

∴△MDP≌PEQ,

∴PD=EQ=t,MD=PE=3+t,

∴FM=MD﹣DF=3+t﹣t=3﹣t,OF=FG+GO=PD+OA﹣AG=3+t﹣t=3+t,∴M(﹣3﹣t,﹣3+t).

∵点M在x轴下方的抛物线上,

∴﹣3+t=﹣×(﹣3﹣t)2+×(﹣3﹣t)+4,解得:t=.

∵0≤t≤4,

∴t=.

(4)如图所示:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC 与点Q′.

∵点H为PQ的中点,点R为OP的中点,

∴RH=QO=t,RH∥OQ.

∵A(﹣3,0),N(﹣,0),

∴点N为OA的中点.

又∵R为OP的中点,

∴NR=AP=t,

∴RH=NR,

∴∠RNH=∠RHN.

∵RH∥OQ,

∴∠RHN=∠HNO,

∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.

设直线AC的解析式为y=mx+n,把点A(﹣3,0)、C(0,4)代入得:,解得:m=,n=4,

∴直线AC的表示为y=x+4.

同理可得直线BC的表达式为y=﹣x+4.

设直线NR的函数表达式为y=x+s,将点N的坐标代入得:×(﹣)+s=0,解得:s=2,

∴直线NR的表述表达式为y=x+2.

将直线NR和直线BC的表达式联立得:,解得:x=,y=,

∴Q′(,).

【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、相似三角形的性质和判定、全等三角形的性质和判定,依据勾股定理列出关于t的方程是解答问题(2)的关键;求得点M的坐标(用含t的式子表示)是解答问题(3)的关键;证得NH为∠QHQ′的平分线是解答问题(4)的关键.

(2017山东) 25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣x2﹣x+8与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED 经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是8,∠ABO的度数是30度;

(2)如图2,当DE∥AB,连接HN.

①求证:四边形AMHN是平行四边形;

②判断点D是否在该抛物线的对称轴上,并说明理由;

(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.

【分析】(1)先求抛物线与两坐标轴的交点坐标,表示OA和OB的长,利用正切值可得∠ABO=30°;

(2)①根据三角形的中位线定理证明HN∥AM,由两组对边分别平行的四边形

是平行四边形得结论;

②如图1,作垂线段DR,根据直角三角形30度角的性质求DR=2,可知:点D 的横坐标为﹣2,由抛物线的解析式可计算对称轴是直线:x=﹣=﹣2,所以点D在该抛物线的对称轴上;

(3)想办法求出P、Q的坐标即可解决问题;

【解答】解:(1)当x=0时,y=8,

∴B(0,8),

∴OB=8,

当y=0时,y=﹣x2﹣x+8=0,

x2+4x﹣96=0,

(x﹣8)(x+12)=0,

x1=8,x2=﹣12,

∴A(8,0),

∴OA=8,

在Rt△AOB中,tan∠ABO===,

∴∠ABO=30°,

故答案为:8,30;

(2)①证明:∵DE∥AB,

∴,

∵OM=AM,

∴OH=BH,

∵BN=AN,

∴HN∥AM,

∴四边形AMHN是平行四边形;

②点D在该抛物线的对称轴上,

理由是:如图1,过点D作DR⊥y轴于R,

∵HN∥OA,

∴∠NHB=∠AOB=90°,

∵DE∥AB,

∴∠DHB=∠OBA=30°,

∵Rt△CDE≌Rt△ABO,

∴∠HDG=∠OBA=30°,

∴∠HGN=2∠HDG=60°,

∴∠HNG=90°﹣∠HGN=90°﹣60°=30°,

∴∠HDN=∠HND,

∴DH=HN=OA=4,

∴Rt△DHR中,DR=DH==2,

∴点D的横坐标为﹣2,

∵抛物线的对称轴是直线:x=﹣=﹣=﹣2,

∴点D在该抛物线的对称轴上;

(3)如图3中,连接PQ,作DR⊥PK于R,在DR上取一点T,使得PT=DT.设PR=a.

∵NA=NB,

∴ON=NA=NB,

∵∠ABO=30°,

∴∠BAO=60°,

∴△AON是等边三角形,

∴∠NOA=60°=∠ODM+∠OMD,

∵∠ODM=30°,

∴∠OMD=∠ODM=30°,

∴OM=OD=4,易知D(﹣2,﹣2),Q(﹣2,10),∵N(4,4),

∴DK=DN==12,

∵DR∥x轴,

,∴∠KDR=∠OMD=30°

∴RK=DK=6,DR=6,

∵∠PDK=45°,

∴∠TDP=∠TPD=15°,

∴∠PTR=∠TDP+∠TPD=30°,

∴TP=TD=2a,TR=a,

∴a+2a=6,

∴a=12﹣18,

可得P(﹣2﹣6,10﹣18),

∴PQ==12.

【点评】本题考查二次函数综合题、平行四边形的判定和性质、锐角三角函数、30度角的直角三角形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.

(2017辽宁) 29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.

(1)求点D的坐标和抛物线M1的表达式;

(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;

(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.

①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;

②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.

【分析】(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.在Rt△ADH中,解直角三角形,求出点D坐标,利用待定系数法即可解决问题;(2)如图1﹣1中,设P(2,m).由∠CPA=90°,可得PC2+PA2=AC2,可得22+(m﹣6)2+22+m2=42+62,解方程即可;

(3)①求出D′的坐标;②构建方程组,利用判别式△>0,求出抛物线与直线AE有两个交点时的m的范围;③求出x=m时,求出平移后的抛物线与直线AE

的交点的横坐标;结合上述的结论即可判断.

【解答】解:(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.

∵四边形CDHO是矩形,

∴OC=DH=6,

∵tan∠DAH==2,

∴AH=3,

∵OA=4,

∴CD=OH=1,

∴D(1,6),

把D(1,6),A(4,0)代入y=ax2+bx中,则有,

解得,

∴抛物线M1的表达式为y=﹣2x2+8x.

(2)如图1﹣1中,设P(2,m).

∵∠CPA=90°,

∴PC2+PA2=AC2,

∴22+(m﹣6)2+22+m2=42+62,

解得m=3±,

∴P(2,3+),P′(2,3﹣).

(3)①如图2中,

易知直线AE的解析式为y=﹣x+4,

x=1时,y=3,

∴D′(1,3),

平移后的抛物线的解析式为y=﹣2x2+8x﹣m,

把点D′坐标代入可得3=﹣2+8﹣m,

∴m=3.

②由,消去y得到2x2﹣9x+4+m=0,

当抛物线与直线AE有两个交点时,△>0,

∴92﹣4×2×(4+m)>0,

∴m<,

③x=m时,﹣m+4=﹣2m2+8m﹣m,解得m=2+或2﹣(舍弃),

综上所述,当2+≤m<时,抛物线M2与直线AE有两个交点.

【点评】本题考查二次函数综合题、一次函数的应用、解直角三角形、锐角三角

函数、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程组,利用判别式解决问题,属于中考压轴题.

(2017四川) 24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0).与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;

(3)点D为抛物线对称轴上一点.

①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;

②若△BCD是锐角三角形,求点D的纵坐标的取值范围.

【分析】(1)利用待定系数法求抛物线的解析式;

(2)易得BC的解析式为y=﹣x+3,先证明△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,则△EPG为等腰直角三角形,PE= PG,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,所以PE+EF=2PE+PF=﹣t2+3t+,然后利用二次函数的性质解决问题;(3)①如图2,抛物线的对称轴为直线x=﹣=2,设D(2,y),利用两点间的距离公式得到BC2=18,DC2=4+(y﹣3)2,BD2=1+y2,讨论:当△BCD是以BC为直角边,BD为斜边的直角三角形时,18+4+(y﹣3)2=1+y2;当△BCD是以BC为直角边,CD为斜边的直角三角形时,4+(y﹣3)2=1+y2+18,分别解方程求出t即可得到对应的D点坐标;

②由于△BCD是以BC为斜边的直角三角形有4+(y﹣3)2+1+y2=18,解得y1=

,y2=,得到此时D点坐标为(2,)或(2,),然后结合图形可确定△BCD是锐角三角形时点D的纵坐标的取值范围.

【解答】解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得,解得,

∴抛物线的解析式为y=x2﹣4x+3;

(2)易得BC的解析式为y=﹣x+3,

∵直线y=x﹣m与直线y=x平行,

∴直线y=﹣x+3与直线y=x﹣m垂直,

∴∠CEF=90°,

∴△ECF为等腰直角三角形,

作PH⊥y轴于H,PG∥y轴交BC于G,如图1,△EPG为等腰直角三角形,PE= PG,

设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),

∴PF=PH=t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,

∴PE=PG=﹣t2+t,

∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+3t+=﹣t2+4=﹣(t﹣2)2+4,当t=2时,PE+EF的最大值为4;

(3)①如图2,抛物线的对称轴为直线x=﹣=2,

设D(2,y),则BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得y=5,此时D点坐标为(2,5);

当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得y=﹣1,此时D点坐标为(2,﹣1);

②当△BCD是以BC为斜边的直角三角形时,DC2+DB2=BC2,即4+(y﹣3)2+1+y2=18,解得y

=,y2=,此时D点坐标为(2,)或(2,

1

),

所以△BCD是锐角三角形,点D的纵坐标的取值范围为<y<5或﹣1<y <.

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

2017年北京中考数学试题及答案(word版)

2017年北京市高级中等学校招生考试 数 学 试 卷 学校: 姓名: 准考证号: 一、选择题(本题共30分,每小题3分) 第1-10题均有四个选项,符合题意的选项只有.. 一个. 1.如图所示,点P 到直线l 的距离是 A.线段PA 的长度 B. A 线段PB 的长度 C.线段PC 的长度 D.线段PD 的长度 2.若代数式4 x x -有意义,则实数x 的取值范围是 A. x =0 B. x =4 C. 0x ≠ D. 4x ≠ 3.右图是某几何体的展开图,该几何体是 A.三棱柱 B.圆锥 C.四棱柱 D.圆柱 4.实数a,b,c,d 在数轴上的点的位置如图所示,则正确的结论是

A.4a >- B. 0ab > C. a d > D. 0a c +> 5.下列图形中,是轴对称图形不是中心.. 对称图形的是 6.若正多边形的一个内角是150°,则该正方形的边数是 A.6 B. 12 C. 16 D.18 7.如果2 210a a +-=,那么代数式242a a a a ??-? ?-??的值是 A.-3 B. -1 C. 1 D.3 8.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 根据统计图提供的信息,下列推断不合理... 的是 A.与2015年相比,2016年我国与东欧地区的贸易额有所增长 B.2016—2016年,我国与东南亚地区的贸易额逐年增长 C. 2016—2016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元

D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 9.小苏和小林在右图的跑道上进行4×50米折返跑.在整个过程中, 跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的 对应关系如下图所示。下列叙述正确的是 A. 两个人起跑线同时出发,同时到达终点 B.小苏跑全程的平均速度大于小林跑全程的平均速度 C.小苏前15s跑过的路程大于小林15s跑过的路程 D.小林在跑最后100m的过程中,与小苏相遇2次 10.下图显示了用计算器模拟随机投掷一枚图钉的某次实验的结果. 下面有三个推断: ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概 率是0616;

中考数学填空压轴题大全

中考数学填空压轴题大 全 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-

2017全国各地中考数学压轴题汇编之填空题4 1.(2017贵州六盘水)计算1+4+9+16+25+……的前29项的和是. 【答案】8555, 【解析】由题意可知1+4+9+16+25+……的前29项的和即为:12+22+32+42+52+…+292.∵有规律:21(11)(211)116+?+== ,222(21)(221) 1256 +?++==, 2223(31)(231)123146+?+++== ,……,2222(1)(21) 123146 n n n n ++++++==…. ∴222229(291)(2291) 123296 +?+++++= (8555) 2.(2017贵州毕节)观察下列运算过程: 计算:1+2+22+…+210.. 解:设S =1+2+22+…+210,① ①×2得 2S =2+22+23+…+211,② ②-①,得 S =211-1. 所以,1+2+22+…+210=211-1. 运用上面的计算方法计算:1+3+32+…+32017=______________. 【答案】201831 2 -, 【解析】设S =1+3+32+…+32017,① ①×3得 3S =3+32+33+…+32018,② ②-①,得 2S =32018-1. 所以,1+3+32 +…+3 2017 =2018312 -.

3.(2017内蒙古赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点 P '(-y +1,x +2),我们把点P '(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为. 【答案】(2,0), 【解析】根据新定义,得P 1(2,0)的终结点为P 2(1,4),P 2(1,4)的终结点为P 3(-3,3),P 3(-3,3)的终结点为P 4(-2,-1),P 4(-2,-1)的终结点为P 5(2,0), P 5(2,0)的终结点为P 4(1,4),…… 观察发现,4次变换为一循环,2017÷4=504…余1.故点P 2017的坐标为(2,0). 4.(2017广西百色)阅读理解:用“十字相乘法”分解因式的方法. (1)二次项系数212=?; (2)常数项3131(3)-=-?=?-,验算:“交叉相乘之和”; (3)发现第③个“交叉相乘之和”的结果1(3)211?-+?=,等于一次项系数-1,即:22(x 1)(2x 3)232323x x x x x +-=-+-=--,则223(x 1)(2x 3)x x --=+-,像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法,仿照以上方法,分解因式:23512x x +-=______. 【答案】(x +3)(3x -4). 【解析】如图. 5.(2017湖北黄石)观察下列各式: …… 按以上规律,写出第n 个式子的计算结果n 为正整数).(写出最简计算结果即可) 【答案】 1 n n +,

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

北京国子监中学数学 二次函数中考真题汇编[解析版]

北京国子监中学数学二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3) (1)求该二次函数所对应的函数解析式; (2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值; (3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标. 【答案】(1)y=x2﹣4x+3;(2)EF的最大值为 2 4 ;(3)M点坐标为可以为(2, 3),(55 2 + ,3),( 55 2 - ,3). 【解析】 【分析】 (1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式. (2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值. (3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解. 【详解】 解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c), ∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0), ∴二次函数解析式:y=a(x﹣1)(x﹣3). 又∵点D(4,3)在二次函数上, ∴(4﹣3)×(4﹣1)a=3, ∴解得:a=1. ∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

全国中考数学二次函数的综合中考真题汇总及答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式; (2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由. 【答案】(1) y=﹣23 4x +94x+3;(2) 有最大值,365 ;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为( 73,256)或(173,﹣253). 【解析】 试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣ 34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣ 34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365 ,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94 n+3),则D (n ,﹣34n+3),G (0,﹣34 n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析: (1)由OC=3OA ,有C (0,3), 将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:

2017中考数学真题汇编:圆(带答案)

2017年浙江中考真题分类汇编(数学):专题11 圆 一、单选题 1、(2017·金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( ) A、10cm B、16cm C、24cm D、26cm 2、(2017?宁波)如图,在Rt△ABC中,∠A=90°,BC=.以BC的中点O为圆心的圆分别与AB、AC相切于D、E两点,则的长为() A、 B、 C、 D、

3、(2017·丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是() A、 B、 C、 D、 4、(2017·衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。则图中阴影部分的面积是() A、 B、 C、 D、 二、填空题

5、(2017?杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________. 6、(2017?湖州)如图,已知在中,.以为直径作半圆,交于点.若 ,则的度数是________度. 7、(2017·台州)如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30cm,则弧BC的长为________cm(结果保留) 8、(2017?绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E.则∠DOE的度数为________.

9、(2017·嘉兴)如图,小明自制一块乒乓球拍,正面是半径为的,,弓形 (阴影部分)粘贴胶皮,则胶皮面积为________. 10、(2017?湖州)如图,已知,在射线上取点,以为圆心的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;;在射线上取点,以为圆心,为半径的圆与相切.若的半径为,则的半径长是________. 11、(2017·衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线 上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________ 三、解答题

中考数学填空题压轴精选答案详细

1.如图,在矩形纸片ABCD 中,AB =3,BC =5,点E 、F 分别在线段AB 、BC 上,将△BEF 沿EF 折叠,点B 落在B ′ 处.如图1,当B ′ 在AD 上时,B ′ 在AD 上可移动的最大距离为_________;如图2,当B ′ 在矩形ABCD 内部时,AB ′ 的最小值为______________. 2.如图,乐器上一根弦固定在乐器面板上A 、B 两点,支撑点C 是靠近点B 的黄金分割点,若AB =80cm ,则AC =______________cm .(结果保留根号) 3.已知抛物线y =ax 2-2ax -1+a (a >0)与直线x =2,x =3,y =1,y =2围成的正方形有公共点,则a 的取值范围是___________________. 4.如图,7根圆柱形木棒的横截面圆的半径均为1,则捆扎这7根木棒一周的绳子长度为_______________. 5.如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1), A 5(2,1),…,则点A 2010的坐标是__________________. 6.在Rt△ABC 中,∠C=90°,AC =3,BC =4.若以C 点为圆心,r 为半径所作的圆与斜边AB 只有一个公共点,则r 的取值范围是_________________. 7.已知⊙A 和⊙B 相交,⊙A 的半径为5,AB =8,那么⊙B 的半径r 的取值范围是_________________. 8.已知抛物线F 1:y =x 2-4x -1,抛物线F 2与F 1关于点(1,0)中心对称,则在F 1和F 2围成的封闭图形上,平行于y 轴的线段长度的最大值为_____________. 9.如图,四边形ABCD 中,AB =4,BC =7,CD =2,AD =x ,则x 的取值范围是( ). A D B C B ′ E F 图 1 A D B C B ′ E F 图 2 C B A A 1 A 2 A 6 A 10 A 3 A 7 A 4 A 5 A 9 A 8 x y O A x D B C 7 4 2

九年级上册数学 二次函数中考真题汇编[解析版]

九年级上册数学 二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M. (1)分别求出抛物线和直线AB的函数表达式; (2)设△PMN的面积为S1,△AEN的面积为S2,当1 236 25 S S =时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α (0°<α<90°),连接E′A、E′B,求E'A+2 3 E'B的最小值. 【答案】(1)抛物线y=﹣3 4 x2+ 9 4 x+3,直线AB解析式为y=﹣ 3 4 x+3;(2)P(2, 3 2);(3 410 【解析】 【分析】 (1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式; (2)根据题意由△PNM∽△ANE,推出 6 5 PN AN =,以此列出方程求解即可解决问题; (3)根据题意在y轴上取一点M使得OM′=4 3 ,构造相似三角形,可以证明AM′就是 E′A+2 3 E′B的最小值. 【详解】 解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),

则有 3 30 n m m n ? ? ?++ = = ,解得4 3 3 m n ? ? ? ? - ? = = , ∴抛物线2 39 3 44 y x x =-++, 令y=0,得到2 39 3 44 x x -++=0, 解得:x=4或﹣1, ∴A(4,0),B(0,3), 设直线AB解析式为y=kx+b,则 3 40 b k b + ? ? ? = = , 解得 3 3 4 k b ? - ? ? ?? = = , ∴直线AB解析式为y=3 4 -x+3. (2)如图1中,设P(m,2 39 3 44 m m -++),则E(m,0), ∵PM⊥AB,PE⊥OA, ∴∠PMN=∠AEN, ∵∠PNM=∠ANE, ∴△PNM∽△ANE, ∵△PMN的面积为S1,△AEN的面积为S2,1 2 36 25 S S =, ∴6 5 PN AN =, ∵NE∥OB, ∴AN AE AB OA =, ∴AN=5 4 5 4 5 4 5 4 (4﹣m),

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=﹣x2+bx+c的表达式; (2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标; (3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标; ②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值. 2.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D. (1)写出C,D两点的坐标(用含a的式子表示); (2)设S△BCD:S△ABD=k,求k的值; (3)当△BCD是直角三角形时,求对应抛物线的解析式. 3.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;

(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值. 4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1 (1)求此抛物线的解析式以及点B的坐标. (2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒. ①当t为何值时,四边形OMPN为矩形. ②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由. 5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式; (2)在第二象限取一点C,作CD垂直X轴于点D,AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值; (3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存

2017中考数学试题总汇编:二次函数

2017中考试题汇编--------二次函数(2017贵州铜仁)25.(14分)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上). (1)求该抛物线所表示的二次函数的表达式; (2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标; (3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标. 【分析】(1)利用待定系数法求二次函数的表达式; (2)分三种情况: ①当△P1MP2≌△CMB时,取对称点可得点P1,P2的坐标; ②当△BMC≌△P2P1M时,构建?P2MBC可得点P1,P2的坐标; ③△P1MP2≌△CBM,构建?MP1P2C,根据平移规律可得P1,P2的坐标;(3)如图3,先根据直径所对的圆周角是直角,以BC为直径画圆,与对称轴的交点即为点Q,这样的点Q有两个,作辅助线,构建相似三角形,证明△BDQ1

∽△Q1EC,列比例式,可得点Q的坐标. 【解答】解:(1)把A(﹣1,0),B(0,﹣2)代入抛物线y=x2+bx+c中得:, 解得:, ∴抛物线所表示的二次函数的表达式为:y=x2﹣x﹣2; (2)如图1,P1与A重合,P2与B关于l对称, ∴MB=P2M,P1M=CM,P1P2=BC, ∴△P1MP2≌△CMB, ∵y=x2﹣x﹣2=(x﹣)2﹣, 此时P1(﹣1,0), ∵B(0,﹣2),对称轴:直线x=, ∴P2(1,﹣2); 如图2,MP2∥BC,且MP2=BC, 此时,P1与C重合, ∵MP2=BC,MC=MC,∠P2MC=∠BP1M, ∴△BMC≌△P2P1M, ∴P1(2,0), 由点B向右平移个单位到M,可知:点C向右平移个单位到P2, 当x=时,y=(﹣)2﹣=, ∴P2(,);

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

(完整版)2017中考数学压轴题解题技巧

中考数学压轴题解题技巧 解中考数学压轴题秘诀(一) 数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第22题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y =f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第23题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想: 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2、以直线或抛物线知识为载体,运用函数与方程思想: 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。 3、利用条件或结论的多变性,运用分类讨论的思想: 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。 4、综合多个知识点,运用等价转换思想: 任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几

二次函数中考真题汇编[解析版]

二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3) (1)求该二次函数所对应的函数解析式; (2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值; (3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标. 【答案】(1)y=x2﹣4x+3;(2)EF的最大值为 2 4 ;(3)M点坐标为可以为(2, 3),(55 2 + ,3),( 55 2 - ,3). 【解析】 【分析】 (1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式. (2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值. (3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解. 【详解】 解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c), ∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0), ∴二次函数解析式:y=a(x﹣1)(x﹣3). 又∵点D(4,3)在二次函数上, ∴(4﹣3)×(4﹣1)a=3, ∴解得:a=1. ∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

中考数学 二次函数知识点总结

中考数学二次函数知识 点总结 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0 a≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0 ,可以为零.二次函数的定义域是 a≠,而b c 全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2 =+的 y ax c 性质:

结论:上加下减。 总结: 3. ()2 =-的性 y a x h 质: 结论:左加右减。 总结: 4.

()2 y a x h k =-+的性质: 总结: 二次函数图象 的平 移 1. 平移步 骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

2017中考数学试题汇编三视图

3.(2017年安徽)如图,一个放置在水平试验台上的锥形瓶,它的俯视图为() 7.(2017年长沙市)某几何体的三视图如图所示,因此几何体是() A.长方形B.圆柱C.球D.正三棱柱 1.(2017成都市)如图所示的几何体是由4个大小下同的立方块搭成,其俯视图是() 5. ( 2017年河北)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是() A.①B.②C.③D.④ 8. ( 2017年河北)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()

3.(2017湖北宜昌)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“爱” 字一面的相对面上的字是() A.美B.丽C.宜D.昌 3. ( 2017年北京市)右图是某几何体的展开图,该几何体是 A.三棱柱 B.圆锥 C.四棱柱 D.圆柱 2.(福建省2017年)如图,由四个正方体组成的几何体的左视图是() A.B.C. D.[来源:zzs*tep^&.com@~] 4. (白银市2017年)某种零件模型可以看成如图所示的几何体(空心圆柱),该

几何体的俯视图是() A. B. C. D.2.(2017年甘肃省兰州市)如图所示,该几何体的左视图是() A.B. C. D. 2.(2017年甘肃省天水市)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是() A.B.C.D. 2. (2017年广西北部湾)在下列几何体中,三视图都是圆的为() 2.(2017年广西南宁)在下列几何体中,三视图都是圆的为()

中考数学填空题压轴精选(答案)

1.如图,在矩形纸片ABCD 中,AB =3,BC =5,点E 、F 分别在线段AB 、BC 上,将△BEF 沿EF 折叠,点B 落在B ′ 处.如图1,当B ′ 在AD 上时,B ′ 在AD 上可移动的最大距离为_________;如图2,当B ′ 在矩形ABCD 内部时,AB ′ 的最小值为______________. 2.如图,乐器上一根弦固定在乐器面板上A 、B 两点,支撑点C 是靠近点B 的黄金分割点,若AB =80cm , _______________ 则在F 1和F 2围成的封闭图形上,平行于y 轴的线段长度的最大值为_____________. 9.如图,四边形ABCD 中,AB =4,BC =7,CD =2,AD =x ,则x 的取值范围是( ). 10.已知正数a 、b 、c 满足a 2+c 2=16,b 2+c 2=25,则k =a 2+b 2的取值范围是_________________. 11.如图,在△ABC 中,AB =AC ,D 在AB 上,BD =AB ,则∠A 的取值范围是_________________. 12.函数y =2x 2 +4|x |-1的最小值是____________. 13.已知抛物线y =ax 2+2ax +4(0< a <3),A (x 1,y 1),B (x 2,y 2)是抛物 线上两点,若x 1<x 2,且x 1+x 2=1-a ,则y 1 __________ y 2(填“>”、“<”或“=”) 14.如图,△ABC 中,∠A 的平分线交BC 于D 60°,则AD 的长为___________. 15.如图,Rt △ABC 中,∠C =90°,AC =6,BC =交AC 于E ,DF ⊥AB 交BC 于F ,设AD =x y 关于x 的函数解析式为A D B C F B ′ E F F F 图1 A D B C F B ′ E F F F 图2 A x D B C 7 4 2 C

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

数学九年级上册 二次函数中考真题汇编[解析版]

数学九年级上册 二次函数中考真题汇编[解析版] 一、初三数学 二次函数易错题压轴题(难) 1.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 2 0x +(b+1)x 0+b ﹣2 =x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点; (2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围; (3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2 121 a +是线段AB 的垂 直平分线,求实数b 的取值范围. 【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣ b <0. 【解析】 【分析】 (1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点; (2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围; (3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121 a +是线段AB 的垂 直平分线,从而可以求得b 的取值范围. 【详解】 解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1, 即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0, ∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,

相关文档
最新文档