河北省邢台市第二中学数列的概念练习题(有答案) 百度文库

河北省邢台市第二中学数列的概念练习题(有答案) 百度文库
河北省邢台市第二中学数列的概念练习题(有答案) 百度文库

一、数列的概念选择题

1.已知数列{}n a 满足11a =,122

n n a a n n

+=++,则10a =( ) A .

259

B .

145 C .

3111

D .

176

2.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ??

?

???

的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[

)3,+∞

C .()2,+∞

D .[)2,+∞

3.已知数列{}

ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )

A .13i =,33j =

B .19i =,32j =

C .32i =,14j =

D .33i =,14j =

4.的一个通项公式是( )

A .n a =

B .n a =

C .n a =

D .n a =5.已知数列{}n a 满足11a =,()*11

n

n n a a n N a +=∈+,则2020a =( ) A .

12018 B .12019 C .1

2020 D .

1

2021

6.数列1,3,5,7,9,--的一个通项公式为( )

A .21n a n =-

B .()1(21)n

n a n =--

C .()

1

1(21)n n a n +=--

D .()

1

1(21)n n a n +=-+

7.已知数列{}n a 中,11a =,122

n

n n a a a +=+,则5a 等于( ) A .

25

B .

13 C .

23

D .

12

8.已知数列{}n a 的通项公式为2

n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞

B .(),2-∞

C .(),1-∞

D .(),0-∞

9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有

()()()f x f y f x y ?=+,若112

a =

,()()

*

n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .

1324

n S ≤< B .

3

14

n S ≤< C .102

n S <≤

D .

1

12

n S ≤< 10.若数列{a n }满足1112,1n

n n

a a a a ++==-,则2020a 的值为( ) A .2

B .-3

C .12

-

D .

13

11.已知数列{}n a 的前5项为:12a =,232a =,343

a =,454a =,56

5a =,可归纳得

数列{}n a 的通项公式可能为( ) A .1

+=

n n a n

B .2

1

n n a n +=

+ C .3132

n n a n -=-

D .221

n n

a n =

- 12.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤

C .数列{}n a 的最小项为3a 和4a

D .数列{}n a 的最大项为3a 和4a

13.定义:在数列{}n a 中,若满足

21

1n n n n

a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020

2018

a a 等于( ) A .4×20162-1

B .4×20172-1

C .4×20182-1

D .4×20182

14.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且

S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45

B .46

C .47

D .48

15.已知数列{}n a 满足111n n n n a a a a ++-=+,且11

3

a =,则{}n a 的前2021项之积为( ) A .

23

B .

13

C .2-

D .3-

16.数列1

2,16,112,120

,…的一个通项公式是( ) A .()1

1n a n n =-

B .()1

221n a n n =

-

C .111

n a n n =

-+ D .11n a n

=-

17.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,

n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除

后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348

B .1358

C .1347

D .1357

18.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20

1

k

k a

=∑的值不可能是( ) A .2

B .4

C .10

D .14

19.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么

24620201a a a a ++++

+=( )

A .2021a

B .2022a

C .2023a

D .2024a

20.已知数列{}n a 的通项公式为()()2

11n

n a n

=--,则6a =( )

A .35

B .11-

C .35-

D .11

二、多选题

21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:

1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列

数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数

C .202020182022

3a a a =+

D .123a a a +++…20202022a a +=

22.已知数列{}n a 满足112

a =-,11

1n n a a +=-,则下列各数是{}n a 的项的有( )

A .2-

B .

23

C .

32

D .3

23.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114

a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1

4(1)

n a n n =

+

C .数列{}n a 为递增数列

D .数列1n S ??

????

为递增数列

24.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小

B .130S =

C .49S S =

D .70a =

25.已知数列{}n a 满足:12a =,当2n ≥时,)

2

12n a =

-,则关于数列

{}n a 的说法正确的是 ( )

A .27a =

B .数列{}n a 为递增数列

C .2

21n a n n =+-

D .数列{}n a 为周期数列

26.设数列{}n a 的前n 项和为*

()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是

( )

A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列

B .若2

n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列

C .若()11n

n S =--,则{}n a 是等比数列

D .若{}n a 是等差数列,则n S ,2n n S S -,*

32()n n S S n N -∈也成等差数列

27.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )

A .若100S =,则50a >,60a <;

B .若412S S =,则使0n S >的最大的n 为15;

C .若150S >,160S <,则{}n S 中7S 最大;

D .若89S S <,则78S S <.

28.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有

m n m n a a a +=+,则下列结论正确的是( )

A .11285a a a a +=+

B .56110a a a a <

C .若该数列的前三项依次为x ,1x -,3x ,则10103

a =

D .数列n S n ??

????

为递减的等差数列

29.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <

B .70a =

C .95S S >

D .170S <

30.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =

D .当8n ≥时,0n a <

31.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ??

?

???

是等差数列 D .1n a +是n a 与2n a +的等差中项

32.已知数列{}n a 的前n 项和为,n S 2

5,n S n n =-则下列说法正确的是( )

A .{}n a 为等差数列

B .0n a >

C .n S 最小值为214

-

D .{}n a 为单调递增数列

33.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22

B .d =-2

C .当n =10或n =11时,S n 取得最大值

D .当S n >0时,n 的最大值为21

34.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )

A .a 6>0

B .24

37

d -

<<- C .S n <0时,n 的最小值为13

D .数列n n S a ??

????

中最小项为第7项

35.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >

B .170S <

C .1819S S >

D .190S >

【参考答案】***试卷处理标记,请不要删除

一、数列的概念选择题 1.B 解析:B 【分析】 由12

2n n a a n n +=++转化为11

121n n a a n n +??-=- ?+??

,利用叠加法,求得23n a n =-,即可求解. 【详解】

由122n n a a n n +=++,可得121

12(1)1n n a a n n n n +??-==- ?++??

所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-+

+-+

11111

111222*********n n n n n n ????????

=-+-+-++-+ ? ? ? ?-----??????

??

122113n n ??

=-+=- ???

所以102143105

a =-=. 故选:B. 【点睛】

数列的通项公式的常见求法:

1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;

2、对于递推关系式可转化为

1

()n n

a f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1

n n a pa q +=+的数列,可采用构造法求解数列的通项公式.

2.D

解析:D 【分析】

利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】

11n n a a n +=++,11n n a a n +∴-=+且11a =,

由累加法可得

()()()()12132111232

n n n n n a a a a a a a a n -+=+-+-++-=+++

+=

()122211

n a n n n n ∴

==-++,2222

2222222311n S n n n ?

?????∴=-+-+

+-=-< ? ? ?

++?

?????

, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.

故选:D. 【点睛】

本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.

3.C

解析:C 【分析】

可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】

每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.

20211

110112

-+=,说明2021是1011个奇数. 而22961311011321024=<<=,故2021一定是32行,

而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】

本题考查数列的基础知识,但是考查却很灵活,属于较难题.

4.C

解析:C 【分析】

根据数列项的规律即可得到结论. 【详解】

因为数列3,7,11,15?的一个通项公式为41n -,

,?的一个通项公式是n a = 故选:C .

本题主要考查数列通项公式的求法,利用条件找到项的规律是解决本题的关键.

5.C

解析:C 【分析】

根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】 解:

11

n

n n a a a +=

+, ∴两边同时取倒数得

11111n n n n

a a a a ++==+, 即11

11n n

a a ,

即数列1n a ??

????

是公差1d =的等差数列,首项为

1

11a .

则1

1(1)1n

n n a =+-?=, 得1n a n

=

, 则20201

2020

a =

, 故选:C 【点睛】

本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.

6.C

解析:C 【分析】

分别观察各项的符号、绝对值即可得出. 【详解】

数列1,-3,5,-7,9,…的一个通项公式()()112n

n a n =--. 故选C . 【点睛】

本题考查了球数列的通项公式的方法,属于基础题.

7.B

解析:B

根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】

在数列{}n a 中,11a =,122n n n a a a +=

+,则12

122122123

a a a ?===++,2322

2213222

23

a a a ?

===++, 3431

222212522a a a ?

===++,45422215223

25

a a a ?

===++. 故选:B. 【点睛】

本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.

8.A

解析:A 【分析】

由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于

λ的不等式,解之可得λ的取值范围.

【详解】

由已知得22

1(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,

因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ

本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.

9.D

解析:D 【分析】

根据题意得出111

2

n n n a a a a +==

,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】

取1x =,(

)y n n N

*

=∈,由题意可得()()()111

112

n n n a

f n f f n a a a +=+=?==

, 11

2n n a a +∴

=,所以,数列{}n a 是以12为首项,以12

为公比的等比数列, 11112211212n n n S ??

- ???

∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即

1

12

n S ≤<. 故选:D.

【点睛】

本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.

10.D

解析:D 【分析】

分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果. 【详解】

由题意知,212312a +==--,3131132a -==-+,41

1121312a -

==+,5

1132113

a +

==-,612312

a +==--,…,

因此数列{}n a 是周期为4的周期数列, ∴20205054413

a a a ?===. 故选D. 【点睛】

本题主要考查的是通过观察法求数列的通项公式,属于基础题.

11.A

解析:A 【分析】

将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】 因为12a =,232a =

,343

a =,454a =,565a =,

故可得1223,12a a =

=, 343

a =,454a =,56

5a =, 故可归纳得1

+=n n a n

. 故选:A. 【点睛】

本题考查简单数列通项公式的归纳总结,属基础题.

12.C

解析:C 【分析】

令n n b na =,由已知得121n n b b n +-=+运用累加法得2

+12n b n =,从而可得

12

+n a n n

=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<

<,

由此可得选项. 【详解】

令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113++122

n

n n b n --==,所以2+1212

+n n

b n a

n n n n

===, 所以()()()()+13+41212+1+

++1+1n n n n a a n n n n n n -??-=-= ???,

所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,

故选:C. 【点睛】

本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.

13.C

解析:C 【分析】

根据“等差比”数列的定义,得到数列1n n a a +??

????

的通项公式,再利用202020202019201820192019a a a a a a =?求解. 【详解】 由题意可得:

3

23a a =,211a a = ,3221

1a a a a -=,

根据“等差比数列”的定义可知数列1n n a a +??

?

???

是首先为1,公差为2的等差数列, 则

()1

11221n n

a n n a +=+-?=-, 所以

20202019220191220181a a =?-=?+,20192018

220181a

a =?-, 所以

()()2202020202019

201820192019

220181220181420181a a a a a a =?=?+?-=?-. 故选:C 【点睛】

本题考查数列新定义,等差数列,重点考查理解题意,转化思想,计算能力,属于中档题型.

14.C

解析:C 【分析】

利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】

当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C

15.B

解析:B 【分析】

由111n n n n a a a a ++-=+,且113

a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】

因为111n n n n a a a a ++-=+,且11

3

a =, 所以111n

n n

a a a ++=

-, 21

132113

a +

∴==-,33a =-,412a =-,513a =,??, 4n n a a +∴=.

123411

···2(3)()132

a a a a ∴=??--??=.

则{}n a 的前2021项之积50511

133

=?=.

故选:B 【点睛】

方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.

16.C

解析:C 【分析】

根据选项进行逐一验证,可得答案. 【详解】 选项A. ()

1

1n a n n =-,当1n =时,无意义.所以A 不正确.

选项B. ()1221n a n n =-,当2n =时,()2

111

22221126

a ==≠???-,故B 不正确. 选项C.

11122=-,111162323==-?,1111123434==-?,1111204545==-? 所以11

1

n a n n =

-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 111

1012

a =-=≠,故D 不正确. 故选:C

17.C

解析:C 【分析】

由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又

202067331=?+,由此可得答案

【详解】

解:由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,???,

所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=?+,

所以数列{}n a 的前2020项的和为673211347?+= 故选:C

18.B

解析:B 【分析】

先由题中条件,得到2

12

21i i i a a a +-=+,由累加法得到20

2211

221k k a a ==-∑

,根据00a =,

()11i i a a i +=+∈N ,逐步计算出221a 所有可能取的值,即可得出结果.

【详解】

由11i i a a +=+得()2

221121i i i i a a a a +=+=++,

则21221i i i a a a +-=+, 所以2221121a a a -=+, 2232221a a a -=+,

……,

2202022121a a a -=+,

以上各式相加可得:()21120

2

21

0221

2 (20202)

k

k a a a a a a

=-

=+++++=∑,

所以20

22121

1220

k k a a a ==--∑

又00a =,所以2

12

0211a a a =++=,则20

2211

221

k k a a ==-∑

因为()11i i a a i +=+∈N ,00a =,则0111a a =+=,所以11a =±,则2110a a =+=或

2,

所以20a =或2±;则3211a a =+=或3,所以31a =±或3±;则4310a a =+=或2或

4,所以42a =±或4±或0;则5411a a =+=或3或5,所以51a =±或3±或5±;……,

以此类推,可得:211a =±或3±或5±或7±或9±或11±或13±或15±或17±或19±或

21±,

因此221a 所有可能取的值为222222222221,3,5,7,9,11,13,15,17,19,21,

所以2211

2

2a -所有可能取的值为10-,6-,2,14,30,50,74,102,134,

170,210;

20

1

k

k a

=∑所有可能取的值为10,6,2,14,30,50,74,102,134,170,210,

即ACD 都有可能,B 不可能. 故选:B. 【点睛】 关键点点睛:

求解本题的关键在于将题中条件平方后,利用累加法,得到20

22121

1220

k k a a a ==--∑

,将问题

转化为求221a 的取值问题,再由条件,结合各项取值的规律,即可求解.

19.A

解析:A 【分析】

根据数列的递推关系式即可求解. 【详解】

由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a ++++

+++++=+

3462020562020201920202021a a a a a a a a a a =+++

=+++=+=.

故选:A

20.A

解析:A 【分析】

直接将6n =代入通项公式可得结果. 【详解】 因为()()2

11n

n a n

=--,所以626(1)(61)35a =--=.

故选:A 【点睛】

本题考查了根据通项公式求数列的项,属于基础题.

二、多选题 21.AC 【分析】

由该数列的性质,逐项判断即可得解. 【详解】

对于A ,,,,故A 正确;

对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加

解析:AC 【分析】

由该数列的性质,逐项判断即可得解.

【详解】

对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;

对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,

32121,a a a a a ???=+=,

各式相加得()2022202120202021202020192012182a a a a a a a a a ++???+=+++???++, 所以202220202019201811a a a a a a =++???+++,故D 错误. 故选:AC. 【点睛】

关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.

22.BD 【分析】

根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;

数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要

解析:BD 【分析】

根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】

因为数列{}n a 满足112a =-,111n n

a a +=-,

212131()

2

a ∴=

=--;

32

1

31a a =

=-; 41311

12

a a a =

=-=-;

∴数列{}n a 是周期为3的数列,且前3项为12-

,2

3

,3; 故选:BD . 【点睛】

本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.

23.ABC 【分析】

数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】

数列的前项和为,且满足,, ∴,化为:,

∴数列是等差数列,公差为4, ∴,可得

解析:ABC 【分析】

数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11

4

a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1

n

S ,n S ,2n ≥时,()()

111144141n n n a S S n n n n -=-=

-=---,进而求出n a . 【详解】

数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),11

4

a =, ∴1140n n n n S S S S ---+=,化为:

1

11

4n n S S --=, ∴数列1n S ??

????

是等差数列,公差为4,

∴()1

4414n n n S =+-=,可得14n S n

=, ∴2n ≥时,()()

1111

44141n n n a S S n n n n -=-=

-=---,

∴()

1

(1)4

1(2)41n n a n n n ?=??=??-≥-??,

对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】

本题考查数列递推式,解题关键是将已知递推式变形为

1

11

4n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题

24.BCD 【分析】

由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】

设等差数列数列的公差为. 由有,即

所以,则选项D 正确.

选项A. ,无法判断其是否有最小

解析:BCD 【分析】

由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】

设等差数列数列{}n a 的公差为d .

由13522,a a S +=有()111254

2252

a a a d d ?+=++,即160a d += 所以70a =,则选项D 正确.

选项A. ()71176

773212S a d a d d ?=+

=+=-,无法判断其是否有最小值,故A 错误. 选项B. 1

13

137131302

a S a a +=?==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】

关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件

13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,

属于中档题.

25.ABC 【分析】

由,变形得到,再利用等差数列的定义求得,然后逐项判断. 【详解】 当时,由, 得, 即,又,

所以是以2为首项,以1为公差的等差数列, 所以, 即,故C 正确; 所以,故A 正确; ,

解析:ABC 【分析】

由)

2

12n a =

-1=,再利用等差数列的定义求

得n a ,然后逐项判断. 【详解】

当2n ≥时,由)

2

12n a =-,

得)

2

21n a +=

1=,又12a =,

所以

是以2为首项,以1为公差的等差数列,

2(1)11n n =+-?=+,

即2

21n a n n =+-,故C 正确;

所以27a =,故A 正确;

()2

12n a n =+-,所以{}n a 为递增数列,故正确;

数列{}n a 不具有周期性,故D 错误; 故选:ABC

26.BCD 【分析】

利用等差等比数列的定义及性质对选项判断得解.

【详解】

选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列

解析:BCD 【分析】

利用等差等比数列的定义及性质对选项判断得解. 【详解】

选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:

2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;

选项C: ()11n

n S =--,112(1)(2)n n n n S S a n --∴-==?-≥,当1n =时也成立,

12(1)n n a -∴=?-是等比数列,故对;

选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*

32()n n S S n N -∈是等差数

列,故对; 故选:BCD 【点睛】

熟练运用等差数列的定义、性质、前n 项和公式是解题关键.

27.ABD 【分析】

利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】

对于A :因为正数,公差不为0,且,所以公差, 所以,即,

根据等差数列的性质可得,又, 所以,,故A 正

解析:ABD 【分析】

利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】

对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()

02

a a S +=

=,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确;

相关主题
相关文档
最新文档