碳纤维增强复合材料在自润滑轴承中的应用综述

碳纤维增强复合材料在自润滑轴承中的应用综述
碳纤维增强复合材料在自润滑轴承中的应用综述

碳纤维增强复合材料的研究开发

嘉兴天翼科技有限责任公司唐清 2013年2月16日

以热固性树脂制成的轴承在市场上出现以来,在轴承领域里,各种聚合物和聚合物为主的各种混合物的应用已不断增加。可以用作轴承材料的塑料品种很多,如聚四氟乙烯、尼龙、聚酰亚胺、聚甲醛、低压聚乙烯等,它们都有很好的自润滑性,摩擦系数小,功率损耗比金属轴承约小15 %。聚四氟乙烯为目前氟塑料中综合性能最突出、应用最广、产量最大的一个品种,它有高度的化学稳定性,耐强腐蚀,极好的自润滑性,摩擦系数极小等特点。但纯聚四氟乙烯尺寸稳定性差,耐磨性差,而加入填充剂可以改善其摩擦性能,提高其硬度和强度。经过反复试验,我公司开发出新型热固型钨-碳纤维轴承,相比传统轴承,钨-碳纤维轴承具有更好的性能和性价比。

2 W-CFRP 轴承的工作机理与摩擦特性

2.1 W-CFRP 轴承的工作原理

W-CFRP 轴承一般与金属轴形成一对旋转摩擦副。

在跑合阶段,由于旋转轴表面有一定的粗糙度,具有不同的“凸峰”和“凹谷”,夸大来讲就好像钢锉一样对W-CFRP 轴承内表面产生磨削作用,磨削下来的W-CFRP 大部分填充到

凹谷中。随着转轴运动的持续进行,磨削下来的W-CFRP 粉末累积量不断增加,填充更多的凹谷。“磨削一填充”过程持续进行,导致转轴表面上所有凹谷均填满了W-CFRP 微屑。在转子重力作用下,凹谷内W-CFRP 微屑被压实,使轴外表面紧密粘附一层W-CFRP 膜层,且形成连续光滑面。这全过程完成了轴承内表面W-CFRP 的部分“转移”,转移的结果是:由金属与W-CFRP 两种材料变为W-CFRP 一种材料之间的相互摩擦。由于CFRP 良好的自润滑性能,因此在跑合以后的工作阶段,轴承表面的磨损量随之下降到一个极低的水平,从而使摩擦副表面得到保护,大大减轻了转轴与轴承表面的磨损,延长了工作寿命。

2.2 W-CFRP 轴承的摩擦磨损特性

自润滑轴承属于干摩擦,因此可根据古典摩擦理论的基本公式求出其摩擦力,进而求出轴承的耗功量。

F=fW

式中F—摩擦力,kgf ; f —摩擦系数:W —接触面积的法向载荷,kgf 。公式中的摩擦系数 f 只适用于干摩擦或边界摩擦的状况。对于任一给定摩擦副的表面,其摩擦力大致与载荷成比例,因而摩擦系数 f 为一常数。就初步近似而言,摩擦力也与物体的面积无关。然而摩擦系数 f 不能视为接触时材料的恒定特征值,因为摩擦力取决于许多可变因素,例如表面的宏观形状、表面粗糙度、表面可能形成

的膜、滑动速度等。我们测得CFRP 轴承与碳钢对摩的摩擦系数 f ≈O.17 ~0.24 。

磨损决定无润滑轴承的使用寿命,而磨损率取决于材料的机械性质和摩擦特性,并随载荷和速度的增加而增大,但不与运转时间成线性比例关系,即磨损率一般不是常数。

W-CFRP 轴承的制造有一定的难度,首先是热固型材料有常温下就有一定的粘度,跟钨的烧结过程前段要均匀的将钨和碳纤维表面充分接触,量的控制要相当均匀,否则就有可能造成钨堆积,或钨缺失,这样都不能最大限度发挥两种材料的优势。根据我们的实际情况,我们选用三步成型工艺。先解决两种材料的结合问题,然后解决固化过程中的流动性问题,这影响固化后的强度和固化后的表面致密度和光滑度。再就是解决

3.1 原料的选择与处理

(1) 碳纤维( 简称CF) 。是PNA经过预氧化和碳化处理后制成的一种增强骨架材料,它具有高强度、高模量、底密度、耐高温、抗烧蚀、耐腐蚀等特殊性质,有很底的线胀系数,室温时差不多为负值( 约为 1.0 × 10 -8 / 摄式度以下) ,而在200 ~ 400 摄式度时则接近于零。它的摩擦系数很小,特别在与金属对摩时更是如此。我公司采用的CF 是PAN 系列,主要性能如表 1

拉伸强度拉伸模量密度g/cm 3

4950MPa 230GPa 1.75

CF 经过一系列工艺处理过程,最后达到要求的含水量和纤维长径比。(3)PTFE 树脂选用悬浮树脂,其性能参数见表 2 。表 2 选用PTFE 的性能参数

密度g/cm 3 拉伸强度MPa 加热失重(﹥400 ℃)

2 . 8~2 . 2 ﹥30 ﹤0.04%

3.2 配方研究

根据用户提出的不同机种工况条件和轴承的工作原理,要求材料刚性好、硬度强度高、耐磨损,我们研制出不同的材料配方。

通过实验,我们发现在PTFE 中加入适当比例的碳纤维、玻璃纤维及不同的金属粉等填料,能改善材料的性质,提高其硬度强度和刚度。这些填料的加入还使CFRP 轴承抗蠕变性比PTFE 提高了10 倍,耐磨提高了约20 倍,硬度增加了300 %而且轴承工作稳定性得到大大改善。

选择合理配方,必须弄清使用工况条件,然后才能设计出C F 、PTFE 等填充剂的最佳配比。通过三年多的试验,先后研制出十几种配方,从中优选出 5 种配方供生产使用。

3.3 成型工艺

将各种原材料选定后,按一定配方混合。混合必须均匀,然后进行中温固化等工艺过程,直至加工出成品轴承,全过程主要分四部分:

(1) 配方设计与混合,这一步是关键。

(2) 预成型工艺。成型压力的大小与收缩率有很大关系

(3)精磨工艺

(4)后整理工艺

W-C F RP材料固化时发生的变化是物理化学变化的交替过程。从体积上看是膨胀和收缩的过程,升温时体积增大,降温时体积减小;从相变上看,是一个晶相与无定型的相互转变的过程,当制品加热到一定温度时,其结晶区破坏,开始转变为无定型结构的胶态,此过程是可逆的,将制品冷却至转变点,又会由无定型态变为结晶态。

固化过程分升温、保温、降温三部分,其中每一部分都能影响制品质量,必须严格控制温度梯度。

(5)机加工。将半成品按照结构设计要求进行机加工。加工CFRP 与金属材料不同,需设计合理的工装,特殊刀具和特殊加工方法。

3.4 W-CFRP 轴承性能

研制出的W-CFRP 轴承性能参数见表 3 。

表 3 W-CFRP 轴承性能参数

密度g/cm3 1.6 硬度HB5 抗压强度1200MPa 磨擦系数0.13 磨痕宽度5mm 使用寿命大于10000 h

4 CFRP 轴承的结构与设计特点

W-CFRP 轴承可做成滑动轴承和推力轴承,根据使用要求,大

致有三种形式:一是制作整体轴承;二是用金属作轴瓦,然后压入薄的W-CFRP 衬套;这种表面来看可以降低成本,但是操作不方便,增加了装配难度。三是在金属瓦背上涂覆一层W-CFRP 衬。目前就国内的技术条件来看,前两种成型方法比较成熟,使用效果好。其形状见图 3 。

设计使用W-CFRP 轴承时,要针对其特点,着重考虑散热及热膨胀等问题。

4.1 配合间隙

W-CFRP 材质的膨胀系数比金属小,导热系数也小,因此其间隙比金属轴承小一些,通常取轴承内径间隙为:

2c =(O.006 ~ 0.015)d

式2c —轴承内径与轴径的总径向间隙,mm ;d —轴径,mm ;

但一般情况下2c 可小于0.1mm ( 当d< 10mm 时,允许

2c < 0.1mm 的情况出现) ,一般不会发生轴承膨胀抱轴。

4.2 长径比1/d 与壁厚

轴承长径比1/d=0.7 ~ 1.0 为最佳,此时容易散热,摩擦系数也小,一般情况下应保证(1/d)max ≤ 1.5 。1/d 比值小,便于排出磨屑,对轴的变形和两轴承孔不同轴的敏感性亦低。W-CFRP 轴承的壁厚,在保证强度和成型工艺许可的情况下,愈薄愈好,壁厚约为其内径的1/8 ~1/15 。然而,在考虑长径比与壁厚时,还应考虑到轴承的承载能力。

4.3 表面粗糙度

W-CFRP 轴承跑台期的磨损量和稳定运行期的磨损率均与其对摩轴表面的粗糙度有关。通常表面粗糙度愈低磨损量愈小,但也不要太低,W-CFRP 轴承对摩件的粗糙度最好不要低于0.8 μm ,使W-CFRP 在开始跑合时,就有少量转移到对摩件表面上去,形成W-CFRP 与W-CFRP 间的摩擦。当然轴的粗糙度也不能太高,一般取 3.2 ~ 0.8 μm 为宜,否则对轴承内表面切削太严重,加剧磨损,引起机器工作不平稳。

5 结论

根据对W-CFRR 轴承与材料的研制以及工业考核使用情况,可得出如下看法:

(1)W-CFRP 轴承价格低廉、结构简单、成型加工制造容易,根据需要可做成各种形状,还可做成卷制轴套式滑动轴承( 见图3a ) 。

(2) 优异的自润滑性、耐磨性、摩擦系数底(f=0.17 ~0 .

24) ,10000 小时磨损量约为0.15mm 。在有油润滑下运行时,其性能往往成10 地增长,摩擦系数又非常稳定,比金属优越的多,所以建议在工艺允许情况下尽量在开始工作前涂以润滑脂或定期加少量润滑油。

(3) 有较高的强度与硬度。

(4) 优良的防污染性和防腐蚀性。W-CFRP 轴承受灰尘、杂质污染的影响很小,它有较好的“镶嵌性”,能把灰尘、金属

微粒之类的物质“吃”进去,使它们在压力作用下嵌入到W-CFRP 界面下边,减小对摩擦副的磨损。

(5) 特别适合于具有高真空、强放射性照射、高温和超低温、腐蚀性介质以及容易遇油中毒介质等工况。

(6) 轴的粗糙度应保持在 3.2 ~ 0.8 μm 范围内。

(7) 相对金属轴承来说,W-CFRP 轴承线胀系数是金属的十分之一不到,导热性较差,设计制造时应很好掌握摩擦副间的配合间隙,一般取间隙2c =(0.006 ~ 0.015)d 为宜

市场前景:由于W-CFRP轴承的良好性能,它可以在多种场合下取代金属材料有尼龙材料使用,特别是在大型;超大型轴承上使用,能大大降低生产成本;减少生产的周期;同时在大型轴承上使用,能减少75%的轴承重量;减少装配及调整时间,增加使用寿命,减少设备维护时间等。

主要的应用领域:大型机械设备;风电设备;矿山设备;大型轮船等。

跟传统的金属轴承优势:材料成本高于金属材料,按吨来讲计算,基本上金属材料的近30倍。按体积来计算是金属材料的8倍。但是生产成本却降低到原来30%,维护成本减少70%,军用膨胀系数是金属的十分之一,精度跟金属材料一样,后加工方案同金属材料,使用寿命提高一倍,安装方便,综合来看,W-CFRP轴承有绝对的优势。

我们的目标是在国内生产最轻最大的W-CFRP轴承,最终在多个行业取代金属材料,成为国内W-CFRP轴承的开导者。为中国机械行业提供最

好的;最轻的;最耐磨的轴承。

研究团队:将同中南工业大学联合开发,由中南工业大学提供强有力的理论指导,由我公司具体实施,并最终早日实现产业化,规模化生产。

开发同期:我们经过四年时间已开发生产出小直径的W-CFRP轴承,在食品及矿山机械上使用,效果明显。但是这些行业的轴承由于要求高太高,对价格反应较敏感,对质量要求不敏感,因而只有少部分企业在使用,为此,我们将计划转向大型特种轴承的研发方面,基础工作已做了许多,等有一定的设备和资金条件后就可以将大型特种轴承开发生产出来,最终实现产业化。

碳碳复合材料概述

碳/碳复合材料概述 摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。 关键词碳碳复合材料制备工艺性能应用 1前言 C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。 2碳碳复合材料的发展 碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段: 60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表; 90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。 由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。目前碳碳复合材料面对的最主要问题是抗氧化问题[2]。 3碳碳复合材料的制备加工工 艺[3] C/ C 复合材料的制备工艺: 碳 纤维的选择→胚体的预制成型→胚体 的致密化处理→碳碳复合材料的高温 热处理(如图[4]) 3.1碳纤维的选择 CF 的选择可以改变碳碳复合材 料的力学和热力学性能。纤维的选择 主要依赖于成本、织物结构、性能及 纤维的工艺稳定性。 常用CF 有三种, 即人造丝CF, 聚丙烯腈( PAN ) CF 和沥青CF。 3.2坯体的预制成型 坯体的成型是指按产品的形状和性能要求先把CF 预先成型为所需结构形状的毛坯, 以便进一步进行C/ C 复合材料的致密化处理工艺。

自润滑关节轴承

关节轴承是一种特殊结构的滑动轴承。它的结构比滚动轴承简单,其主要是由一个有外球面的内圈和一个有内球面的外圈组成,能承受较大的负荷,根据其不同的类型和结构,可以承受径向负荷、轴向负荷或径向、轴向同时存在的联合负荷。关节轴承一般用于速度较低的摆动运动(即角运动),由于滑动表面为球面形,亦可在一定角度范围内作倾斜运动(即调心运动),在支承轴与轴壳孔不同心度较大时,仍能正常工作。 关节轴承的特点 关节轴承能承受较大的负荷。根据其不同的类型和结构,可以承受径向负荷、轴向负荷或径向、轴向同时存在的联合负荷。由于在内圈的外球面上镶有复合材料,故该轴承在工作中可产生自润滑。一般用于速度较低的摆动运动,和低速旋转,也可在一定角度范围内作倾斜运动,当支承轴与轴壳孔不同心度较大时,仍能正常工作。自润滑关节轴承应用于水利、专业机械等行业。 关节轴承的应用 关节轴承广泛应用于工程液压油缸,锻压机床,工程机械,自动化设备,汽车减震器,水利机械等行业. 关节轴承简介及分类关节轴承是球面滑动轴承,基本型是由具有球形滑动球面接触表面的内、外圈组成。根据其结构和类型的不同,可承受径向载荷、轴向载荷,或者是径向、轴向同时作用的联合载荷。因为关节轴承的球形滑动接触面积大,倾斜角大,同时还因为大多数关节轴承采取了特殊的工艺处理方法,如表面磷化、镀锌、镀铬或外滑动面衬里、镶垫、喷涂等。因

此有较大的载荷能力和抗冲击能力,并具有抗腐蚀、耐磨损、自调心、润滑好或自润滑无润滑污物污染的特点,即使安装错位也能正常工作。因此,关节轴承广泛用于速度较低的摆动运动、倾斜运动和旋转运动。 关节轴承介绍 外圈有一道轴向缝,内外圈材料为轴承钢,生产期间通常经过淬火,磷化两大步骤,成型后,在滑动的表面涂抹二硫化钼,润滑。关节轴承产品也有双侧密封系列,通过这次型号的后缀字母来判断轴承产品是否密封。

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

碳纤维增强复合材料概述(精编文档).doc

【最新整理,下载后即可编辑】 碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之

间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、氧等元素得以排出,成为一种接近纯碳的材料,含碳量一般都在90%以上,而本身质量却大为减轻;由于碳化过程中对纤维进行了沿轴向的预拉伸处理,使得分子沿轴向进行取向排列,因而碳纤维轴向拉伸强度大大提高,成为一种轻质、高强度、高模量、化学性能稳定的高性能纤维材料。用碳纤维和高性能的树脂基体复合而成的先进树脂基复合材料是目前用得最多,也是最重要的一种结构复合材料。此外,用天然纤维、玻璃纤维和玄武岩纤维作增强体的树脂基复合材料也在快速发展。 碳纤维增强复合材料( CFRP) 是目前最先进的复合材料之一。它可以兼顾碳纤维和基体的性能而成为综合性能更为优异的工程结构材料和具有特殊性能的功能材料。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐

碳纤维及复合材料的种类、制备和应用

碳纤维及复合材料的种类、制备及应用 杨晨材研0906 (北京化工大学材料学院,100029) 摘要:本文主要陈述总结了复合材料及其碳纤维的种类、制备及应用方面的相关知识。 关键词:碳纤维;复合材料;种类;制备;应用 1.复合材料 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。具有比强度高,比模量高,剪切强度和剪切模量高,高温性能高,耐热性高等特性广泛应用于各个领域。 1.1种类 复合材料按其性能高低可分为常用复合材料和先进复合材料;根据其用途可分为结构复合材料和功能复合材料;按照复合方式可分为宏观复合材料和微观复合材料。根据不同增强体形式可分为纤维复合材料、颗粒复合材料、片材复合材料和叠层复合材料。还有,可以根据基体材料的不同细分为:聚合物基复合材料、金属基复合材料和无机非金属基复合材料。本文主要以基体材料的细分方式介绍复合材料的制备及其应用。 其生产流程见图1.1。 图1.1 复合材料制品的生产流程图 1.2聚合物基复合材料 聚合物基复合材料是聚合物或俗称树脂作为基体与粒状、片状、纤维状填充组分作为增强体的复合材料。按基体的不同还可以分成热固性树脂基、热塑性树脂基和橡胶基。

1.2.1制备 其主要制备方法有:预浸料、手糊成型工艺、喷射成型、袋压成型、模压成型、纤维缠绕成型、拉挤成型、熔融流动成型、增强反应注射成型和树脂传递模塑。 1.2.2应用 聚合物基复合材料在建筑、化学、交通运输、机械电器、电子工业及医疗、国防、航天航空及火箭等领域都有广泛应用。如手糊成型制得的广播卫星抛物面天线、太阳能电池帆板;纤维缠绕成型可制得雷达罩、火箭发动机壳、压力容器;模压成型制得的整体浴室和汽车保险杠等等。 1.3金属基复合材料 金属基复合材料是以金属、合金和金属间化合物为基体,以无机纤维和金属间化合物等为增强体,通过浸渗、固结工艺制成的复合材料。根据其基体的种类可细分为轻金属基、高熔点金属基和金属间化合物基。 1.3.1制备 金属基复合材料的主要制备工艺方法有:固相法、液相法和原位复合法。固相法主要有粉末冶金、固态热压法、热等静压法;液态法主要有真空压力浸渍法、挤压铸造法;原位复合法主要包括共晶合金定向凝固、直接金属氧化物法、反应生成法。 1.3.2应用 金属基复合材料主要可应用于航天、航空、汽车、医疗、体育用品等领域。如航天飞机中段主机身的B/Al关键桁架、臂状支柱;齿轮;高尔夫球杆击球头及各种支架等等。 1.4无机非金属基复合材料 无机非金属复合材料主要有陶瓷基复合材料、水泥基复合材料和碳基复合材料。 1.4.1陶瓷基复合材料 陶瓷基复合材料是以陶瓷材料为基体,并以陶瓷、碳纤维和难熔金属的纤维、晶须、晶片和颗粒为增强体,通过适当的复合工艺所构成的复合材料。主要可细分为高温陶瓷基复合材料、玻璃基复合材料和玻璃陶瓷基复合材料。 其制备工艺主要有:粉末冶金法(颗粒)、浆体法(液体法)、热压烧结法、液态浸渍法、直接氧化法、溶胶-凝胶法、化学气相浸渍法(CVI)、先驱体转化和反应熔融浸渗(RMI)等。 陶瓷基复合材料可应用于切削工具方面及航空航天领域的研究。如刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强炭化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

关节轴承知识介绍

关节轴承(Joint bearing)是一种特殊结构的滑动轴承。它的结构比滚动轴承简单,其主要是由一个有外球面的内圈和一个有内球面的外圈组成,能承受较大的负荷,根据其不同的类型和结构,可以承受径向负荷、轴向负荷或径向、轴向同时存在的联合负荷。关节轴承一般用于速度较低的摆动运动(即角运动),由于滑动表面为球面形,亦可在一定角度范围内作倾斜运动(即调心运动),在支承轴与轴壳孔不同心度较大时,仍能正常工作。 关节轴承按其所承受能力承受载荷的方向.公称接触角按和结构形式,可分为向心关节轴承.角接触关节轴承.推力关节轴承和杆端关节轴承.向心关节轴承(GE型)的公称接触角为0度,适于承受径向载荷和较小的轴向载荷.角接触关节轴承(GAC 型)又分角接触向心关节轴承和角接触推力关节轴承两种,角接触向心关节轴承的公称接触角大于0度但小于或等于30度,适应承受径向载荷和轴向载荷同时作用的联合载荷;角接触推力关节轴承的公称接触角大于30度小于90度,适于承受轴向载荷,也能承受联合载荷,但此时其径向载荷不得大于轴向载荷的0.5倍.推力关节轴承(GX)的公称接触角为90度,适于承受轴向载荷,不能承受径向载荷.杆端关节轴承适于承受径向载荷较小的轴向载荷(一般小于或等于0.2倍径向载荷). 关节轴承有润滑型和自润滑型. 关键轴承类型: 如:SB型、CF型、GE型等,还有一定数量和型号的其他类型的向心关节轴承,杆端关节轴承等。 关节轴承 关节轴承简介: [1]关节轴承是一种特殊结构的滑动轴承。它的结构比滚动轴承简单,其主要是由一个有外球面的内圈和一个有内球面的外圈组成,能承受较大的负荷,根据其不同的类型和结构,可以承受径向负荷、轴向负荷或径向、轴向同时存在的联合负荷。关节轴承一般用于速度较低的摆动运动(即角运动),由于滑动表面为球面形,亦可在一定角度范围内作倾斜运动(即调心运动),在支承轴与轴壳孔不同心度较大时,仍能正常工作。 关节轴承的特点:

自润滑关节轴承文库

关节轴承 编辑 关节轴承主要是由一个有外球面的内圈和一个有内球面的外圈特殊结构的滑动轴承。能承受较大的负荷。 目录 1简介 特点 应用 组成 2关节轴承性能 工作温度 倾角 配合 装卸 安装 润滑 3关节轴承分类及特点 向心关节轴承 角接触关节轴承 推力关节轴承 杆端关节轴承 自润滑向心关节轴承 自润滑角接触关节轴承 自润滑推力关节轴承 自润滑杆端关节轴承 1简介

关节轴承的结构比滚动轴承简单,其主要是由一个有外球面的内圈和一个有内球面的外圈组成。关节轴承一般用于速度较低的摆动运动(即角运动),由于滑动表面为球面形,亦可在一定角度范围内作倾斜运动(即调心运动),在支承轴与轴壳孔不同心度较大时,仍能正常工作。 特点 关节轴承能承受较大的负荷。根据其不同的类型和结构,可以承受径向负荷、轴向负荷或径向、轴向同时存在的联合负荷。由于在内圈的外球面上镶有复合材料,故该轴承在工作中可产生自润滑。一般用于速度较低的摆动运动,和低速旋转,也可在一定角度范围内作倾斜运动,当支承轴与轴壳孔不同心度较大时,仍能正常工作。自润滑关节轴承应用于水利、专业机械等行业。 应用 自润滑关节轴承 关节轴承广泛应用于工程液压油缸,锻压机床,工程机械,自动化设备,汽车减震器,水利机械等行业. 关节轴承简介及分类关节轴承是球面滑动轴承,基本型是由具有球形滑动球面接触表面的内、外圈组成。根据其结构和类型的不同,可承受径向载荷、轴向载荷,或者是

径向、轴向同时作用的联合载荷。 因为关节轴承的球形滑动接触面积大,倾斜角大,同时还因为大多数关节轴承采取了特殊的工艺处理方法,如表面磷化、镀锌、镀铬或外滑动面衬里、镶垫、喷涂等。 因此有较大的载荷能力和抗冲击能力,并具有抗腐蚀、耐磨损、自调心、润滑好或自润滑无润滑污物污染的特点,即使安装错位也能正常工作。因此,关节轴承广泛用于速度较低的摆动运动、倾斜运动和旋转运动。 组成 关节轴承主要是由一个外圈和一个内圈组成。外圈的内球面和内圈的外球面组成滑动摩擦副。 2关节轴承性能 关节轴承 由于关节轴承的结构形式和工作机理与滚动轴承完全不同,因此关节轴承有其自身的技术特性和维护的要求。 工作温度 关节轴承容许的工作温度主要由轴承滑动面间的配对的材料所决定,特别是自润滑型关节轴承的塑料材料滑动面,在高温时其承载能力会有下降趋势。如润滑型关节轴承的滑动面材料配对为钢/钢时,其容许的工作温度取决于润滑剂的容许工作温度。但对所有的润滑型及自润滑型关节轴承来讲,均可在-30℃~+80℃温度范围内使用,并保持正确的承受能力。 倾角

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳纤维复合材料的特性与应用现状

碳纤维复合材料的特性与应用现状 摘要:本文主要阐述了碳纤维复合材料的独特的力学,耐腐蚀性,界面结合强度,吸波性等优良性能,进一步总结了碳纤维复合材料的应用领域的研究,最后指出了碳纤维复合材料未来发展的趋势并对其发展与应用前景进行了展望。 关键词:碳纤维复合材料性能应用 前言 碳纤维(Carbon fiber,简称CF)是含碳量高于90%的无机高分子纤维,是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料,微观结构类似人造石墨,是乱层石墨结构,也是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维。作为优异的增强体,高性能碳纤维的加入能大幅提高材料的强度、模量、阻尼、减振性能、低热膨胀导电导热性好系数等优异性能,碳纤维增强复合材料(CFRP)是目前最先进的复合材料之一,在风力发电[1]、航空航天[2,3]、汽车[4]、建筑[5-7]、计算机[8]、空间光学结构[9]等领域有诸多的应用,逐渐成为现代高新技术领域最有应用前景的一种复合材料。 1碳纤维增强复合材料的特性 碳纤维增强复合材料(CFRP)由于与传统材料相比具有独特的力学性能,电阻特性,耐磨损性,界面结合强度,吸波性等优良性能,在国内引起了广大科研工作者的兴趣和喜好,并在近今年取得了很多成就。 1.1强度 金属材料在外载荷的作用下抵抗塑形变形和断裂的能力称为强度。根据受力种类的不同分为以下几种:(1)抗压强度--材料承受压力的能力;(2)抗拉强度--材料承受拉力的能力;(3)抗弯强度--材料对致弯外力的承受能力;(4)抗剪强度--材料承受剪切力的能力。本文将进行简单的阐述。 1.1.1抗拉强度

由连续增强碳纤维和树脂基体组成的复合材料-碳纤维增强复合材料(CFR P)与传统加固材料相比,CFRP具有抗拉强度高、自重轻、施工方便等优点[10]。 罗小萍等[11]对炭纤维进行了表面化学镀镍处理,采用粉末冶金热挤压法将镀层炭纤维与镁基体复合,当炭纤维含量为4.0%的镁基预制体采用压制压力为42 0MPa,烧结温度为550℃,保温0.5h后,480℃用280 MPa的压力进行热挤压得到镀层炭纤维/镁基复合材料的抗拉强度达167MPa,同时硬度、屈服强度分别为120MPa,125MPa。 1.1.2弯曲强度 艾娇艳等[12]将碳纤维增强聚碳酸酯(PC)与玻璃纤维增强聚碳酸酯(PC)复合材料性能对比进行了研究,发现碳纤维增强PC在机械性能、电性能和加工性等方面有明显的提高。随着碳纤维含量的增加,拉伸强度、弯曲强度、弯曲模量明显呈上升趋势。 龚伟平等[13]采用溶胶-凝胶法在炭纤维表面涂覆TiO2薄膜,通过球磨混合均匀、热压烧结制备炭纤维增强羟基磷灰石复合材料,用三点弯曲法测试复合材料的弯曲强度。结果表明,球磨时间影响羟基磷灰石中炭纤维的长度及其分布,球磨时间以2.5 h为宜。表面涂层TiO2的炭纤维增强羟基磷灰石的弯曲强度比未涂层的高,尤以用丙酮除胶、盐酸与水量比例为1.0:8进行TiO2涂层,得到的炭纤维增强羟基磷灰石的弯曲强度最高。在炭纤维表面均匀涂覆一层厚度合适TiO2薄膜有利于提高炭纤维增强羟基磷灰石复合材料的力学性能。 1.1.3抗压强度 项东虎等[14]采用直碳纤维和螺旋碳纤维增强PTFE 复合材料,发现直纤维增强复合材料的硬度呈先增大后减小的趋势,螺旋碳纤维增强复合材料的硬度则缓慢提高,两种纤维均可使抗压强度提高,且螺旋碳纤维的效果更为明显。1.2断裂韧性 高弹性模量的碳纤维对材料既能增强,又可显著增韧。碳纤维增强镁合金层合板具有比玻璃纤维增强铝合金层合板更高界面断裂韧性[15];在水泥砂浆中掺入碳纤维可显著提高水泥砂浆的断裂韧度和断裂能,且随着碳纤维掺量的增加,断裂韧度和断裂能随之增大[6],水泥基材料的密度和弹性模量降低、泊松比也随之增加[16];采用碳纤维填充改善聚四氟乙烯( PTFE),大大改善了纯PTFE 的塑

碳纤维复合材料

碳纤维复合材料 编辑本段概况 在复合材料大家族中,纤维增强材料一直是人们关注的焦点。自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。下面让我们来了解一下别具特色的碳纤维复合材料。 编辑本段结构 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。 碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。 碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。 编辑本段用途 碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。 碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。

碳纤维复合材料的应用

开发指南 精细化工原料及中间体2012年第6期 1前言 碳纤维复合材料自20世纪50年代面世以来,以其独特的性能,主要用于火箭、航天、航空等尖端科学技术,随着碳纤维复合材料性能的不断完善和提高,目前在土木建筑、石油工业、汽车工业、体育器材等领域得到广泛应用。 2碳纤维复合材料的性能 碳纤维是由碳元素组成的特种纤维,其含碳量一般在90%以上。在纤维增强材料中碳纤维是发展最迅速、应用范围很广、适于不同领域要求的纤维材料。 碳纤维材料基本性能如下:密度小、质量轻,密度为1.5~2g/cm 3,相当于钢密度的1/4、铝合金密度的1/2;强度、弹性模量高,其强度比钢大4~5倍,弹性回复100%;具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;导电性好,25℃时高模量纤维为775μΩ·cm -1,高强度纤维为1500μΩ· cm -1;耐高温和低温性好,在3000℃非氧化气氛下不 融化、不软化,在液氮温度下依旧很柔软,也不脆化;耐酸性好,对酸呈惰性,能耐浓HCl 、H 3PO 4、H 2SO 4 等侵蚀。 3碳纤维复合材料的应用3.1土木建筑领域的应用 水泥在土木建材领域中用量最大,但水泥也有诸如脆性大、抗拉强度低等缺点,而现在用混凝土或水泥做基体制成的碳纤维增强复合材料,强度高、模量大、比重小、耐碱腐蚀,克服了水泥的缺点,在土木建筑应用中日益受到重视。用碳纤维取代钢筋,可消除钢筋混凝土的盐水降解和劣化作用,使建筑构件重量减轻,安装施工方便,缩短建筑工期[1]。 碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。日本、欧美国家将碳纤维复合材料片用于加固震后受损的钢筋混凝土桥板,这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物[2],此外在增强石油平台壁及耐冲击性能的许多工程上都获得了较大的应用。 3.2航空航天领域的应用 航天飞行器的重量每减少1公斤,就可使运载 Application of Carbon Fiber Composite Materials CHEN Shijie (ChangZhou LGJ Vocational Technology College ,Changzhou 213004,china ) Abstract:The properties of carbon fiber composites and the development and application of carbon fiber composites in Bridge reinforcement,Aerospace and Aviation industry,oil industry were presented in this paper. Keywords:carbon fiber;composites;application 碳纤维复合材料的应用 陈士杰 (常州刘国钧高等职业技术学校江苏常州213004) 摘要:本文概述了碳纤维复合材料的发展和性能,简要介绍了碳纤维复合材料在土木工程、航空航天、石油工业等方面的应用情况。 关键词:碳纤维 复合材料 应用 20--

自润滑关节轴承装配方式及专用装配工装的设计和应用

龙源期刊网 https://www.360docs.net/doc/8817604831.html, 自润滑关节轴承装配方式及专用装配工装的设计和应用 作者:黄文雄 来源:《中国高新技术企业》2013年第08期 摘要:自润滑关节轴承是现代化机械设备当中的重要零部件,由于它在内外球面之间粘接有自润滑材料,出于对自润滑材料的保护,文章在装配内外圈时采用了新的装配方式,并为之设计了新型工装,既保护了自润滑材料,又提高了装配效率。 关键词:自润滑关节轴承;装配方式;装配工装 中图分类号:TH133 文献标识码:A 文章编号:1009-2374(2013)12-0025-03 1 概述 关节轴承是一种滑动轴承,其滑动表面是球面,主要由两个零件组成:一个是有外球面的内圈,另一个是有内球面的外圈。在通常的情况下,关节轴承是在作低速度的旋转、摆动或倾斜运动的,普通的关节轴承在工作时需要对其球面补充润滑剂,以减轻内外球面在运动时产生的摩擦,随着技术的发展,产生了一种在内外球面之间粘接有自润滑材料的关节轴承,其在工作时不用对其球面补充润滑剂,称为自润滑关节轴承。衬垫型自润滑关节轴承是一种典型的自润滑关节轴承,其内外圈之间粘接有由自润滑材料制成的衬垫,在众多的衬垫材料中以聚四氟乙烯(PTFE)纤维编织复合材料性能较佳,它不仅摩擦系数低,并且有较高的强度。其自润滑及耐磨损性能非常好,承载能力高,耐腐蚀,被广泛应用于航空、航天、电力、重载设备、生物医药和纺织等机械 设备。 ①关节轴承外圈;②聚四氟乙烯纤维编织复合材料 图1 2 自润滑关节轴承的装配方式的确定 自润滑关节轴承的外圈与非自润滑关节轴承的外圈是一样的,同样具有引裂槽,在内圈压配入外圈前也需要先将外圈进行开缝。非自润滑关节轴承的内外圈球面是钢对钢接触,所以非自润滑关节轴承在接下来的工序将内圈压配入外圈中较为简单,通常是将内圈放置于外圈上面,利用冲床将内圈直接冲压入外圈完成内外圈的装配过程。但是对于自润滑关节轴承来说,因为其外圈内球面粘接有聚四氟乙烯(PTFE)纤维编织复合材料,如果内圈用与非自润滑关节轴承一样的冲压方式进行装配,这时由于内圈在滑入外圈的过程中对外圈有一个撑开的作用

相关文档
最新文档