飞行必备知识:详解飞机机翼原理与功能图文

飞行必备知识:详解飞机机翼原理与功能图文
飞行必备知识:详解飞机机翼原理与功能图文

机翼各翼面的位置图图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出

机翼的基本概念

机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。

相关名词解释:

翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型

前缘:翼型最前面的一点。后缘:翼型最后面的一点。翼弦:前缘与后缘的连线。弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长

迎角(Angleofattack):机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。

翼展:飞机机翼左右翼尖间的直线距离。

展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。

上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。

上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。

上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。中单翼因翼梁与机身难以协调,几乎只存在理论上;下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。

机翼在使飞机升空飞行中的重要作用

飞机在飞行过程中受到四种作用力:

升力----由机翼产生的向上作用力重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生推力----由发动机产生的向前作用力阻力----由空气阻力产生的向后作用力,能使飞机减速。

由此可见,机翼的主要功用就是产生升力,以支持飞机在空中飞行。它为什么能产生升力呢?首先要从飞机机翼具有独特的剖面说起,前面名词解释已提到,机翼横断面(横向剖面)的形状称为翼型,机翼剖面的集合特性与机翼的空气动力有密切的关系。从侧面看,机翼顶部弯曲,而底部相对较平。机翼在空气中穿过将气流分隔开来。一部分空气从机翼上方流过,另一部分从下方流过。

空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。

简单来说,飞机向前飞行得越快,机翼产生的气动升力也就越大。当升力大于重力时,飞机就可以向上爬升;当升力小于重力时,飞机就可以降低高度。当飞机的机翼为对称形状,气流沿着机翼对称轴流动时,由于机翼两个表面的形状一样,因而气流速度一样,所产生的压力也一样,此时机翼不产生升力。但是当对称机翼以一定的倾斜角(称为攻角或迎角)在空气中运动时,就会出现与非对称机翼类似的流动现象,使得上下表面的压力不一致,从而也会产生升力。

机翼的各部分装置介绍

副翼(Aileron):

副翼是指安装在机翼翼梢后缘外侧的一小块可动的翼面。为飞机的主操作舵面,飞行员操纵左右副翼差动偏转所产生的滚转力矩可以使飞机做横滚机动。翼展长而翼弦短。副翼的翼展一般约占整个机翼翼展的1/6到1/5左右,其翼弦占整个机翼弦长的1/5到1/4左右。

飞行员向左压驾驶盘,左边副翼上偏,右边副翼下偏,飞机向左滚转;反之,向右压驾驶盘右副翼上偏,左副翼下偏,飞机向右滚转。

前缘缝翼(LeadingEdgeSlat):

前缘缝翼是安装在基本机翼前缘的一段或者几段狭长小翼,主要是靠增大飞机临界迎角来获得升力增加的一种增升装置。

前缘缝翼的剖面

前缘缝翼的作用主要有两个:一是延缓机翼上的气流分离,提高了飞机的临界迎角,使得飞机在更大的迎角下才会发生失速;二是增大机翼的升力系数。其中增大临界迎角的作用是主要的。这种装置在大迎角下,特别是接近或超过基本机翼的临界迎角时才使用,因为只有在这种情况下,机翼上才会产生气流分离。现代客机的前缘缝翼没有专门的操纵装置,一般随襟翼的动作而随动,在飞机即将进入失速状态时,前缘缝翼的自动功能也会根据迎角的变化而自动开关。

在前缘缝翼闭合时(即相当于没有安装前缘缝翼),随着迎角的增大,机翼上表面的分离区逐渐向前移,当迎角增大到临界迎角时,机翼的升力系数急剧下降,机翼失速。当前缘缝翼打开时,它与基本机翼前缘表面形成一道缝隙,下翼面压强较高的气流通过这道缝隙得到加速而流向上翼面,增大了上翼面附面层中气流的速度,降低了压强,消除了这里的分离旋涡,从而延缓了气流分离,避免了大迎角下的失速,使得升力系数提高。

附:关于失速

机翼能够产生升力是因为机翼上下存在着压力差。但是这是有前提条件的,就是要保证上翼面的的气流不分离。如果机翼的迎角大到了一定程度,机翼相当于在气流中竖起的平板,由于角度太大,绕过上翼面的气流流线无法连贯,会发生分离,同时受外层气流的带动,向后下方流动,最后就会卷成一个封闭的涡流,叫做分离涡。像这样旋转的涡中的压力是不变的,它的压力等于涡上方的气流的压力。所以此时上下翼面的压力差值会小很多,这样机翼的升力就比原来减小了。到一定程度就形成失速,对应的机翼迎角叫做失速迎角或临界迎角。襟翼(Flap):

襟翼是安装在机翼后缘内侧的翼面,襟翼可以绕轴向后下方偏转,主要是靠增大机翼的弯度来获得升力增加的一种增升装置。当飞机在起飞时,襟翼伸出的角度较小,主要起到增加升力的作用,可以加速飞机的起飞,缩短飞机在地面的滑跑距离;当飞机在降落时,襟翼伸出的角度较大,可以使飞机的升力和阻力同时增大,以利于降低着陆速度,缩短滑跑距离。在现代飞机设计中,当襟翼的位置移到机翼的前缘,就变成了前缘襟翼。前缘襟翼也可以看作是可偏转的前缘。在大迎角下,它向下偏转,使前缘与来流之间的角度减小,气流沿上翼面的流动比较光滑,避免发生局部气流分离,同时也可增大翼型的弯度。前缘襟翼与后缘襟

翼配合使用可进一步提高增升效果。一般的后缘襟翼有一个缺点,就是当它向下偏转时,虽然能够增大上翼面气流的流速,从而增大升力系数,但同时也使得机翼前缘处气流的局部迎角增大,当飞机以大迎角飞行时,容易导致机翼前缘上部发生局部的气流分离,使飞机的性能变坏。如果此时采用前缘襟翼,不但可以消除机翼前缘上部的局部气流分离,改善后缘襟翼的增升效果,而且其本身也具有增升作用。

B737-600的双开缝后缘襟翼

克鲁格襟翼(KruegerFlap):与前缘襟翼作用相同的还有一种克鲁格襟翼。它一般位于机翼前缘根部,靠作动筒收放。打开时,伸向机翼下前方,既增大机翼面积,又增大翼型弯度,具有较好的增升效果,同时构造也比较简单。

上图为波音777的驾驶舱中央操纵台部分,民航飞机的机翼各翼面的操作一般类似。如本文前述,前缘缝翼没有专门的操纵装置,副翼的作动是依靠驾驶盘的左右转动。而襟翼、扰流板的操纵就在驾驶舱中央操纵台的油门杆两侧

扰流板(Spoiler):

有的称之为“减速板”、“阻流板”或“减升板”等,这些名称反映了它们的功能。分为飞行、地面扰流板两种,左右对称分布,地面扰流板只能在地面才可打开,实际上扰流板是铰接在机翼上表面的一些液压致动板,飞行员操纵时可以使这些板向上翻起,增加机翼的阻力,减少升力,阻碍气流的流动达到减速、控制飞机姿态的作用。

在空中飞行时,扰流板可以降低飞行速度并降低高度。只有一侧的扰流板动作时,作用相当于副翼,主要是协助副翼等主操作舵面来有效控制飞机做横滚机动在飞机着陆在地面滑跑过程中时,飞行、地面扰流板会尽可能地张开,以确保飞机迅速减速。

通用航空飞行员临云行私人飞机学飞行https://www.360docs.net/doc/8910026572.html, mnhedhdh

直升飞机飞行原理

直升飞机飞行原理 直升机的机翼与固定翼飞机一样,当气流从机翼前缘流向机翼后缘,从上翼面流过的气流比下翼面走过的路程长,为避免出现真空,上翼面的气流流速比下翼面的大。根据伯努利方程,相同条件下,气流的静压与动压的和恒定,因为上翼面的气流的流速大,导致动压大,所以其静压就小,机翼收到来自上翼面的压力小于来自下翼面的压力,大气对机翼的总压力向上,这个压力就是升力,有了升力直升机就能飞起来,但机翼旋转会对机身产生扭矩,为了不使机身旋转,通过加尾浆的方式平衡掉这个扭矩,所以直升机都是有尾浆的。直升机的机翼旋转面和轴的夹角可以通过杠杆机构来调整,通过调整这个夹角使升力与直升机的重力同轴或不同轴,同轴时,直升机悬停,不同轴时,直升机前飞 直升机升空的原理和竹蜻蜓是一样的,主桨桨叶上产生升力。至于你说的玩具有两个桨,而真机只有一个,应该是上下两层吧,总共四片桨叶,而真机只有一层。都知道,主桨高速转动,会给机身一个反方向的扭矩,如果不加以平衡,机身就会沿着和主桨转动方向相反的方向高速自旋,这样的直升机能飞么?玩具的两层桨叶就是平衡这个扭矩的,你仔细观察下,上下桨的转动方向一定是相反的,也就是靠两对桨叶给机身的扭矩来平衡机身,它们给机身的扭矩方向是相反的,如果大小也相同,那么机身就能保持稳定。但是真机,或者真正的航模直升机,都是单层桨叶的,因为它们都带尾桨,靠尾桨产生的推力来稳住机身。主桨产生的扭矩如果会使机尾顺时针旋转,那么就让尾桨产生逆时针的推力,平衡这个顺时针的扭矩。

一、直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。二、平衡分析(对单旋翼式):(1)直升飞机的大螺旋桨旋转产生升力平衡重力。直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。(2)直升飞机的横向稳定。因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。三、能量方式分析。根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析 能量也是守衡的

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

飞机原理与构造简答题答案

1、以双梁式直机翼为例,说明气动载荷是如何传递的。(18分) (1)蒙皮把气动载荷分别传给长桁和翼肋:蒙皮受气动吸力时,桁条和翼肋通过铆钉受拉对蒙皮提供支反力;蒙皮受气动压力时,蒙皮直接压在桁条和翼肋上,根据作用力与反作用力的原理,蒙皮把外载传递给了翼肋和长桁。 (2)长桁把自身承受的初始气动载荷传给翼肋 桁条与翼肋直接用角片(或间接通过蒙皮)相连,此时载荷方向垂直于长桁轴线,翼肋向长桁提供支持。此时,桁条可以看成支持在翼肋上的多点连续梁,长桁把气动载荷传递给了翼肋。至此,作用在蒙皮上的气动载荷直接或由长桁间接地全部传给了翼肋。 (3)翼肋把气动载荷转换成了垂直载荷和力矩,并相应的传到了梁腹板和组成封闭翼盒的各元件上 (4)翼梁将剪流往根部传递 由于梁腹板的抗弯能力比梁的缘条小的多,可略去其承弯能力,因而腹板以平板受剪的形式平衡,并将剪流往根部传递。最后在根部有机翼—机身对接接头提供垂直方向的支反力来平衡。 (5)蒙皮、腹板承受扭矩。机翼的第三个总体内力扭矩以蒙皮和腹板受剪的形式,向根部传递,总扭矩到机翼根部应通过加强肋将一圈剪流转换成适合于机翼—机身对接接头承受的一对集中力,再通过接头传给机身。 2、说明双梁式直机翼的普通翼肋的作用。(10分) (1)用以承受蒙皮传来的局部气动载荷 (2)把局部气动载荷转换成适合于主受力盒段各组成元件受力特性的载荷形式 (3)然后把它们传到这些主要元件上,向机翼根部传递,并进而通过对接接头传给机身 3、比较分析机翼各典型受力型式的结构受力特点。(20分) (1)梁式机翼:翼梁是主要受力构件,梁式机翼便于开口而不致破坏原来的主要传力路线;机翼、机身通过几个集中接头连接,所以连接简单、方便;主要依靠翼梁承受弯矩(2)单块式机翼:上、下壁板为主要受力构件。这种机翼比梁式机翼的刚度特性好。同时,由于结构分散受力,能更好的利用剖面高度,在某些情况下材料利用率较高,重量可能较轻,缺点是不便于大开口。 (3)多腹板式机翼:主要由上、下蒙皮承受弯矩,与梁式、单块式机翼相比,材料分散性更大。一般来说,多腹板式机翼的刚度大,材料利用率也更好些,然而也存在类似单块式机翼的缺点 4、以桁条式机身后段上的一个垂直集中力Pz为例,分析说明载荷是如何传给机身结构,又是如何在机身结构中传递的?(10分) 桁条式机身的一个加强隔框和水平尾翼的接头相连接,该加强隔框受到由接头传来的P z力,该框受到P z力后,要有向上移动的趋势,对此桁条起不了直接的限制作用,而由蒙皮通过沿框缘的连接铆钉给隔框以支反剪流q。q的分布与机身的受力型式,更明确地说,是和该框平面处机身壳体上受正应力面积的分布有关。对桁条式机身,假设只有桁条承受正应力,而蒙皮只受剪切时,剪流沿周缘按阶梯形分布。若蒙皮也受正应力,则在两桁条间的剪流值将不是等值,而成曲线分布。又因为蒙皮与桁条连接,蒙皮因剪流q受剪时将由桁条提供轴向支反剪流平衡,也即蒙皮上的剪流q将在桁条上产生拉、压的轴向力。 作用在框平面内的集中力:(1)由加强框承受该集中载荷(2)加强框将集中力扩散,以剪流的形式传给蒙皮。(3)剪流在蒙皮中向机身中段传递时,其剪切内力通过蒙皮连续向前传递;而弯曲内力则通过桁条的轴向拉、压力向前传递。 5、阐述飞机起落架减震机构中油气式减震器工作原理。(12分)

《飞机构造基础》课程教学大纲

《飞机构造基础》课程教学大纲 课程名称:飞机构造基础计划学时:48 计划学分:2.5 先修课程:工程力学、飞行技术基础课程性质:专业课 课程类型:必修课适用专业:飞机机电维修专业 编制单位:广州民航职业技术学院机务工程系编制时间:2001年11月 一、课程的性质和任务 本课程是飞机机电专业的一门重要专业课,其主要任务是使学生初步了解飞机的结构及飞机各系统的基本知识,为进行实际维护工作及故障诊断打下基础。本课程也是后续课程《飞机系统与附件》的基础课程 二、课程特色 本课程突出技能和能力培养,配合双证书制,使学生在校期间即可获得岗位资格证书。 本课程可利用现有737飞机附件,飞行操纵摸拟器及飞机电源系统示教板,采用现场教学方法使学生加深对飞机各系统的理解. 三、知识能力培养目标 (一)基本知识 飞机结构、载重与平衡、飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、防冰排雨系统、飞机燃油系统、飞机防火系统、飞机电子系统等。 (二)应用能力 通过本课程的学习,使学生了解飞机组成、结构形式及受力特点,飞机载重与平衡的基本知识,掌握飞机飞行操纵系统、液压系统、起落架系统、座舱环境控制系统、飞机燃油系统的基本组成及工作原理;了解防冰排雨系统、飞机防火系统、飞机电子系统的基本知识。 (三)自学能力 培养学生具有对飞机构造及各系统的总的认识,为以后的飞机维护和排故工作打下基础。 四、课程内容和要求 见附表 五、考核方法和成绩评定 (一)考核方法 本课程的考核以平时作业、平时测验和期末笔试为主,平时占总成绩的40%,期34

末占总成绩的60%。 (二)成绩评定 1.基本知识,应知考核(书面、闭卷)成绩 2.上课的出勤率,学习态度 3.平时实践操作情况 六、教学参考书 ⑥《飞机构造基础》宋静波·王洪涛主编,广州民航职业技术学院出版 ⑥《航空电气》盛乐山主编 ⑥《民用航空器维修人员指南》(机体部分) 七、说明与建议 1.本大纲的总学时为48学时,学习本门课,应具有《飞行技术基础》、《工程力学》的基本知识。 2.本大纲由机务工程系宋静波老师编写。 附表: 35

直升机发动机原理

一、直升机与普通飞机区别及飞行简单原理: 不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。 (1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。 (2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。 (3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。 (4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。 二、平衡分析(对单旋翼式): (1)直升飞机的大螺旋桨旋转产生升力平衡重力。 直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。 (2)直升飞机的横向稳定。 因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。 三、能量方式分析。 根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。 而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析能量也是守衡的。

飞机飞行的原理图解

飞机飞行的原理图解 飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。 飞机飞行原理: 1、飞机上升是根据伯努利原理,即流体(包括炝骱退流)的流速越大,其压强越小;流速越小,其压强越大。 2、飞机的机翼做成的形状就可以使通过它机翼下方的流速低于上方的流速,从而产生了机翼上、下方的压强差(即下方的压强大于上方的压强),因此就有了一个升力,这个压强差(或者说是升力的大小)与飞机的前进速度有关。 3、当飞机前进的速度越大,这个压强差,即升力也就越大。所以飞机起飞时必须高速前行,这样就可以让飞机升上天空。当飞机需要下降时,它只要减小前行的速度,其升力自然会变小,小于飞机的重量,它就会下降着陆了。

飞机的组成: 大多数飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。 机翼:主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚,放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。 1.机身:主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

2.尾翼:包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可动的升降沧槌伞4怪蔽惨碓虬括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。 3.起落装置:飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 4.动力装置:主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

专题飞机飞行的力学原理

专题 飞机飞行的力学原理 ? 飞机用途 民用(运输、勘探、农用、消防、拯救等) 军用(歼击、轰炸、侦察、反潜、运输等) ? 飞机动力 螺桨式(活塞螺桨、涡轮螺桨、涡轮轴) 喷气式(涡轮喷气、涡轮风扇、、冲压、火箭等) ? 机翼类型 固定翼(双翼、单翼、矩形翼、后掠翼、前掠翼、三角翼、双三角翼、鸭翼、可变后掠翼等) 旋翼(单旋翼、双旋翼、可倾转旋翼等) ? 举例 歼10飞机:军用歼击机,采用涡轮风扇发动机,机翼类型为鸭翼。 飞机的机翼在飞行中产生升力和阻力 机翼的升力: 2 21Sv C F Y Y ρ= 机翼的阻力: 2 21Sv C F X X ρ= 升力系数C Y 和阻力系数C X :

C Y和C X都与气流方向和机翼运动方向(航向)的夹角有关,这一角度称为迎角。 一般来说,迎角越大,升力和升力系数越大,阻力和阻力系数也越大。当迎角大于某一角度时,升力和升力系数会急剧下降。这一角度称为失速角。 飞机飞行的受力分析:质点情况 ?考虑飞机为一质点,其受力情况为: 升力F Y 阻力F X 重力mg 发动机的推力(或拉力)F ?若飞机在水平方向进行匀速直线运动,则: F = F X F Y = mg 若飞机进行滑翔飞行,其受力情况为:

升力 F Y 阻力 F X 重力 mg 很明显,在理想情况下,升力、阻力、重力三者矢量和为零,滑翔飞机做匀速直线运动。即: R F F mg Y X =+= 2 2 一点奥秘 ?由于:221Sv C F Y Y ρ= 2 21Sv C F X X ρ= 在稳定飞行时:F Y = mg F = F X ?结论: ? 高速飞行器的翼面积较小,低速飞机的翼面积较大。 ? 重型飞机的翼面积较大,轻型飞机的翼面积较小。 ? 高速飞行器阻力系数较小,升力系数也不大。 ? 低速飞行器升力系数较大,阻力系数也较大。 速度和升阻比的测量和计算

各种飞机发动机原理

一、活塞式发动机 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机工作时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9 个、14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关闭。 二、涡轮喷气发动机 在第二次世界大战以前,所有的飞机都采用活塞式发动机作为飞机的动力,这种发动机本身并不能产生向前的动力,而是需要驱动一副螺旋桨,使螺旋桨在空气中旋转,以此推动飞机前进。这种活塞式发动机+螺旋桨的组合一直是飞机固定的推进模式,很少有人提出过质疑。到了三十年代末,尤其是在二战中,由于战争的需要,飞机的性能得到了迅猛的发展,飞行速度达到700-800公里每小时,高度达到了10000米以上,但人们突然发现,螺旋桨飞机似乎达到了极限,尽管工程师们将发动机的功率越提越高,从1000千瓦,到2000千瓦甚至3000千瓦,但飞机的速度仍没有明显的提高,发动机明显感到“有劲使不上”。问题就出在螺旋桨上,当飞机的速度达到800公里每小时,由于螺旋桨始终在高速旋转,桨尖部分实际上已接近了音速,这种跨音速流场的直接后果就是螺旋桨的效率急剧下降,推力下降,同时,由于螺旋桨的迎风面积较大,带来的阻力也较大,而且,随着飞行高度的上升,大气变稀薄,活塞式发动机的功率也会急剧下降。这几个因素合在一起,决定了活塞式发动机+螺旋桨的推进模式已经走到了尽头,要想进一步提高飞行性能,必须采用全新的推进模式,喷气发动机应运而生。 喷气推进的原理大家并不陌生,根据牛顿第三定律,作用在物体上的力都有大小相等方向相反的反作用力。喷气发动机在工作时,从前端吸入大量的空气,燃烧后高速喷出,在此过程中,发动机向气体施加力,使之向后加速,气体也给发动机一个反作用力,推动飞机前进。事实上,这一原理很早就被应用于实践中,我们玩过的爆竹,就是依*尾部喷出火药气体的反作用力飞上天空的。早在1913年,法国工程师雷恩.洛兰就获得了一项喷气发动机的专利,但这是一种冲压式喷气发动机,在当时的低速下根本无法工作,而且也缺乏所需的高温耐热材料。1930年,弗兰克.惠特尔取得了他使用燃气涡轮发动机的第一个专利,但直到11年后,他的发动机在完成其首次飞行,惠特尔的这种发动机形成了现代涡轮喷气发动机的基础。现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是

直升机与普通飞机区别及飞行简单原理

直升机与普通飞机区别及飞行简单原理: 不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。 (1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。 (2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。 (4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。 三、平衡分析(对单旋翼式): (1)直升飞机的大螺旋桨旋转产生升力平衡重力。 直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。 (2)直升飞机的横向稳定。 因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。 四、能量方式分析。 根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。 而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析能量也是守衡的。 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。 也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。

纸飞机飞行原理

For personal use only in study and research; not for commercial use 纸飞机飞行原理 纸飞机要飞得远、飞得快,有几点要注意:? 1)要尽量折得两边对称,如果不对称得话,飞机容易转弯,就飞不远了;? 2)翅膀和机身的比例要恰当。机身小翅膀大,飞机升力是够了,但重心上抬,投出去的飞机容易发飘;机身大翅膀小,重心过于下移,飞机就像飞镖一样,惯性十足,但却失去了飞行滑翔的行程,仿佛是扔出去的纸团。正确合理的翅膀和机身比例要根据纸飞机的形状和纸张的质地决定,多试几次就能找到最佳比例;? 3)注意前后的平衡。机头太重,飞机容易一头扎在地上;机头太轻,又容易造成机头上翘,导致失速。通过调整纸飞机的外形,或用纸条或胶带进行适当的加载(如果允许的话)可以调节飞机的平衡;? 4)最后说一点,纸飞机的投掷也很有讲究:不要侧风投飞,不然容易被刮偏;顺风投掷也没有足够的动力;最好是迎着不太强的正面逆风投掷,投出的角度稍大于水平角度,约15度左右,飞机要平稳向前送出,到最后一刻才自然脱手,那样飞得最远。 纸飞机的原理 2、机头不能太重,否则一下就载下去了;? 3、机头不宜太尖。阻力小,速度快,在空中停留的时间自然就短;? 4、机翼适当大一些,这与空气中的浮力成正比;? 5、后翼两侧向上折一下,但注意适度;如果迎面有微风吹来,有时还能向上飞;? 6、折时两边尽量对称,如果是开阔地,可以适当将左或右侧重一点点,使飞机在空中盘旋,可以一定程度上增加飞机在空中的滞留时间。? 7、折完后将两侧机翼向上,形成一定度数的v字夹角,注意不要太向上,稍有一点就行了。之后检查机翼两侧是否对称;? 8、先试飞,观察飞行情况做调整。(比如:飞起来机头向前一点一点的,说明机头轻了)?

直升机操控原理

第六章 直升机的操纵原理
直升机不同于固定翼飞机,一般都没有在飞行中 供操纵的专用活动舵面。这是由于在小速度飞行 或悬停中,其作用也很小,因为只有当气流速度 很大时舵面或副翼才会产生足够的空气动力。单 旋翼带尾桨的直升机主要靠旋翼和尾桨进行操纵, 而双旋翼直升机靠两副旋翼来操纵。由此可见, 旋翼还起着飞机的舱面和副翼的作用。

直升机操纵原理
旋翼不仅提供升力同时也是直升机的主要操 纵面。
总距操纵杆:通过自动倾斜器改变旋翼桨叶 总距,控制直升机的升降运动。提杆,增大 总距,升力增大,直升机上升;压杆,减小 总距,直升机下降。
周期变距操纵杆:操纵周期变距操纵杆,使 自动倾斜器相应的倾斜,从而使桨叶的桨距 作每周一次的周期改变,造成旋翼拉力矢量 按相应的方向倾斜,达到控制直升机的前、 后(左、右)和俯仰(或横滚)运动。

直升机操纵原理
脚蹬:控制尾桨,实现航向操纵。 尾桨:平衡旋翼反扭矩、航向操纵。 垂尾:增加航向稳定性。 平尾:增加俯仰稳定性。

直升机操纵原理(续)

6.1 直升机操纵特点
直升机驾驶员座舱 操纵机构及配置直 升机驾驶员座舱主 要的操纵机构是: 驾驶杆(又称周期 变距杆)、脚蹬、 油门总距杆。此外 还有油门调节环、 直升机配平调整片 开关及其他手柄.

驾驶杆和脚蹬
驾驶杆位于驾驶员座椅前面,通过操纵线系与旋翼 的自动倾斜器连接。驾驶杆偏离中立位置表示:
向前——直升机低头并向前运动; 向后——直升机抬头并向后退; 向左——直升机向左倾斜并向左侧运动; 向右——直升机向右倾斜并向右侧运动。 脚蹬位于座椅前下部,对于单旋翼带尾桨的直升机
来说,驾驶员蹬脚蹬操纵尾桨变距改变尾桨推(拉) 力,对直升机实施航向操纵。

模型飞机飞行原理

第一章空气动力学基本知识 空气动力学是一门专门研究物体与空气作相对运动时作用在物体上的力的一门科学。随着航空科学事业的发展,飞机的飞行速度、高度不断提高,空气动力学研究的问题越来越广泛了。航模爱好者在制作和放飞模型飞机的同时,必须学习一些空气动力学基本知识,弄清楚作用在模型飞机上的空气动力的来龙去脉。这将有助于设计、制作、放飞和调整模型飞机,并提高模型飞机的性能。 第一节什么是空气动力 当任何物体在空气中运动,或者物体不动,空气在物体外面流过时(例如风吹过建筑物),空气对物体都会有作用力。由于空气对物体作相对运动,在物体上产生的这种作用力,就称为空气动力。 空气动力作用在物体上时,不是只作用在物体上的一个点或一个部分,而是作用在物体的整个表面上。空气动力表现出来的形式有两种,一种是作用在物体表面上的空气压力,压力是垂直于物体表面上的。另一种虽然也作用在物体表面上,可是却与物体表面相切,称为空气与物体的摩擦力。物体在空气中运动时所受到的空气作用力就是这两种力的总和。 作用在物体上的空气压力也可以分两种,一种是比物体前面的空气压力大的压力,其作用方向是从外面指向物体表面(图1-1),这种压力称为正压力。另一种作用在物体表面的压力,比物体迎面而来的空气压力小,压力方向是从物体表面指向外面的,这种压力称为负压力,或吸力(图1-1)。空气对物体的摩擦力与物体对空气之间相对运动的方向相反。这些力量作用在物体上总是使物体向气流流动的方向走。如果是空气不动,物体在空气中运动,那么空气 摩擦力便是与物体运动的方向相反,阻止物体向 前运动。 很明显,空气动力中由于粘性产生的空气摩 擦力对模型飞机飞行是有害的。可是空气作用在 模型上的压力又怎样呢?总的看来,空气压力对模 型的飞行应该说是有利的。事实上模型飞机或真 飞机之所以能够克服本身的重量飞起来,就是因图1-1作用在机翼上的压强分布 为机翼上表面产生很强的负压力,下表面产生正压力,由于机翼上、下表面压力差,就使模型或真飞机飞起来。可是作用在物体上的压力也并不是完全有利的。一般物体前面的压力大,后面的压力小,由于物体前后压力差便会阻碍物体前进,产生很多困难。只有物体的形状适当才可以获得最大的上、下压力差和最小的前后压力差,也就是通常所说的最大的升力和最小的阻力。所以空气压力对于物体的运动有

飞行原理论文

飞行原理论文 ——张兴鹏 要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。 一、飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理: 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

直升机飞行原理

直升机与旋翼机的飞行原理 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。旋翼的截面形状是一个翼型,如图所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂旋转平面)之间的夹角称为桨叶的安装角,以表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。

气流V 与翼弦之间的夹角即为该剖面的迎角。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。 3. 直升机旋翼的操纵 直升机的飞行控制与飞机的飞行控制不同,直升机的飞行控制是通过直升机旋翼的倾斜实现的。直升机的控制可分为垂直控制、方向控制、横向控制和纵向控制等,而控制的方式都是通过旋翼实现的,具体来说就是通过旋翼桨毂朝相应的方向倾斜,从而产生该方向上的升力的水平分量达到控制飞行方向的目的。 直升机体放在地面时,旋翼受其本身重力作用而下垂。发动机开车后,旋翼开始旋转,桨叶向上抬,直观地看,形成一个倒立的锥体,称为旋翼锥体,同时在桨叶上产生向上的升力。随着旋翼转速的增加,升力逐渐增大。当升力超过重力时,直升机即铅垂上升(图;若升力与重力平衡,则悬停于空中;若升力小于重力,则向下降落。 旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。从原理上讲,调节转速和桨距都可以调节拉力的大小。但是 桨毂旋转面 桨毂旋转轴线 前缘 后缘 b ? α V 图 直升机的旋翼 (a) (b)

直升飞机构造及飞行原理

直升飞机构造及飞行原理构造简图

直升机的前飞 直升机的前飞,特别是平飞,是其最基本的一种飞行状态。直升机作为一种运输工具,主要依靠前飞来完成其作业任务。为了更好地了解有关直升机前飞时的飞行特点,从无侧滑的等速直线平飞人手,有关上升率Vy不为零的前飞(上升和下降)留在下一节介绍。直升机的水平直线飞行简称平飞。平飞是直升机使用最多的飞行状态,旋翼的许多特点在乎飞时表现得更为明显。直升机平飞的许多性能决定于旋翼的空气动力特性,因此需要首先说明这种飞行状态下直升机的力和旋翼的需用功率。 平飞时力的平衡 相对于速度轴系平飞时,作用在直升机上的力主要有旋空拉力T,全机重力G,机体的废阻力X身及尾桨推力T尾。前飞时速度轴系选取的原则是:X铀指向飞行速度V方向;Y轴垂直于X轴向上为正,2轴按右手法则确定。保持直升机等速直线平飞的力的平衡条件为(参见图2.1—43) 。 平飞时力的平衡 X轴:T2=X身 Y轴:T1=G

Z轴:T3约等于T尾 其中Tl,T2,T3分别为旋翼拉力在X,Y,Z三个方向的分量。对于单旋翼带尾桨直升机,由于尾桨轴线通常不在旋翼的旋转平面内,为保持侧向力矩平衡,直升机稍带坡度角r,故尾桨推力与水平面之间的夹角为y,T尾与T3方向不完全一致,因为y角很小,即cosr约等于1,故Z向力采用近似等号。 平飞需用功率及其随速度的变化 平飞时,飞行速度垂直分量Vv=0,旋翼在重力方向和Z方向均无位移,在这两个方向的分力不做功,此时旋翼的需用功率由三部分组成:型阻功率——P型;诱导功率——P 诱;废阻功率——P废。其中第三项是旋翼拉力克服机身阻力所消耗的功率。 从上图可以看出,旋翼拉力的第二分力T2可平衡机身阻力X身。对旋翼而言,其分力T2在X轴方向以速度V作位移。显然旋翼必须做功,P =T2V或P废=X身V,而机身废阻X身在机身相对水平面姿态变化不大的情况下,其值近似与V的平方成正比,这样废阻功 平飞需用功率随速度的变化 率P废就可以近似认为与平飞速度的三次方成正比,如上图中的点划线③所示。 平飞时,诱导功率为P诱=TV,其中T为旋翼拉力,vl为诱导速度。当飞行重量不变时,近似认为旋翼拉力不变,诱导速度271随平飞速度V的增大而减小,因此平飞诱导功率P诱随平飞速度V的变化如上图中细实线②所示。 平飞型阻功率尸型则与桨叶平均迎角有关。随平飞速度的增加其平均迎角变化不大。所以P型随乎飞速度V的变化不大,如图中虚线①所示。 图中的实线④为上述三项之和,即总的平飞需用功率P平需随平飞速度的变化而变化。它是一条马鞍形的曲线:小速度平飞时,废阻功率很小,但这时诱导功率很大,所以总的乎飞需用功率仍然很大。但比悬停时要小些。在一定速度范围内,随着平飞速度的增加,由于诱导功率急剧下降,而废阻功率的增量不大,因此总的平飞需用功率随乎飞速度的增加呈下降趋势,但这种下降趋势随V的增加逐渐减缓。速度继续增加则由于废阻功率随平飞速度增加急剧增加。平飞需用功率随V的增加在达到平飞需用功率的最低点后增加;总的平飞需用功率随V的变化则呈上升趋势,而且变得愈来愈明显。 直升机的后飞

直升机的发展历史

直升机的发展历史 人类有史以来就向往着能够自由飞行。古老的神话故事诉说着人类早年的飞行梦,而梦想的飞行方式都是原地腾空而起,像现代直升机那样既能自由飞翔又能悬停于空中,并且随意实现定点着陆。例如哪阿拉伯人的飞毯,希腊神的战车,都是垂直起落飞行器。其中最有价值、最具代表性的是中国古代玩具“竹蜻蜓”和意大利人达·芬奇关于垂直起降航空器的画作。 竹蜻蜓有据可查的历史记载于晋朝(265年—420年)葛洪所著的《抱朴子》一书中。它利用螺旋桨的空气动力实现垂直升空,演示了现代直升机旋翼的基本工作原理。《简明不列颠百科全书》第9卷写道:“直升机是人类最早的飞行设想之一,多年来人们一直相信最早提出这一想法的是达·芬奇,但现在都知道,中国人比中世纪的欧洲人更早做出了直升机玩具。”这种玩具于14世纪传到欧洲。“英国航空之父”乔治·凯利(1773年-1857年)曾制造过几个竹蜻蜓,用钟表发条作为动力来驱动旋转,飞行高度曾达27米。 随着生产力的发展和人类文明的进步,直升机的发展史由幻想时期进入了探索时期。欧洲产业革命之后,机械工业迅速倔起,尤其是本世纪初汽车和轮船的发展,为飞

行器准备了发动机和可供借鉴的螺旋桨。经过航空先驱者们勇敢而艰苦的创造和试验,1903年莱特兄弟(Wright brothers)制造的固定翼飞机飞行成功。在此期间,尽管在发展直升机方面,航空先驱们付出了相当的艰辛和努力,但由于直升机技术的复杂性和发动机性能不佳,它的成功飞行比飞机迟了30多年。 20世纪初为直升机发展的探索期,多种试验性机型相继问世。试验机方案的多样性表明了探索阶段的技术不成熟性。经过多年实践,这些方案中只有纵列式和共轴双旋翼式保留了下来,至今仍在应用。双桨横列式方案未在直升机家族中延续,但在倾转旋翼飞机中得到了继承和发展。 俄国人尤利耶夫另辟捷径,提出了利用尾桨来配平旋翼反扭矩的设计方案并于1912年制造出了试验机。这种单旋翼带尾桨式直升机成为至今最流行的形式。 20世纪初的努力探索为直升机发展积累了宝贵的经验并使直升机的设计取得了显著进展,有多架试验机实现了短暂的垂直升空和短距飞行,但离实用还有很大距离。 飞机工业的发展,使航空发动机的性能迅速提高,这为直升机设计的成功提供了重要条件。旋翼技术的第一次突破,归功于西班牙人Ciervao,他为了解决固定翼飞机的安全问题创造了“不失速”的飞机,这种飞机采用自转旋

飞机的飞行原理

飞机的飞行原理 升力原理: 飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。 在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面 的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快(V1=S1/T >V2=S2/T1)。根据伯奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。 动力原理: 涡轮喷气发动机;涡轮风扇发动机;冲压喷气发动机;涡轮轴发动机 从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。

飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出: 单单一个活塞发动机发出的功率非常有限,因此人 们将多个活塞发动机并联在一起,组成星型或V型活塞 发动机。下图为典型的星型活塞发动机。

现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。

飞行学院《航空发动机原理与构造》复习

飞行学院《航空发动机原理与构造》复习资料 第一部分:航空发动机构造 一、单项选择题(每题2分) 1.涡喷?涡扇?涡桨?涡轴发动机中,耗油率或当量耗油率的关系是(A)? A.sfc涡喷>sfc涡扇>sfc涡桨>sfc涡轴B.sfc涡扇>sfc涡桨>sfc涡轴>sfc涡喷 C.sfc涡桨>sfc涡轴>sfc涡喷>sfc涡扇D.sfc涡轴>sfc涡喷>sfc涡扇>sfc涡桨 2.发动机转子卸荷措施的目的是(B)。 A.减少发动机转子负荷,降低了发动机推力,以提高发动机运行可靠性B.减少发动机转子轴向力,减少止推轴承数量,提高转子工作可靠性 C.减少发动机转子负荷,提高发动机推力 D.减少发动机转子负荷,降低转子应力水平,提高转子结构强度 3.涡扇发动机中,忽略附件传动功率,涡轮转子与压气机转子扭矩之间的关系 是(D)。 A.M涡轮>-M压气机B.M涡轮<-M压气机 C.M涡轮=M压气机D.M涡轮=-M压气机 4.压气机转子结构中,加强盘式转子是为了(B)。 A.加强转子强度,提高转子可靠性 B.加强转子刚度,提高转子运行稳定性 C.加强转子冷却效果,降低温度应力 D.加强转子流通能力,提高压气机效率 5.压气机转子结构中(B)。 A.鼓式转子的强度>盘式转子的强度 B.鼓式转子的强度<盘式转子的强度 C.鼓式转子的强度=盘式转子的强度 D.鼓式转子与盘式转子强度比较关系不确定 6.压气机转子结构中的刚度(A) A.盘鼓混合式转子>盘式转子 B.盘鼓混合式转子<盘式转子 C.盘鼓混合式转子=盘式转子 D.盘鼓混合式与盘式转子刚度大小关系不确定 7.压气机静子机匣上放气机构的放气窗口通常位于(A) A.静子叶片处B.转子叶片处 C.静子叶片与转子叶片之间D.转子叶片与静子叶片之间 8.压气机转子工作叶片的榫头结构承载能力(D) A.燕尾形>枞树形>销钉式B.燕尾形>销钉式>枞树形

相关文档
最新文档