(完整版)利用中值定理证明不等式

(完整版)利用中值定理证明不等式
(完整版)利用中值定理证明不等式

利用中值定理证明不等式

拉格朗日中值定理的证明过程是基于罗尔定理上的, 并将拉格朗日中值定理作为 罗尔定理的推广, 找出辅助函数满足罗尔定理条件得证的:

定理3.2[8] 罗尔定理: 如果函数()f x 在闭区间[],a b 上连续,在开区间(),a b 内可导, 且在区间端点的函数值相等, 即()()f a f b =那么在(),a b 内至少存在一点ζ使得函数在该点的导数值等于零. 即

()'0f ζ=. (3.1)

证明 由于()f x 在闭区间[],a b 上连续, 所以()f x 在[],a b 上一定取到最小值与最大值, 分别设为m 与M .

(1)当m M =,则()f x 在[],a b 是常值函数,即

()()[]',0,,f x m f x x a b =≡∈.

因此,ξ可取(),a b 内任意一点,有()'0f ξ=.

(2)当m M <时,由于()()f a f b =,所以最大值、最小值至少有一个在内部取到,不妨设最大值M 在内部取到. 设()()',,a b f

M ξξ∈=, 则()f ξ为极大值. 由()f x 在(),a b 内可导,知()'f ξ存在.由费马定理知, ()'0f ξ=

定理3.3[8] 拉格朗日中值定理: 如果函数()f x 在闭区间[],a b 上连续, 在开区间(),a b 内可导, 那么在(),a b 内至少存在一点使等式

()()()()'f b f a f b a ζ-=- (3.2)

成立.

证明 构造一个函数,设

()()()()()()f b f a F x f x x a f a b a

-=----, 由于()[]()(),,,F x C a b F x D a b ∈∈, 且()()0F a F b ==. 所以由罗尔定理知至少存在一点(),a b ξ∈, 使()'0F ξ=. 又

()()()()''f b f a F x f x b a

-=-

-, 所以 ()()()'0f b f a f b a

ξ--

=-, 于是 ()()()'f b f a f b a

ξ-=- 例3.2[4] 证明0,1x x e x ≠>+

分析:因为0x ≠当0x >时, 将不等式1x e x >+ 改写成

()()00,0,x e e e x x ζζ-=-∈ 当0x <时, 将不等式1x e x >+改写成

()()00,,0x e e e x x ζζ-=-∈

证明 令()x f x e =当0x > 时, 对()x

f x e =在[]0,x 上应用拉格朗日中值定理. ()()00,0,x e e e x x ζζ-=-∈ 因为1x e e ζ<<, 所以1x e x ->, 即 1x e x >+

当0x <时, 对()x

f x e =在[],0x 上应用拉格朗日中值定理, ()()00,,0x e e e x x ζζ-=-∈.因为1x e e ζ<<,所以1x e x ->. 即 1x e x >+.

故当0x ≠时,1x e x >+.

例3.3 证明不等式: 当0x >时,

()()ln 1ln 101x x x x

<+-+<+ 分析:所证不等式中的函数()ln 1x +的导数为11x +, 即所证不等式中含有函数及其导数,

因而可用拉格朗日中值定理试之. 由于ln10=, 因此可构造函数的改变量ln(1)ln1x +-, 则相应自变量的改变量为x , 原不等式等价于: ()ln 1ln1111(1)1

x x x +-<<++-由不等式中间部分的形式可知, 可利用拉格朗日中值定理证明.

证明 原不等式可等价变形为:()()ln 1ln 101110

x x x +-+<<+-.

令()()ln 1f x x =+, 显然它在[]()0,0x x >上满足拉格朗日中值中定理的条件, 故存在()0,x ξ∈, 使得

()()()'00

f x f f x ξ-=-, 即()ln 1ln11.1x x ξ+-=+ 又x <<ξ0, 所以11111x ξ

<<++. 所以

1ln(1)11x x x +<<+. 因此, 当0x >时,

()()ln 1ln 10110x x x x +-+<<+-.

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

利用均值不等式证明不等式

1,利用均值不等式证明不等式 (1)均值不等式:设12,,...,n a a a 是n 个正实数,记 12111n n n H a a a = ++???+ n G = 12 n n a a a A n ++???= n Q = 它们分别称为n 个正数的调和平均数,几何平均数,算术平均数,平方平均数。有如下关系:n n n n H G A Q ≤≤≤.等号成立的充要条件是12n a a a ==???=。 先证n n A G ≥ 证法一: .n n A G ≥用数学归纳法证明: 20,n n n n n A G A G =-=≥≥当时,成立。 1.k k k k A G ≥≥假设:n=k 2时成立,即有: 11111 111k k k k k k k k k k k k k k k k A A A G G G A G ++++++++≥?≥n=k+1时:只需证: 12n a a a ≤≤≤L 不妨设:0< 1 1 11 1 1111 1= 11 k k k k k k i i i i k i i i i k a a a a A k k k k +++++====+?? ?? ?? ? ? ? ? ? ?=+-++ ? ? ? ? ? ??? ???? ∑∑∑∑1 101 1 11111 1 k k k k k k i i i i i i i i k k a a a a C C k k k k ++====++?????? ? ? ? ? ? ?≥+-+ ? ? ? ? ? ?? ? ?? ?? ∑∑∑∑ 1111 111(1)(11).1k k k k k k i i i i k i i i i k k k a a a a k k a A a k k k k +====++??? ??? ? ? ? ? ? ?=+-+-==+ ? ? ? ? ? ??? ???? ∑∑∑∑ 111 11.1k k k k k k k k k A G a n k A G +++++∴≥==+所以对时亦成立。原不等式成立。 . n n A G ≥证法二:用反向数学归纳法证明:

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

用“放缩法”证明不等式的基本方法

2 3、先放缩,后裂项(或先裂项再放 缩) n a =n ,求证:k=1 例3、已知 a k n 证明:苕 1 V (k — 1)k(k + 1) _________ 二[+£莖壬匹 ^/(k — 1)(k + 1) ( >/k + 1 +寸 k — 1 ) k z2 (二 学习必备 欢迎下载 用放缩法”证明不等式的基本方法 近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生 逻辑思维能力以及分析问题和解决问题的能力。特别值得一提 的是,高考中可以用 放缩法”证明不等式的频率很高, ,对它的运用往往能体现出创造性。 放缩法”它可以和很 而且要恰到好处,目标往往要从证明的结论考察, 例谈 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的 需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩 k 时就舍去了 2 -2,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例 2、函数 f (x )= 一,求证:f (1) +f (2) + …+f (n ) 1 +4x f(n)=二=1--^A 1-丄 1 +4n 1+4 2 *2 1 1 1 +f (2) + …+f (n ) >1—+1屮"+1— 2 21 2 22 2 2n +1 +1 +…=n + 丄一1 (n 迂 N *). 2 4 2n 2n '1 2 此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数, 再对分母进行放缩,从而对左边可以进行 求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。女口 它是思考不等关系的朴素思想和基本出发点 ,有极大的迁移性 多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标, 放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题, 1、添加或舍弃一些正项(或负项) 放缩”的基本策略,期望对读者能有所帮助。 例1、已知 a n =2“ -1(n 亡 N ).求证: n 1 2—3 a 2 a 3 + a n 证明:,— a k + 2k -1 =2^ 1 2 "2(22-1) _ 1 "2"3.2k +2k -2 >1-1.l^,k=1,2,..., n, 2 3 2k 玉+更+ +旦 a 2 a 3 「-1(1 +-+...+丄)」-丄(1二)「-1 , 2 3 2 22 2n 2 3 2n 2 3 2 3 a 2 a 3 + <-(n 迂 N *). a n + 2 证明:由 需放大,则只要把分子放大或分母缩小即可; 如需缩小,则只要把分子缩小或分母放大即可。

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.360docs.net/doc/879464427.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.360docs.net/doc/879464427.html,) 原文地址: https://www.360docs.net/doc/879464427.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

高三数学专题复习概率二项式定理函数不等式及其证明等几大专题高考复习资料

高三数学专题概率二项式定理函数不等式及其证明 数学高考总复习:概率 知识网络目标认知考试大纲要求: 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别. 2.了解两个互斥事件的概率加法公式. 3.理解古典概型及其概率计算公式;会计算一些随机事件所含的基本事件数及事件发生的概率. 4.了解随机数的意义,能运用模拟方法估计概率;了解几何概型的意义。 5.了解条件概率和两个事件相互独立的概念,并能解决一些简单的实际问题. 重点: 理解互斥事件的概率加法公式,古典概型及其概率计算公式,并能计算有关随机事件的概率;求简单的几何概型的概率问题;条件概率和两个事件相互独立的概念,并能解决一些简单的实际问题. 难点: 古典概型及其概率计算公式;几何概型的意义,用条件概率和两个事件相互独立的概念,解决一些简单的实际问题. 知识要点梳理知识点一:事件及有关概念1.事件: 在一定条件下出现的某种结果。在一定的条件下,能否发生某一事件有三种可能: ①必然事件:在一定条件下,一定会发生的事件; ②不可能事件:在一定条件下,一定不会发生的事件; ③随机事件:在一定条件下,可能发生也可能不发生的事件; 必然事件和不可能事件的统称为确定事件,确定事件和随机事件统称为事件,其一般用大写字母A、B、C……表示。 2. 基本事件: 一次试验连同其可能出现的一个结果称为一个基本事件,它是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为基本事件。如果一次试验中可能出现的结果有n个,那么这个试验由n个基本事件组成。

3.基本事件的特点: (1)不能或不必分解为更小的随机事件; (2)不同的基本事件不可能同时发生; (3)一次试验中的基本事件是彼此互斥的; (4)试验中出现的结果总可以用基本事件来描绘. 知识点二:频率与概率1.频数与频率: 在相同条件下重复次试验,观察某一事件A是否出现,称次试验中事件A出现的次数为事件A出现的频数,称为事件A出现的频率。 2.概率: 对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在 某个常数上,则这个常数就叫事件A的概率,记作。 概率的基本性质 ①任何事件的概率的取值范围:。 ②P(必然事件)=1,P(不可能事件)=0; 3.频率与概率的区别与联系:①频率随着试验次数的改变而变化,概率却是一个常数; ②随机事件的频率,指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总在某个常数附近 摆动,且随试验次数的不断增多,摆动幅度越来越小,这个常数就是这个随机事件的概率。 ③概率可以看作是频率理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。 知识点三:古典概型1.定义: 具有如下两个特点的概率模型称为古典概型: (1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 注意:古典概型也称等可能性事件的概率。 2.古典概型的基本特征: (1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事 件。 (2)等可能性:每个基本事件发生的可能性是均等的。 3.古典概型的概率计算公式

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

拉格朗日中值定理证明中辅助函数构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

北师大版数学高二选修2素材 1.5用二项式定理证明不等式

1.5 用二项式定理证明不等式 有关不等式证明问题是高考的热点。因不等式的结构变化万千,所以证明方法繁多,技巧性很强。如能根据题目特点,选择合适的方法,往往能出奇制胜。本文仅介绍用二项式定理证明不等式,供同学们参考。 一、直接利用定理 例1、 求证:)2(2 )12(1+>+-n n n (n )2≥∈n N 且 证明:(2+1)n =n 2+C 1 n 12 -n +C 222-n n +1+ >2n + C 1n 12-n =12-n (n+2) 二、创设条件利用定理 例2、 已知a 、b +∈R ,求证:n n n b a b a )2 ()(21+≥+ 证明:设a ,0>≥b 令a=s+t , b=s-t ,则s>0 ,t 0≥ (1)当n=1显然成立;(2)当n ≥2时,有 )(21n n b a +=2 1 =2222s t t s c s n n n n ≥+++- =n b a )2 (+ 例3:已知数列{}n a ,{}数列分别是等差数列和等比n b 且 a 1= b 1, a 2=b 2,a 12a ≠,a )(0+∈>N n n ,求证:当n 3≥时,a n n b < 证明:等差数列{}n a 的公差d= a 2- a 1≠0, 若d<0,必存在某个N ,当n>N 时,00 n 3≥,b n = b 1q 1-n = a 1(112)-n a a = a 1(11 1)-+n a d a = a 1(1+11)-n a d = a 1 =a 1(1+ C 11-n 1 a d )= a 1+(n-1)d=a n 总之:和自然数n 有关的不等式问题,我们用二项式定理(必要时去创设定理的应用条

相关文档
最新文档