板式换热器腐蚀现象的应对方法

板式换热器腐蚀现象的应对方法
板式换热器腐蚀现象的应对方法

板式换热器腐蚀现象的应对方法:其主要成因:(1)不锈钢传热板片由机械冲压而成,不可避免地残存一定量的表面残余应力,对于不含钼元素的不锈钢薄板,表面残余应力的消除是很困难的,或者甚至是不可行的。(2)板片组装后形成了多缝隙结构,如板片之间的触点、密封槽底等部位。而缝隙容易造成Cl-的富集,局部富集程度往往远远超过了不锈钢自身抗应力腐蚀的能力。(3)当板片表面的污垢严重时,介中的腐蚀元素(Cl、S等)可能大量附着于污垢,并在垢底缝隙处富集。(4)密封槽底中的有害元素往往是粘结剂中的Cl因温度升高温析出来的。如氯丁胶系列的粘接剂、压缩石棉(含有CaCl2),往往在水与蒸汽工况条件下,析出的富集Cl-与H+形成HCl,使槽底缝隙处发生严重的应力腐蚀开裂。

艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、

冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。

ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚

/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。

无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

残余应力、Cl-的富集程度及温度等条件下,经过一定的腐蚀孕育期,就有可能发生应力腐蚀开裂。在板式换热器的选材、安装及使用过程中设法破坏上述任一条件,都可有效地防止或延缓腐蚀发生,使设备安全正常地运行。为此,正

确选用材料,定期清垢以破坏腐蚀的生成条件和孕育期,选用非氯元素的粘接剂,这样可在一定程度上有效防止应力腐蚀。

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

腐蚀磨损原因分析及解决办法

磨损腐蚀原因分析及解决办法 腐蚀磨损是指摩擦副对偶表面在相对滑动过程中,表面材料与周围介质发生化学或电化学反应,并伴随机械作用而引起的材料损失现象。腐蚀磨损通常是一种轻微磨损,但在一定条件下也可能转变为严重磨损。常见的腐蚀磨损有氧化磨损和特殊介质腐蚀磨损。 1.氧化磨损 除金、铂等少数金属外,大多数金属表面都被氧化膜覆盖着,纯净金属瞬间即与空气中的氧起反应而生成单分子层的氧化膜,且膜的厚度逐渐增长,增长的速度随时间以指数规律减小,当形成的氧化膜被磨掉以后,又很快形成新的氧化膜,可见氧化磨损是由氧化和机械磨损两个作用相继进行的过程。同时应指出的是,一般情况下氧化膜能使金属表面免于粘着,氧化磨损一般要比粘着磨损缓慢,因而可以说氧化磨损能起到保护摩擦副的作用。 2.特殊介质腐蚀磨损 在摩擦副与酸、碱、盐等特殊介质发生化学腐蚀的情况下而产生的磨损,称为殊殊介质腐蚀磨损。其磨损机理与氧化磨损相似,但磨损率较大,磨损痕迹较深。金属表面也可能与某些特殊介质起作用而生成耐磨性较好的保护膜。金属件表面在液体、气体或润滑剂中发生化学或电化学反应,形成较易被磨损或剥离的腐蚀产物,在摩擦过程中腐蚀产物被剥离,暴露出的新的金属面又进入新的化学反应,如此交替出现腐蚀和磨损而使材料损失。 腐蚀磨损的破坏作用大大超过单纯的腐蚀或磨损。一般金属洁净表面与空气接触后生成氧化膜,多数金属表面氧化膜的厚度为0.01微米。当磨损速度低于氧化膜厚度的增长速度时,氧化和磨损尚不相互促进,膜层可起保护作用。当磨损速度超过氧化速度,腐蚀磨损便变得剧烈。但氧化膜又不宜过厚,否则易于脆性断裂,形成硬的氧化物磨粒,使磨损加速。腐蚀磨损与环境、温度、滑动速度、载荷和润滑条件有关,相互关系极为复杂。如内燃机轴承在湿空气中容易生锈,在润滑剂中工作也常会出现腐蚀磨损。在特殊介质中工作的选矿机械和化工机械等的零件更常出现严重的腐蚀磨损。 防止腐蚀磨损应从选材(如用不锈钢和耐蚀合金等)、表面保护处理等方面

腐蚀控制的方法

腐蚀控制的方法 1. 根据使用的环境,正确地选用金属材料和非金属材料; 2. 对产品进行合理的结构设计和工艺设计,以减少产品在加工、装配、储存等环节中的腐蚀; 3. 采用各种改善腐蚀环境的措施,如在封闭或循环的体系中使用缓蚀剂,以及脱气、除氧和脱盐等; 4. 采用化学保护方法,包括阴极保护和阳极保护技术; 5. 在基材上施加保护涂层,包括金属涂层和非金属涂层。 全面腐蚀与局部腐蚀 全面腐蚀是常见的一种腐蚀。全面腐蚀是指整个金属表面均发生腐蚀,它可以是均匀的 也可以是不均匀的。全面腐蚀速度也称均匀腐蚀速度,常用的表示方法有重量法和深度法。局部腐蚀主要有点蚀(孔蚀)、缝隙腐蚀、晶间腐蚀、选择腐蚀、应力腐蚀、腐蚀疲劳、 湍流腐蚀等。 点腐蚀(孔蚀)------是一种腐蚀集中在金属(合金)表面数十微米范围内且向纵深发 展的腐蚀形式,简称点蚀。点蚀是一种典型的局部腐蚀形式,具有较大的隐患性及破坏性。点蚀表面直径等于或小于它的深度。一般只有几十微米。 点蚀发生的条件 1.表面易生成钝化膜的材料,如不锈钢、铝、铅合金;或表面镀有阴极性镀层的金属,如碳钢表面镀锡、铜镍等。 2.在有特殊离子的介质中易发生点蚀,如不锈钢在卤素离子的溶液中易发生点蚀。 3.电位大于点蚀电位(Ebr)易发生点蚀。 影响点蚀的因素及预防措施 合金成分、表面状态及介质的组成,pH 值、温度等,都是影响点蚀的主要因素。不锈钢中Cr 是最有效提高耐点蚀性能的合金元素,如与Mo、Ni、N 等合金元素配合,效果最好。降低钢中的P、S、C 等杂质含量可降低点蚀敏感性。奥氏体不锈钢经过固溶处理后耐点蚀。预防点蚀的措施:(1)加入抗点蚀的合金元素,含高Cr、Mo 或含少量N 及低C 的不锈钢抗点蚀效果最好。如双相不锈钢及超纯铁素体不锈钢。(2)电化学保护。(3)使用缓蚀剂。

金属腐蚀理论及腐蚀控制答案

《金属腐蚀理论及腐蚀控制》 (跟着剑哥走,有肉吃。) 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694g/ m?h 又有d=m/v=18.7154/20×40×0.003=7.798g/cm2?h Vp=8.76Vˉ/d=8.76×0.4694/7.798=0.53mm/y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st

=(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6 =0.3391g/㎡?h d=m铝/v=16.1820/30×40×5×0.001=2.697g/cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。 (2)对不锈钢在20%HNO 3( 25℃)有: 表面积S=2π×2 .0+2π×0.015×0.004=0.00179 m2 015 Vˉ=△Wˉ/st=(22.3367-22.2743)/0.00179×400=0.08715 g/ m2?h 试样体积为:V=π×1.52×0.4=2.827 cm3 d=W/V=22.3367/2.827=7.901 g/cm3 Vp=8.76Vˉ/d=8.76×0.08715/7.901=0.097mm/y 对铝有:表面积S=2π×2 .0+2π×0.02×0.005=0.00314 m2 02 Vˉ=△Wˉ/st=(16.9646-16.9151)/0.00314×20=0.7882 g/ m2?h 试样体积为:V=π×2 2×0.5=6.28 cm3 d=W/V=16.9646/6.28=2.701 g/cm3 Vp=8.76Vˉ/d=8.76×0.7882/2.701=2.56mm/y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st =(22.3367-22.2906)/0.00179×2=12.8771 g/ m2?h Vp=8.76Vˉ/d=8.76×12.8771/7.901=14.28mm/y 对铝:Vˉ=△Wˉ/st=(16.9646-16.9250)/0.00314×40=0.3153g/ m2?h Vp=8.76Vˉ/d=8.76×0.3153/2.701=1.02mm/y

摩擦腐蚀

摩擦腐蚀 摩擦腐蚀是在某些摩擦条件下,由配合表面之间相对微小运动引起的一种化学反应。这些微小运动导致表面和材料氧化,可看到粉状锈蚀和(或)一个或两个配合表面上材料的缺失。 分类 微动腐蚀(微动锈蚀) 接触表面作微小往复摆动时,传递载荷的配合界面会发生微动腐蚀,表面微凸体氧化并被磨去,反之亦然;最后发展成粉状锈蚀(氧化铁)。轴承表面发亮或变成黑红色(见图14)。出现这种失效,一般是由于不合适的配合(配合过盈量太小或表面太粗糙)以及载荷和(或)振动造成的。 伪压痕(振动腐蚀) 周期性振动时,由于弹性接触面的微小运动和(或)回弹,滚动体和滚道接触区将出现伪压痕。根据图13 轴承滚道上的接触腐蚀振动强度、润滑条件或载荷的不同,腐蚀和磨损会同时产生,在滚道上形成浅的凹陷。对于静止轴承,凹陷出现在滚动体节距处,并常变成淡红色或发亮(见图15)。在旋转过程中,由于发生振动而造成的伪压痕则表现为间距较小的波纹状凹槽(见图16),不应将此误认为是电流通过产生的波纹状凹槽(见5.4.3和图19)。与电流通过造成的波纹状凹槽相比,由振动造成的波纹状凹槽底部发亮或被腐蚀,而电流通过造成的凹槽底部则颜色发暗。电流引起的损伤还可通过滚动体上也有波纹状凹槽这一现象予以识别。 腐蚀磨损在摩擦过程中伴有腐蚀作用的一种磨损。金属件表面在液体﹑气体或润滑剂中发生化学或电化学反应﹐形成较易被磨损或剥离的腐蚀產物﹐在摩擦过程中腐蚀產物被剥离﹐暴露出的新的金属面又进入新的化学反应﹐如此交替出现腐蚀和磨损而使材料损失。腐蚀磨损的破坏作用大大超过单纯的腐蚀或磨损。一般金属洁净表面与空气接触后生成氧化膜﹐多数金属表面氧化膜的厚度为0.01微米。当磨损速度低於氧化膜厚度的增长速度时﹐氧化和磨损尚不相互促进﹐膜层可起保护作用。当磨

材料磨损失效分析简述

材料磨损失效分析简述

材料磨损失效分析简述 摘要:综述了磨损失效的常见类型及该磨损失效的的影响因素,包括材料的磨损失效过程,指出了降低材料磨损失效的措施,为预防工程领域材料的磨损失效提供了方向。 关键词:磨损失效;类型;影响因素;过程;预防措施 The Review Of Wear Failure Analysis In Materials Abstract:The common types and its influencing factors was summarized. Including the process of wear failure of materials.And the measures of how to reduce wear failure was pointed out.Pointed directions how to preventing wear failure in engineering material field. Key words:wear, failure; classify; influencing factor;process; precautionary measures 引言 磨损失效是机械设备和零部件的三种主要失效形式———断裂、腐蚀和磨损失效形式之

粘着磨损过程十分复杂,以上所述只是对复杂现象作了简单的描述。 影响粘着磨损性能因素有[3]: (1)润滑条件或环境。在真空条件下金属的磨损极为严重。除了金以外,在大气条件下,金属经过切削或磨削加工,洁净的表面产生氧化膜,它在防止粘着磨损方面有重要的作用。而良好的润滑条件更是降低粘着磨损的重要保障。 (2)摩擦副的硬度。材料的硬度越高,耐磨性越好。材料体系一定时,可采用涂层或其他表面处理工艺来降低粘着磨损。 (3)晶体结构和晶体的互溶性。其它条件相同时,晶体结构为hcp的材料摩擦系数最低,fcc 次之,bcc最高。冶金上互溶性好的金属摩擦副摩擦系数和磨损率高。 (4)温度。温度对材料粘着磨损的影响是间接的。温度升高,材料硬度下降,摩擦副互溶性增加,磨损加剧。 1.2 磨粒磨损 在磨擦系统中,经常见到另一种磨损形式是磨粒磨损。磨粒磨损的现象很多,归纳起来,主

EN12472镍释放磨损和腐蚀试验方法

本欧洲标准(EN12472:2005)由技术委员会CEN/TC283(贵金属—在珠宝和相关的产品应用)制定。 本标准取代EN12472-1998。 欧洲标准化委员会(CEN)受到欧盟委员会和欧洲自由贸易组织的委托而制定本标准 1.范围本欧洲规定是一种加速磨损和腐蚀的方法,此方法在检验长期与皮肤接触的有涂层的物品中的镍释放之前使用 2.2. 原理将被测试镍释放的对象进行磨损前处理,然后按照EN 1811来测定样品的镍释放。 3. 试剂除了特殊说明,所有试剂为分析纯或更高级别且不含镍。 3.1容器:带有盖子和悬挂测试样品的装置,所有部分都用惰性材料制成(如玻璃或塑料) 3.2 腐蚀制剂:溶在1000ml去离子水中将50克浓度大于85%的DL-乳酸和100克的氯化钠 3.3脱脂溶液:一种适当的稀释的、中性的、在市场上抗可以买到清洁剂。例如:0.5%的十二烷基苯磺酸钠水溶液 3.4去离子水:电导率最大为1μS/cm 3.5研磨剂:其组成为 3.5.1褐煤蜡酸-乙二醇二酯:6%-8% [CAS编号为68920-66-1] 或三乙醇胺[CAS编号102-71-6] 3.5.2十八碳烷酸(硬脂酸):3% [CAS编号为57-11-4]

3.5.3石油蒸馏物氢化处理\加氢精制:30%-35% 3.5.4二氧化硅(石英):48% 其粒度为200 3.5.5去离子水:6%-9% 3.6磨料其组成:椰子、胡桃、花生和杏仁外壳,按重量比1:1:1:1混合,经过研磨筛分,并得到粒度在0.8-1.3mm之间的混合料。 4.仪器和设备 5.4.1恒温实验炉:(保持温度为50±2)℃ 6.4.2滚筒:六边形,内径19cm 7.4.3固定装置:插在筒内,保持各样品在旋转时不会发生相互接触 8.4.4旋转装置:保证滚筒每分钟旋转30±2转,且能反方向旋转 5.测试程序 5.1样品准备室温下在脱脂溶液中轻轻地旋动样品2min。去离子水冲洗并干燥。脱脂之后,样品应使用塑料镊子或干净地防护手套进行处理。(备注:此清洁步骤的目的是去除由于接触造成的外部油脂和皮肤泌物,但并不去是去除表面镀层。) 5.2腐蚀程序如果可能,将测试样品先进行一些处理,使其表层裸露至临界表层。将其悬挂于密闭容器腐蚀介质上空几厘米处,

磨损的危害

1、磨损的分类 : 按照表面破坏机理特征,磨损可以分为磨料磨损、粘着磨损、表面疲劳磨损、腐蚀磨损和微动磨损等。前三种是磨损的基本类型,后两种只在某些特定条件下才会发生。 磨料磨损:物体表面与硬质颗粒或硬质凸出物(包括硬金属)相互摩擦引起表面材料损失。 粘着磨损:摩擦副相对运动时,由于固相焊合作用的结果,造成接触面金属损耗。 表面疲劳磨损:两接触表面在交变接触压应力的作用下,材料表面因疲劳而产生物质损失。 腐蚀磨损:零件表面在摩擦的过程中,表面金属与周围介质发生化学或电化学反应,因而出现的物质损失。 微动磨损:两接触表面间没有宏观相对运动,但在外界变动负荷影响下,有小振幅的相对振动(小于100μm),此时接触表面间产生大量的微小氧化物磨损粉末,因此造成的磨损称为微动磨损 轴套轴颈轴头磨损容易造成设备带伤运行,造成生产效率低、加速设备老化、影响产品质量等一系列危害,严重时会造成设备被迫停机或者整条生产线的停机,造成生产时间的损耗,延误交货日期,甚至造成严重的安全生产事故,个别行业的设备因轴套磨损,生产被迫停机检修甚至出现过整条生产线全部报废的事故,造成企业一夜之间被迫破产。 磨损是零部件失效的一种基本类型。通常意义上来讲,磨损是指零部件几何尺寸(体积)变小。零部件失去原有设计所规定的功能称为失效。失效包括完全丧失原定功能;功能降低和有严重损伤或隐患,继续使用会失去可靠性及安全性和安全性。 (1)跑合磨损阶段(图中0a段)新的摩擦副在运行初期,由于对偶表面的表面粗糙度值较大,实际接触面积较小,接触点数少而多数接触点的面积又较大,接触点粘着严重,因此磨损率较大。但随着跑合的进行,表

材料失效分析课程思考题

材料失效分析课程 思考题 第一章材料失效分析概论 1. 概述失效分析学科有哪些特点。 2. 失效是什么?它与事故、事件、故障有什么区别? 3. 失效分析的作用和意义是什么? 4. 简述失效模式、失效机理、失效缺陷和失效起因的的物理含义;举例说明它 们之间的相互关系。 5. 简要说明材料失效分析涉及的“六品”、“五件”和“四化”的物理含义。 6. 一个结构件的失效分析,一般需考虑哪几个主要因素? 7. 简述失效分析过程中的主要步骤及其任务。 8. 一辆自行车是由许多零部件组装而成,你认为哪些最容易发生失效,它们的 失效模式是什么? 9. 设想一下有没有永远不会失效的材料。如有,请举例并从失效模式和失效机 理出发叙述其理由。 第二章材料的断裂失效形式与机理 1. 工程结构件的强度设计,一般选取σs或σb二者中的最小值,许用应力的安 全系数是如何选取的? 2. 材料的强度设计准则、刚度设计准则和变形设计准则有什么区别?试用生活' 中的实例来说明它们各自的重要意义。 3. 韧性断裂和脆性断裂有什么区别?它们的断口形貌有什么不同? 4. 概述强度设计和断裂设计的区别,并谈谈如何防止脆性断裂。 5. 什么叫断裂力学? KI和KIC两者有什么关系? 6. 疲劳断口有什么特征?如何确定疲劳裂纹的起裂点? 7. 材料的抗断裂设计,有哪几个断裂参量可以选用? 8. 哪些参数可以用来表征材料的韧性? 9. 硬度测定有哪些方法?金属、陶瓷和聚合物的硬度测定方法为什么大多数不 能互用? 10.简述金属材料在不同失效模式下有哪些不同的失效机理。 第三章材料的腐蚀失效形式与机理 1. 什么叫腐蚀?化学腐蚀和电化学腐蚀有什么不同?请各举一例说明。 2. 在电化学腐蚀中,金属的损失伴随的是还原反应还是氧化反应?腐蚀发生在

球磨机腐蚀磨损与防护

球磨机腐蚀磨损与防护 工作原理 工作原理:根据研磨物料的粒度加以选择,物料由球磨机进料端空心轴装入筒体内,当球磨机筒体转动时候,研磨体由于惯性和离心力作用,摩擦力的作用,使它附在筒体衬板上被筒体带走,当被带到一定的高度时候,由于其本身的重力作用而被抛落,下落的研磨体像抛射体一样将筒体内的物料给击碎。 在铁矿选矿厂矿石破碎过程中,需要使用球磨机将矿石破碎。球磨机出口管道弯头处由于受到铁粉、吐出的小钢球以及其他杂质混合浆料的冲刷磨损,磨损严重。通常20mm厚的管道弯头只能使用1周就要因为磨损穿孔而更换。严重影响企业连续生产,为企业造成巨大损失。 球磨机进出口管道修复工艺 一.表面处理: 1.对设备冲蚀缺损部位进行补焊,选用与设备基材同材质或接近的钢板/钢筋进行骨架焊接; 2.脱脂、除潮处理:去除工件表面的油脂,使用新棉纱擦拭工件表面。 3.喷砂除锈:去除工件表面的氧化层,目视检查,喷砂面可见均匀的金属本色。喷砂处理完的工件不允许用带油脂手套直接接触喷砂面,喷砂处理后工件要注意防潮。对不需要处理的部分,做好遮盖保护。 二.耐磨防腐材料选用: 1.NPT-J-12特种设备专用修复材料 2.NPT-J-14特种设备专用修复材料 三.耐磨材料施胶工艺: 1.先预热已喷砂的设备,将NPT-J-12特种设备专用修复材料按A:B(重量)4:1比例混合搅拌均匀,用加热后涂覆工具将混合后的修复材料涂覆于进料口的部位 2.将NPT-J-14特种设备专用修复材料按A:B(重量)4:1比例混合搅拌均匀后,用加热后

涂覆工具将材料涂覆于出料口的部位 3.在材料初固前,使用刮板将涂层的材料表面修理平整;; 4.加温固化:施工完成的工件停留30分钟进行加温固化,按固化温度表进行加温。 四.研磨验收: 1.研磨:加温固化后的工件严格按照工件的尺寸进行研磨处理,打磨至标准尺寸为为准; 2.验收:配套设备进行组装,确保正常运转,密封相配面应试配合格; 3.喷漆:经检验合格后,对工件进行喷漆,要求喷漆表面均匀,不允许有流挂现象。 球磨机端盖修复工艺 球磨机中空轴既是进矿通道同时又是球磨机端盖。由于中空轴与进料筒存在间隙,导致矿浆进入中空轴与进料筒之间的空腔,随着球磨机运行转动磨损中空轴与进料筒,一旦磨穿,就会出现端盖漏浆现象。 1.表面处理:首先清理磨损部位杂质,角磨机打磨粗化处理金属基材,清洗剂磨损部位清洗并晾置干燥,表面处理关系着小颗粒耐磨防护剂与金属基材粘接强度。 2.焊接:根据球磨机材质要求选择合适的焊条和焊接介质焊接后,内衬弹性橡胶。 3.施胶:⑴.将NPT-J-12特种耐材料按(重量)4:1比例混合搅拌均匀,用加热后涂覆工具将混合后的修复材料涂于设备大面积磨损严重的部位 ⑵.将NPT-J-14特种耐材料按(重量)4:1比例混合搅拌均匀,用加热后涂覆工具将混合后的修复材料涂于NPT-J-12表层,使表面平整、无砂眼。 4.在材料初固前,使用刮板将涂层的材料表面修理平整;放入加热炉中100℃加热3小时 研磨验收: 1.研磨:加温固化后的工件严格按照工件的尺寸进行研磨处理,打磨至标准尺寸为为准; 2.验收:配套设备进行组装,确保正常运转,密封相配面应试配合格; 3.喷漆:经检验合格后,对工件进行喷漆,要求喷漆表面均匀,不允许有流挂现象

腐蚀测试方法

一、 填空题 1. 腐蚀的定义:物质(通常是金属)或其性能由于与环境发生反应所引起的变质。 2. 金属腐蚀测试方法按测试方法的性质可分为物理的、化学的和电化学的的试验方法。 3. 在重量法中清除腐蚀产物的方法有:机械法、化学清洗法、电解去膜法。 4. 在确定采用何种腐蚀研究方法时应从腐蚀介质、金属材质、腐蚀类型等三方面综合考虑。 5. 腐蚀试验结果的误差包括系统误差和偶然偏差。 6. 参比电极必需具备的性能有1)参比电极应是可逆电极,它的电极电位时可逆电位,符合能斯特电极电位公式、2)电极过程的交换电流密度高,不易极化、3)具有良好的电位稳定性和重现性、4)如果参比电极突然流过电流,断电后其电极电位应很快回复到原先的电位值、5)电极电位随温度的变化小、6)制备、使用、维护简单方便。 7. 当两种不同金属在介质中相互接触,其中自腐蚀电位较负的金属在接触处的局部腐蚀速度将加剧,而自腐蚀电位较正的金属在接触处的局部腐蚀速度将减慢。 二、 不定项选择题 1. 下列电极中,在任何温度时电极电位均为零的是:(C ) A 饱和甘汞电极 B 银—氯化银电极 C 标准氢电极 D 铜—硫酸铜电极 2. 下述方法中不属于电化学测试方法的有:(A 、C ) A 重量法 B 极化曲线法 C 电阻法 D 电偶法 E 交流阻抗法 3. 某金属工件由异种金属铆钉铆接而成,其工作时处于腐蚀介质中,从安全角度考虑,应选用:(B ) A 小阳极大阴极结构 B 大阳极小阴极结构 C A 、B 都可以 4. 在经典电化学测试中,应通过盐桥与体系相连的是:(B ) A 辅助电极 B 参比电极 C 工作电极 D 全部需要 5. 在测定金属M 的电极电位M ?时,如测得M 与参比电极组成的电池的开路电压V 且连接电极M 导线的极性为负,则M ?可表示为:(A ) A M V ??=-参比 B M V ??=+参比 C M V ?= D M V ??=-参比 6. A 、B 两种金属,令,c A ?<B ?c ,,在介质中偶合后,如体系属于电化学极化控制体系,则偶合电流I g 可表示为:(A ) A ,,,exp()0.434c A g g a A c A k I I I b ??-=- B ,,,exp()0.434c A g g a A c A k I I I b ??-=+ C ,,,exp()0.434c A g g a A c A k I I I b ??+=- D ,,,exp()0.434c A g g a A c A k I I I b ??+=+ 7. 金属腐蚀速率最常用的三种指标是:(A 、B 、C ) A 重量指标 B 深度指标 C 电流指标 D 机械强度指标 8. 一个金属浸在被氢气饱和的溶液中,则金属的有效溶解速度可表示为:(B ) A 1,1,a a k i i i =+ B 1,1,a a k i i i =- C 1,2,a a a i i i =- D 1,2,a a k i i i =- 9. 以下四种测试方法,需要去除腐蚀产物的有:(D )

金属腐蚀与防护课后习题答案

腐蚀与防护试题 1化学腐蚀的概念、及特点 答案:化学腐蚀:介质与金属直接发生化学反应而引起的变质或损坏现象称为金属的化学腐蚀。 是一种纯氧化-还原反应过程,即腐蚀介质中的氧化剂直接与金属表面上的原子相互作用而形成腐蚀产物。在腐蚀过程中,电子的传递是在介质与金属之间直接进行的,没有腐蚀电流产生,反应速度受多项化学反应动力学控制。 归纳化学腐蚀的特点 在不电离、不导电的介质环境下 反应中没有电流产生,直接完成氧化还原反应 腐蚀速度与程度与外界电位变化无关 2、金属氧化膜具有保护作用条件,举例说明哪些金属氧化膜有保护作用,那些没有保护作用,为什么? 答案:氧化膜保护作用条件: ①氧化膜致密完整程度;②氧化膜本身化学与物理稳定性质;③氧化膜与基体结合能力;④氧化膜有足够的强度 氧化膜完整性的必要条件:PB原理:生成的氧化物的体积大于消耗掉的金属的体积,是形成致密氧化膜的前提。 PB原理的数学表示: 反应的金属体积:V M = m/ρ m-摩尔质量 氧化物的体积: V MO = m'/ ρ ' 用? = V MO/ V M = m' ρ /( m ρ ' ) 当? > 1 金属氧化膜具备完整性条件 部分金属的?值 氧化物?氧化物?氧化物? MoO3 3.4 WO3 3.4 V2O5 3.2 Nb2O5 2.7 Sb2O5 2.4 Bi2O5 2.3 Cr2O3 2.0 TiO2 1.9 MnO 1.8 FeO 1.8 Cu2O 1.7 ZnO 1.6 Ag2O 1.6 NiO 1.5 PbO2 1.4 SnO2 1.3 Al2O3 1.3 CdO 1.2 MgO 1.0 CaO 0.7 MoO3 WO3 V2O5这三种氧化物在高温下易挥发,在常温下由于?值太大会使体积膨胀,当超过金属膜的本身强度、塑性时,会发生氧化膜鼓泡、破裂、剥离、脱落。 Cr2O3 TiO2 MnO FeO Cu2O ZnO Ag2O NiO PbO2 SnO2 Al2O3 这些氧化物在一定温度范围内稳定存在,?值适中。这些金属的氧化膜致密、稳定,有较好的保护作用。 MgO CaO ?值较小,氧化膜不致密,不起保护作用。 3、电化学腐蚀的概念,与化学腐蚀的区别 答案:电化学腐蚀:金属与介质发生电化学反应而引起的变质与损坏。 与化学腐蚀比较: ①是“湿”腐蚀 ②氧化还原发生在不同部位 ③有电流产生 ④与环境电位密切相关

直升机结构的腐蚀原因及其控制方法分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 直升机结构的腐蚀原因及其控制方法分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8481-76 直升机结构的腐蚀原因及其控制方 法分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 长期以来,腐蚀问题一直都是影响直升机使用及寿命的主要因素,因此,如何进行有效的腐蚀控制是确保直升机结构完整性、可靠性,降低维护成本,延长寿命的关键。因此,本文分析了我国直升机的结构腐蚀现状,就腐蚀原因进行了探讨,并提出了一系列腐蚀控制方法,以便为更好地解决直升机结构腐蚀方面的问题提供指导和借鉴。 由于直升机往往承担着重要的飞行任务,因此,面对复杂多变自然环境及酸雨、二氧化硫等污染因素的影响,无法避免地加剧直升机结构的腐蚀。调查显示,随着近些年来我国自然环境条件的不断恶化,直升机的腐蚀速度也在迅速加快,有些甚至已经出现了大范围腐蚀等问题,结构腐蚀情况十分严重。因此,

金属腐蚀与防护课后答案

金属腐蚀与防护课后答案 《金属腐蚀理论及腐蚀控制》 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V-和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3(25℃)中有: Vˉ=△Wˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694g/m?h 又有d=m/v=18.7154/20×40×0.003=7.798g/cm2?h Vp=8.76Vˉ/d=8.76×0.4694/7.798=0.53mm/y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st =(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6

=0.3391g/㎡?h d=m铝/v=16.1820/30×40×5×0.001=2.697g/cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。(2)对不锈钢在20%HNO (25℃)有: 3 表面积S=2π×2 .0+2π×0.015×0.004=0.00179m2 015 Vˉ=△Wˉ/st=(22.3367-22.2743)/0.00179×400=0.08715g/ m2?h 试样体积为:V=π×1.52×0.4=2.827cm3 d=W/V=22.3367/2.827=7.901g/cm3 Vp=8.76Vˉ/d=8.76×0.08715/7.901=0.097mm/y 对铝有:表面积S=2π×2 .0+2π×0.02×0.005=0.00314m2 02 Vˉ=△Wˉ/st=(16.9646-16.9151)/0.00314×20=0.7882g/ m2?h 试样体积为:V=π×2 2×0.5=6.28cm3 d=W/V=16.9646/6.28=2.701g/cm3

第八章 分析化学中常用的分离和富集方法答案.

习题1 1.分离方法在定量分析中有什么重要性?分离时对常量和微量组分的回收率要求如何?(参考答案)答: 在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。 在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 2.在氢氧化物沉淀分离中,常用的有哪些方法?举例说明。(参考答案) 答: 在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: A.氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 B.氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 C.有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基四胺-HCl缓冲液,常用于Mn2,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 D.ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 3.某试样含Fe,A1,Ca,Mg,Ti元素,经碱熔融后,用水浸取,盐酸酸化,加氨水中和至出现红棕色沉淀(pH约为3左右),再加六亚甲基四胺加热过滤,分出沉淀和滤液。试问。为什么溶液中刚出现红棕色沉淀时人们看到红棕色沉淀时,表示pH为3左右?过滤后得到的沉淀是什么?滤液又是什么?试样中若含Zn2+和Mn2+,它们是在沉淀中还是在滤液中?(参考答案)

金属腐蚀与控制

金属腐蚀与控制 第一章腐蚀概论 一、腐蚀的定义 腐蚀是材料在环境的作用下引起的破坏或变质。金属和合金的腐蚀主要是由于化学或电化学作用引起的破坏,有时还同时伴有机械、物理或生物作用。例如应力腐蚀破裂就是应力和化学物质共同作用的结果。单纯物理作用的破坏,如合金在液态金属中的物理溶解,也属于腐蚀范畴,但这类破坏实例不多。单纯的机械破坏,如金属被切削、研磨,不属于腐蚀范畴非金属的破坏一般是由于化学或物理作用引起,如氧化、溶解、溶胀等。 二、腐蚀的危害 1.经济损失 腐蚀的危害非常巨大,它使珍贵的材料变为废物,如铁变成铁锈、(氧化铁);使生产和生活设施过早地报废,并因此引起生产停顿,产品或生产流体的流失,环境污染,甚至着火爆炸。据统计,工业发达国家每年由于金属腐蚀的直接损失约占全年国民经济总产值的2~4%。中国1988年国民生产总值约为1万4千亿元,由于金属腐蚀造成的直接损失约为300~600亿元。据国外统计,金属腐蚀的年损失远远超过水灾、火灾、风灾和地震(平均值)损失的总和,这还不包括由于停工减产、火灾爆炸等造成的间接损失。例如,发电厂一合锅炉管子腐蚀损坏,其价值不大,但引起一大片工厂停工,则损失要大得多。另外,非金属腐蚀损失还没有详细调查,由于混凝上、木材、塑料等用量庞大,腐蚀损失也是惊人的。材料腐蚀遍及所有的经济和生活领域,由于腐蚀主要是材料与化学介质发生化学反应所引起的,所以,对于大量使用和生产强腐蚀性化学产品的化学工业等,其危害就更大。克服腐蚀危害也是广大科技工作者的迫切任务。 2.对安全和环境的危害 腐蚀不仅造成经济上的损失;也经常构成对安全的威胁。均匀腐蚀,如铁生锈,一般进展缓慢,危险性不大,但一些局部腐蚀如孔蚀(穿孔)和应力腐蚀破裂,常常是突然发生的,可能引起事故,造成意外危险。过去国内外都曾发生过许多灾难性腐蚀事故,如飞机因某一零部件破裂而坠毁,桥梁因钢梁产生裂缝而塌陷,油管因穿孔或裂缝而漏油,引起着火爆炸等。化工厂的腐蚀事故更多,如贮酸槽穿孔泄漏,造成重大环境污染,液氨贮罐爆炸,造成人员伤亡,管道和设备跑、冒、滴、漏,破坏生产环境,有毒气体如氯、硫化氢、氰化氢等的泄漏,则更危及工作人员和附近居民的生命安全。据一些化工厂的统计,化工设备的破坏约有60%是由于腐蚀引起的,而腐蚀破坏中约30%是均匀腐蚀, 70%则属于危险的局部腐蚀,其中以应力腐蚀破裂为最多。可见,除了经济损失以外,腐蚀对安全和环境的威胁决不容忽视。 3.阻碍新技术的发展 一项新技术、新产品、和新工业的产生过程中,往往会遇到需要克服的腐蚀问题,只有解决了这些困难的腐蚀问题,新技术、新产品、新工业才得以发展。工业史上有许多例子,如铅室法硫酸工业是在找到了耐稀硫酸的铅材才得以发展起来的; 发明了不锈钢以后,生产硝酸和应用硝酸的工业才蓬勃兴起。近代还有一个有趣的例子,美国人在实施登月计划的过程中,遇到一个严重的腐蚀问题:盛四氧化二氮(氧化剂)的容器是用钛合金(6%A1,4%V)制成的,试验中几小时内就破裂,经查是应力腐蚀所致。后来科学家找到了防止破裂的方法:在氧化剂中加入少量水(>1.5%)或加0.6%NO,作为缓蚀剂,控制了应力腐蚀,克服了这道障碍,人类终于登上了月球。现在和未来在发展新技术、新产品的过程中,还会不断遇到各种新的腐蚀问题,而且是越来越困难的问题,例如化学、能源(包括核能)、航天工业等都有向高温、高压方向发展的趋势,这样可获得更高的生产率,更快的速度和更低的生产成本。但高温高压会造成更加苛刻的腐蚀环境。早期的喷气机油泵温度约为790℃,现在已达到约1100℃,这就需要适应高温、高速的新材料。由于石油和天然气的短缺,特别是我国,利用蕴藏量巨大的煤转化为气或液体燃料,是有重大意义的,但这就会遇到一连串的腐蚀问题:高温(超过1650℃)、高压、庞大的容器、粉尘的磨损腐蚀,硫化氢以及加氢引起的氢腐蚀,适应高温、高速、高磨蚀的泵和阀等。解决了这一系列问题,将可能获得廉价的煤的液化、气化燃料,将使我国以至世界的经济面貌大为改观。 4.促进自然资源的耗损 地球只有薄薄的一层外壳贮藏着可用的矿藏,而金属矿的贮量是有限的,现在已越来越减少。人类从矿石中提炼出金属,腐蚀又使金属变为无用的、不能回收的散碎的氧化物等,因而加速了自然资源的耗损。从延缓自然资源耗竭的观点看,防止腐蚀的工作也是十分重要的。 三、腐蚀的分类 根据腐蚀的形态,可分为均匀(全面)腐蚀和局部腐蚀两类,局部腐蚀还可分为若干小类。 根据腐蚀的作用原理,可分为化学腐蚀和电化学腐蚀。两者的区别是当电化学腐蚀发生时,金属表面存在隔离的阴极与阳极,有微小的电流存在于两极之间,单纯的化学腐蚀则不形成微电池。过去认为,高温气体腐蚀(如高温氧化)属于化学腐蚀,但近代概念指出在高温腐蚀中也存在隔离的阳极和阴极区,也有电子和离子的流动。据此,出现了另一种分类:干腐蚀和湿腐蚀。湿腐蚀是指金属在水溶液中的腐蚀,是典型的电化学腐蚀,干腐蚀则是指在干气体(通常是在高温)或非水溶液中的腐蚀。单纯的物理腐蚀,对于金属很少见,对于非金属,则多半产生单纯的化学或物理腐蚀,有时两种作用同时发生。 金属腐蚀与控制

腐蚀与磨损

磨损腐蚀:在摩擦过程中伴有腐蚀作用的一种磨损。金属件表面在液体、气体或润滑剂中发生化学或电化学反应,形成较易被磨损或剥离 的腐蚀产物,在摩擦过程中腐蚀产物被剥离,暴露出的新的金属面又进入新的化学反应,如此交替出现腐蚀和磨损而使材料损失。腐蚀磨损的破坏作用大大超过单纯的腐蚀或磨损。一般金属洁净表面与空气接触后生成氧化膜,多数金属表面氧化膜的厚度为0.01微米。当磨损速度低于氧化膜厚度的增长速度时,氧化和磨损尚不相互促进,膜层可起保护作用。当磨损速度超过氧化速度,腐蚀磨损便变得剧烈。但氧化膜又不宜过厚,否则易于脆性断裂,形成硬的氧化物磨粒,使磨损加速。腐蚀磨损与环境、温度、滑动速度、载荷和润滑条件有关,相互关系极为复杂。如内燃机轴承在湿空气中容易生锈,在润滑剂中工作也常会出现腐蚀磨损。在特殊介质中工作的选矿机械和化工机械等的零件更常出现严重的腐蚀磨损。防止腐蚀磨损应从选材(如用不锈钢和耐蚀合金等)、表面保护处理、降低表面工作温度和选择适当的 润滑剂等入手。 腐蚀磨损是指摩擦副对偶表面在相对滑动过程中,表面材料与周围介质发生化学或电化学反应,并伴随机械作用而引起的材料损失现象, 称为腐蚀磨损。腐蚀磨损通常是一种轻微磨损,但在一定条件下也可能转变为严重磨损。常见的腐蚀磨损有氧化磨损和特殊介质腐蚀磨损。 1.氧化磨损除金、铂等少数金属外,大多数金属表面都被氧化膜覆盖着,纯净金属瞬间即与空气中的氧起反应而生成单分子层的氧化膜,且膜的厚度逐渐增长,增长的速度随时间以指数规律减小,当形成的氧化膜被磨掉以后,又很快形成新的氧化膜,可见氧化磨损是由氧化和机械磨损两个作用相继进行的过程。同时应指出的是,一般情况下氧化膜能使金属表面免于粘着,氧化磨损一般要比粘着磨损缓慢,因而可以说氧化磨损能起到保护摩擦副的作用。 2.特殊介质腐蚀磨损在摩擦副与酸、碱、盐等特殊介质发生化学腐蚀的情况下而产生的磨损,称为殊殊介质腐蚀磨损。其磨损机理与氧化磨损相似,但磨损率较大,磨损痕迹较深。金属表面也可能与某些特殊介质起作用而生成耐磨性较好的保护膜。为了防止和减轻腐蚀磨损,可从表面处理工艺、润滑材料及添加剂的选择等方面采取措施。词条图册更多图册 表面疲劳,磨损 摩擦副两对偶表面作滚动或滚滑复合运动时,由于交变接触应力的作用,使表面材料疲劳断裂而形成点蚀或剥落的现象,称为表面疲劳磨损(或接触疲劳磨损)。 表面疲劳磨损 由于循环接触应力的作用,在摩擦副工作表面或表层内部形成裂纹并扩展使表层材料剥落的一种磨损。接触运动有滚动、滑动或滚动加滑动3种情况。表面疲劳磨损常发生在滚动轴承、齿轮以及钢轨与轮箍的接触面上。不论是点接触还是线接触,最大压应力都发生在零件的接触表面上,最大切应力则发生在表层内部离表面一定深度处。滚动接触时,在循环切应力影响下,裂纹容易从表层形成,并扩展到表面而使材料剥落,在零件表面形成麻点状凹坑,造成疲劳磨损。若伴有滑动接触,破坏的位置逐渐移近表面(见图)。由于材料不可能完全均匀,零件表面也不是完全平滑,材料有表面缺陷、夹杂物、孔隙、微裂纹和硬质点等原因,疲劳破坏的位置往往有所改变,裂纹有时从表面开始,有时从表层内开始。与表面连通的疲劳裂纹还会受到润滑油的楔入作用,使其加速扩展。减少表面疲劳磨损的措施首先在于提高材料的纯洁度,如限制非金属夹杂物的含量,规定基体组织和碳化物的均匀性等。表面应尽量光洁,避免刀痕式磨痕。在可能条件下,采取如渗碳和渗氮等表面强化工艺,以提高硬度。强化层必须有足够的厚度,心部要有足够的强度,并选用合适的润滑剂。这些措施都能减小表面疲劳磨损。 分析6063铝合金型材的表面腐蚀现象 导语:在6063铝合金建筑装饰型材的生产中,常会见到一些空心、半空心的,甚至是一些断面曲率较大的实心的挤压材,经过硫酸阳 极氧化生产工艺处理后,其表面局部会出现一种沿纵向连续分布的,具有一定宽度的显示为粗糙不平(似梨皮状)的,清晰可见的闪烁晶粒 状的。表面处理过程中,有时会发现在型材表面有不同程度的、无规则排列的点状暗灰色腐蚀点,这种腐蚀点与锌元素引起的腐蚀点其形 状完全不一样,而且,在生产过程中是间断出现的。 前言:硅虽然是6063铝合金型材中不可缺少的主要成分,但是如果添加量不当,添加的硅没有完全和镁形成Mg2Si强化相,造成硅的 偏析和游离,就会在表面处理过程中易出现硅引起的铝合金型材腐蚀现象。在生产中对主要合金组元和杂质以及工艺参数都要进行严格的 控制,杜绝此类现象发生。 有些人认为其原因为操作者没有执行正确的表面处理工艺;槽液存在一些有害杂质离子;材质不好、夹杂太多。对此,分析如下。 1腐蚀点产生的原因分析 我们根据多年的生产经验和对铝合金型材生产中各工艺参数的考察,以及对操作者执行工艺情况的跟踪调查,认为产生该类型暗灰色 腐蚀点的主要原因有下述几个方面: (1)有时因为某些原因在熔铸过程中镁、硅的添加比例不各适,使ω(Mg)/ω(Si)在1.0~1.3范围内,比最佳比值1.73小很多(一般控 制在1.3~1.5范围内)。这样,虽然镁、硅成分含量在规定(ω(Mg)=0.45%~0.9%,ω(Si)=0.2%~0.6%)范围内。但有部分富余硅存在, 这部分富余硅除有少量硅以游离态存在外,在铝合金中同时会形成三元化合物。当ω(Si)<ω(Fe)时,形成较多的α(Al12Fe3Si)相,它是一种脆性化合物、当ω(Si)>ω(Fe)时,则形成较多的β(Al9Fe2Si12)相,这是一种更脆的针状化合物,它的有害作用比α相更大,往往

相关文档
最新文档