功率场效应晶体管(MOSFET)基本知识.

功率场效应晶体管(MOSFET)基本知识.
功率场效应晶体管(MOSFET)基本知识.

功率场效应晶体管(MOSFET)基本知识功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。

一、电力场效应管的结构和工作原理

电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。

电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。

电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压UGS,并且使UGS大于或等于管子的开启电压UT,则管子开通,在漏、源极间流过电流ID。UGS超过UT越大,导电能力越强,漏极电流越大。

二、电力场效应管的静态特性和主要参数

Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。

1、静态特性

(1)输出特性

输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流ID不随漏源电压UDS的增加而增加,也就是基本保持不变;非饱和是指地UCS一定时,ID随UDS增加呈线性关系变化。

(2)转移特性

转移特性表示漏极电流ID与栅源之间电压UGS的转移特性关系曲线,如图2(a)所示。转移特性可表示出器件的放大能力,并且是与GTR中的电流增益β相似。由于Power MOSFET是压控器件,因此用跨导这一参数来表示。跨导定义为

图中UT为开启电压,只有当UGS=UT时才会出现导电沟道,产生漏极电流ID。

2、主要参数

(1)漏极击穿电压BUD

BUD是不使器件击穿的极限参数,它大于漏极电压额定值。BUD随结温的升高而升高,这点正好与GTR和GTO相反。

(2)漏极额定电压UD

UD是器件的标称额定值。

(3)漏极电流ID和IDM

ID是漏极直流电流的额定参数;IDM是漏极脉冲电流幅值。

2N系列功率晶体管技术参数(精)

2N系列功率晶体管技术参数 2N1304GE-N25V0.3A0.15W10MHz 2N1305GE-P30V0.3A0.15W5MHz 2N1307GE-P30V0.3A0.15W B>60 2N1613SI-N75V1A0.8W60MHz 2N1711SI-N75V1A0.8W70MHz 2N109GE-P35V0.15A0.165W 2N1893SI-N120V0.5A0.8W 2N2102SI-N120V1A1W<120MHz 2N2148GE-P60V5A12.5W 2N2165SI-P30V50mA0.15W18MHz 2N2166SI-P15V50mA0.15W10MHz 2N2219A SI-N40V0.8A0.8W250MHz 2N2222A SI-N40V0.8A0.5W300MHz 2N22232xSI-N100V0.5A0.6W>50 2N2223A2xSI-N100V0.5A0.6W>50 2N2243A SI-N120V1A0.8W50MHz 2N2369A SI-N40V0.2A.36W12/18ns 2N2857SI-N30V40mA0.2W>1GHz 2N2894SI-P12V0.2A 1.2W60/90ns 2N2905A SI-P60V0.6A0.6W45/100 2N2906A SI-P60V0.6A0.4W45/100 2N2907A SI-P60V0.6A0.4W45/100 2N2917SI-N45V0.03A>60Mz

2N2926SI-N25V0.1A0.2W300MHz 2N2955GE-P40V0.1A0.15W200MHz 2N3019SI-N140V1A0.8W100MHz 2N3053SI-N60V0.7A5W100MHz 2N3054SI-N90V4A25W3MHz 2N3055SI-N100V15A115W800kHz 2N3055SI-N100V15A115W800kHz 2N3055H SI-N100V15A115W800kHz 2N3251SI-P50V0.2A0.36W 2N3375SI-N40V0.5A11.6W500MHz 2N3439SI-N450V1A10W15MHz 2N3440SI-N300V1A10W15MHz 2N3441SI-N160V3A25W POWER 2N3442SI-N160V10A117W0.8MHz 2N3495SI-P120V0.1A0.6W>150MHz 2N3502SI-P45V0.6A0.7W200MHz 2N3553SI-N65V0.35A7W500MHz 2N3571SI-N30V0.05A0.2W 1.4GHz 2N3583SI-N250/175V2A35W>10MHz 2N3632SI-N40V0.25A23W400MHz 2N3646SI-N40V0.2A0.2W 2N3700SI-N140V1A0.5W200MHz 2N3707SI-N30V0.03A0.36W100MHz 2N3708SI-N30V0.03A0.36W80MHz 2N3716SI-N100V10A150W4MHz

常见大中功率管三极管参数(精)

常见大中功率管三极管参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1402 1500V 5A 120W * * NPN 2SD1399 1500V 6A 60W * * NPN 2SD1344 1500V 6A 50W * * NPN 2SD1343 1500V 6A 50W * * NPN 2SD1342 1500V 5A 50W * * NPN 2SD1941 1500V 6A 50W * * NPN 2SD1911 1500V 5A 50W * * NPN 2SD1341 1500V 5A 50W * * NPN 2SD1219 1500V 3A 65W * * NPN 2SD1290 1500V 3A 50W * * NPN 2SD1175 1500V 5A 100W * * NPN 2SD1174 1500V 5A 85W * * NPN 2SD1173 1500V 5A 70W * * NPN 2SD1172 1500V 5A 65W * * NPN 2SD1143 1500V 5A 65W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1142 1500V 3.5A 50W * * NPN 2SD1016 1500V 7A 50W * * NPN 2SD995 2500V 3A 50W * * NPN 2SD994 1500V 8A 50W * * NPN 2SD957A 1500V 6A 50W * * NPN 2SD954 1500V 5A 95W * * NPN 2SD952 1500V 3A 70W * * NPN 2SD904 1500V 7A 60W * * NPN 2SD903 1500V 7A 50W * * NPN 2SD871 1500V 6A 50W * * NPN 2SD870 1500V 5A 50W * * NPN 2SD869 1500V 3.5A 50W * * NPN 2SD838 2500V 3A 50W * * NPN 2SD822 1500V 7A 50W * * NPN 2SD821 1500V 6A 50W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD348 1500V 7A 50W * * NPN 2SC4303A 1500V 6A 80W * * NPN 2SC4292 1500V 6A 100W * * NPN 2SC4291 1500V 5A 100W * * NPN 2SC4199A 1500V 10A 100W * * NPN 2SC3883 1500V 5A 50W * * NPN 2SC3729 1500V 5A 50W * * NPN 2SC3688 1500V 10A 150W * * NPN

场效应晶体管特性

场效应管(FET)是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件,并以此命名。由于它仅靠半导体中的多数载流子导电,又称单极型晶体管。 工作原理场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的漏极电流,用以栅极与沟道间的pn结形成的反偏的栅极电压控制漏极电流ID”。更正确地说,漏极电流ID流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。在VGS=0的非饱和区域,表示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流漏极电流ID流动。从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,漏极电流ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。 在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。因漂移电场的强度几乎不变产生ID的饱和现象。其次,VGS向负的方向变化,让VGS=VGS(off),此时过渡层大致成为覆盖全区域的状态。而且VDS的电场大部分加到过渡层上,将电子拉向漂移方向的电场,只有靠近源极的很短部分,这更使电流不能流通。 分类场效应管分为结型场效应管(JFET)和绝缘栅场效应管(MOS管)两大类。 按沟道材料型和绝缘栅型各分N沟道和P沟道两种;按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。 场效应管与双极性晶体管的比较,场效应管具有如下特点。 1. 场效应管是电压控制器件,栅极基本不取电流,它通过VGS(栅源电压)来控制ID(漏 极电流);而晶体管是电流控制器件,基极必须取一定的电流。因此,在信号源额定电流极小的情况,应选用场效应管。 2. 场效应管是多子导电,而晶体管的两种载流子均参与导电。由于少子的浓度对温度、 辐射等外界条件很敏感,因此,它的温度稳定性较好;对于环境变化较大的场合,采用场效应管比较合适。 3. 场效应管的源极和漏极在结构上是对称的,可以互换使用,耗尽型MOS 管的栅——源电压可正可负。因此,使用场效应管比晶体管灵活。 4 . 场效应管除了和晶体管一样可作为放大器件及可控开关外,还可作压控可变线性电阻使用 特点与双极型晶体管相比,(1)场效应管的控制输入端电流极小,因此它的输入电阻很大。 (2)场效应管的抗辐射能力强; (3)由于不存在杂乱运动的电子扩散引起的散粒噪声,所以噪声低。

功率场效应管原理

功率场效应晶体管(MOSFET)原理 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数 Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}} 1、静态特性 (1)输出特性 输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。 (2)转移特性

功率晶体管的封装

功率晶体管的封装(附功率三极管封装图示) 功率晶体管包括三极管和二极管,其典型的封装形式是THM (Through-HoleMount,引脚插入式)插脚型封装,即使是在SMD (SurfacdMountingDevice,表面贴装元件)大行其道的今天也是如此,因为实践证明这种形式的封装既可靠又利于独立散热片的安装和固定。晶体管THM封装以TO(TransistorOutline,晶体管封装)为主要形式,而SMD形式的,以有引脚的为主要形式,IR(InternationalRectifier,国际整流器)开发的DirectFET 封装则是其中的特例,属于无引脚而只有焊接端子的形式,这种形式在小功率SMD器件中的应用最为广泛。 我们常见的电子元器件封装属于最终封装,是可以直接进行印制板(PCB)安装的封装形式,虽然各半导体芯片制造商都提供没有最终封装的预封装裸片(不能直接安装于印制板),但是带有最终封装的元器件仍然是最主要、最主流的提供形式。 功率晶体管相对于集成电路,引脚排列相对简单,只是外部形状各异。按照管芯封装材料来分大致有两大类:塑料封装和金属封装。如今,塑料封装最为常见,有裸露散热片的非绝缘封装和连散热片也封装在内的全塑封装(也称为绝缘封装),后者无需在散热器绝缘和晶体管之间加装额外的绝缘垫片,但是耗散功率会稍微小一些;金属封装又称为金属管壳封装或者管帽封装,有着银白色的圆形蘑菇状金属外壳,因为封装成本比较高,如今已经不太常见了。按照内部管芯的数量,可以分为单管芯、双管芯、多管芯三大类,多管芯一般耗散功率比较大,主要用于电力电子领域,比较通用的名称是模块或者晶体管模块,本文不再讨论。 三极管中,单管芯塑料封装最常见,引脚都是3个,排列也很有规律,很少有例外。有印字的一面朝向自己,引脚向下,从左至右,常见类型的功率晶体管引脚排列如下: BJT(双极性晶体管):b(基极)、c(集电极)、e(发射极);IGBT(绝缘栅双极晶体管):G(栅极)、c(集电极)、e(发射极);VMOS(垂直沟道场效应管):G(栅极)、D(漏极)、S(源极);BCR(双向晶闸管):A1(阳极1)、A2(阳极2)、G(控制极);SCR(单向晶闸管):K(阴极)、A(阳极)、G(控制极)大功率二极管除了特有的DO(DirectOutline,两端直接引线)封装外,也常常采用塑封三极管的封装形式,三引脚为共阴极或者共阳极以及双管芯并联,或者将三引脚改为两引脚,通常是中间的一脚省去。 对于塑料封装而言,三引脚的TO-220是基本形式,由此扩大,有TO-3P、TO-247、TO-264等,由此缩小,有TO-126、TO-202等,并各自延伸出全绝缘封装以及更多引脚封装和SMD形式。其目的也很明确,在保证耗散功率的前提下缩小封装成本,对于高频开关器件,还要减小引线电感和电容,DirectFET封装就是典型的例子。很多封装仅从外部形状来看,很相似,这时候就需要注意其实际的外

场效应管特性

根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 -------------------------------------------------------------- 1.概念: 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(100000000~1000000000Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 作用: 场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器. 场效应管可以用作电子开关. 场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源. 2.场效应管的分类:

场效应管分结型、绝缘栅型(MOS)两大类 按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种. 按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类.见下图: 3.场效应管的主要参数: Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流. Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压. Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压. gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数. BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS. PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量. IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSM Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容 Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流 IDQ---静态漏极电流(射频功率管)

教你怎么做晶体管的选型

1.认识晶体管 晶体管是一种具有放大和开关等功能的有源器件。按工艺可分为:双极、场效应、 闸流和光电等。按功能可分为放大、开关、錾波和光电等。按工作频率可分为:低频、高频 和微波三类。 2. 晶体管的规范叙述 ①—MOSFET ②③④ N —MOSFET DUAL 参数SO8 ①MOSFET TYPE ②DUAL N-MOSFET ③参数 ④PACKAGE TYPE 3.按参数选型 3.1.晶体管的类型 3.2.电流 - 集电极 (Ic)(最大)集电极-发射极所能承受的最大直流电流,属于极限参数, 测试时不用散热片,通电时间一般为10s以内 3.3. 电压 - 集电极发射极击穿(最大) 3.4. Ib、Ic条件下的Vce饱和度(最大)饱和导通时集电极-发射极之间的电压差,这个 数值越小,说明IGBT的导通功功耗小 3.5. 电流 - 集电极截止(最大) 3.6. 在某 Ic、Vce 时的最小直流电流增益 (hFE) 3.7. 功率 - 最大 3.8. 频率 - 转换 3.9. 安装类型

3.10封装/外壳 一般可按工作性质按下表选择晶体管: 工作性质 应用要求 类 型 小功率放大 低输入阻抗(小于 1M Ω) 高频晶体管 高输入阻抗(大于 1M Ω) 场效应晶体管 低频低噪声 场效应晶体管 微波低噪声 微波低噪声管 功率放大 1GHZ 以上 微波功率管 10K HZ 以上 高频功率放大 10K HZ 以下 低频功率放大 开关 通态电阻小 开关晶体管 通态内部等效电压为零 场效应晶体管 功率、低频(5KHZ 以下) 低频功率晶体 管 大电流或作可调压电源 闸流晶体管 光电转换、放大 光电晶体管 光电隔离 浮地 光电耦合器 应用注意事项 (1)小功率晶体管: 在小功率晶体管的应用中,对极限参数必须降额使用。极限参数包括:集电极 最大允许功率耗散(PCM )、集电极最大电流(ICM )、基极电流为零时集电极-发射 极击穿电压(VBR (CEO ))

功率晶体管(GTR)的特性

功率晶体管(GTR)的特性 功率晶体管(GTR)具有控制方便、开关时间短、通态压降低、高频特性好、安全工作区宽等优点。但存在二次击穿问题和耐压难以提高的缺点,阻碍它的进一步发展。 —、结构特性 1、结构原理 功率晶体管是双极型大功率器件,又称巨型晶体管或电力勗体管,简称GTR。它从本质上讲仍是晶体管,因而工作原理与一般晶体管相同。但是,由于它主要用在电力电子技术领域,电流容量大,耐压水平高,而且大多工作在开关状态,因此其结构与特性又有许多独特之处。 对GTR的要求主要是有足够的容量、适当的增益、较高的速度和较低的功耗等。由于GTR电流大、功耗大,因此其工作状况出现了新特点、新问题。比如存在基区大注入效应、基区扩展效应和发射极电流集边效应等,使得电流增益下降、特征频率减小,导致局部过热等,为了削弱这种影响,必须在结构上采取适当的措施。目前常用的GTR器件有单管、达林顿管和模块三大系列。 三重扩散台面型NPN结构是单管GTR的典型结构,其结构和符号如图1所示。这种结构的优点是结面积较大,电流分布均匀,易于提高耐压和耗散热量;缺点是电流增益较低,一般约为10~20g。 图1、功率晶体管结构及符号 图2、达林顿GTR结构 (a)NPN-NPN型、(b)PNP-NPNxing 达林顿结构是提高电流增益的一种有效方式。达林顿GTR由两个或多个晶体管复合而成,可以是PNP或NPN型,如图2所示,其中V1为驱动管,可饱和,而V2为输出管,不会饱和。达林顿GTR的电流增益β大大提高,但饱和压降VCES也较高且关断速度较慢。不难推得 IC=ΒIB1.VCES= VCES1+VCES2(其中β≈β1β2) 目前作为大功率开关应用最多的是GTR模块。它是将单个或多个达林顿结构GTR及其辅助元件如稳定电阻、加速二极管及续流二极管等,做在一起构成模块,如图3所示。为便于改善器件的开关过程或并联使用,有些模块的中间基极有引线引出。GTR模块结构紧凑、功能强,因而性能价格比大大提高。

功率场效应管的原理、特点及参数

功率场效应管的原理、特点及参数 功率场效应管的原理、特点及参数 功率场效应管又叫功率场控晶体管。 一.功率场效应管原理:半导体结构分析略。本讲义附加了相关资料,供感 兴趣的同事可以查阅。实际上,功率场效应管也分结型、绝缘栅型。但通常指 后者中的MOS 管,即MOSFET(Metal Oxide Semiconductor Field Effect Transistor)。它又分为N 沟道、P 沟道两种。器件符号如下: N 沟道P 沟道图1-3:MOSFET 的图形符号MOS 器件的电极分别为栅极G、漏极D、源极S。和普通MOS 管一样,它也有:耗尽型:栅极电压为零时,即存在导电沟道。无论VGS 正负都起控制作用。增强型:需要正偏置栅极电 压,才生成导电沟道。达到饱和前,VGS 正偏越大,IDS 越大。一般使用的功 率MOSFET 多数是N 沟道增强型。而且不同于一般小功率MOS 管的横向导电 结构,使用了垂直导电结构,从而提高了耐压、电流能力,因此又叫VMOSFET。 二.功率场效应管的特点:这种器件的特点是输入绝缘电阻大(1 万兆欧以上),栅极电流基本为零。驱动功率小,速度高,安全工作区宽。但高压时, 导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。适合低压 100V 以下,是比较理想的器件。目前的研制水平在1000V/65A 左右(参考)。 其速度可以达到几百KHz,使用谐振技术可以达到兆级。 三.功率场效应管的参数与器件特性:无载流子注入,速度取决于器件的电 容充放电时间,与工作温度关系不大,故热稳定性好。(1)转移特性:ID 随UGS 变化的曲线,成为转移特性。从下图可以看到,随着UGS 的上升,跨导 将越来越高。

GaN功率器件的发展现状

摘要:首先从器件性能和成本等方面分析了为何GaN功率器件是未来功率电子应用的首选技术方案,GaN功率器件具有无可比拟的性能优势,通过采用价格低且口径大的Si衬底,有望实现与硅功率器件相当的价格。其次,简要介绍了GaN功率器件的市场和行业发展现状,市场空间很大,除了专注GaN的新进公司外,世界排名靠前的功率半导体企业也纷纷涉足。随后,从材料、器件技术、功率集成技术和可靠性四个方面分别简要介绍了GaN功率器件的技术发展现状。最后,简要列举了部分企业推出GaN功率器件产品的现状。 1 引言 近年来GaN功率器件已经成为了学术界和工业界共同关注和着力研发的热点,特别是Si基GaN功率器件已成为GaN在未来功率电子应用中的首选技术方案,原因如下: 从理论上来讲,与硅类功率器件的性能相比,GaN功率器件的性能具有十分明显的优势。首先,转换效率很高,GaN的禁带宽度是硅的3倍,临界击穿电场是硅10倍,因此,同样额定电压的GaN功率器件的导通电阻比硅器件低1000倍左右,大大降低了开关的导通损耗;其次,工作频率很高,GaN的电子渡越时间比硅低10倍,电子速度比在硅中高2倍以上,反向恢复时间基本可以忽略,因此GaN开关功率器件的工作频率可以比硅器件提升至少20倍,大大减小了电路中储能元件如电容、电感的体积,从而成倍地减小设备体积,减少铜等贵重原材料消耗,开关频率高还能减少开关损耗,进一步降低电源总的能耗;第三,工作温度很高,GaN的禁带宽度高达3.4eV,本征电子浓度极低,电子很难被激发,因此理论上GaN器件可以工作在800℃以上的高温。 除了上述的GaN功率器件本身的性能优势外,还有如下原因:首先,Si的价格低,具有明显的价格优势;其次,通过外延技术可在更大尺寸的Si 衬底上得到GaN外延片,为GaN 功率器件的产业化与商业化提供了更大的成本优势;第三,大尺寸的GaN-on-Si晶圆可使用已有的成熟的Si 工艺技术和设备,实现大批量的低成本的GaN器件制造;最后,Si基GaN 器件可与Si基的光电器件和数控电路等集成,利于形成直接面对终端应用的功能性模块。 2 市场和行业发展现状 据YoleDeveloppement的报告“Power GaN 2012” [1],GaN功率器件有巨大的市场空间,2011年半导体功率器件市场空间约为177亿,预计到2020年该市场空间会增加8.1%,达到357亿。应用GaN功率器件的电源市场可能在2014年启动,然后迎来一个高速发展期,到2020年,不含国防预算有望实现20亿美元的销售。 目前,50%功率器件的生产线是6英寸的,很多工厂正在转投8英寸生产线,2011年Infineon成为第一家引进12英寸生产线的工厂。GaN功率器件也进入了发展期,除了专注GaN的新进公司(如:EPC、Transphorm和Micro GaN等)外,世界排名靠前的功率半导体企业也纷纷介入GaN功率器件,有曾做硅的企业如IR、Furukawa、Toshiba和Sanken等,有曾做化合物半导体的企业如Infineon、RFMD、Fujitsu和NXP等,有做LED和功率器件的企业如Panasonic、Sumsung、LG和Sharp等。对于GaN功率器件供应商,IDM已成主流业态,如IR、Panasonic、Sanken和Transphorm等均是IDM企业。目前,对GaN功率器件企业的投资额还在不断增长,2012年7月AZZURRO融资了260万欧元发展8寸GaN-on-Si 外延片,同年10月Transphorm又筹集了3500万美元发展GaN功率器件,今年5月UK政府资助NXP 200万英镑在Hazel Grove发展GaN功率器件。

功率场效应晶体管(MOSFET)基本知识.

功率场效应晶体管(MOSFET)基本知识 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电 压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空 航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适 用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面, 横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如 图1(a)所示。电气符号,如图1(b)所示。 电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压UGS,并且使UGS大于或等于管子的开启电压UT,则管子开通,在漏、源极间流过电流ID。UGS超过UT越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数

氮化镓功率器件-2016版

《氮化镓功率器件-2016版》 POWER GaN 2016: EPITAXY AND DEVICES, APPLICATIONS, AND TECHNOLOGY TRENDS 购买该报告请联系: 麦姆斯咨询王懿 电子邮箱:wangyi#https://www.360docs.net/doc/89141677.html,(#换成@) 氮化镓(GaN)功率器件:一个有前途的、快速增长的市场 氮化镓功率器件市场持续增长,好消息不断 2015~2016年氮化镓(GaN)功率器件市场一直保持增长势头,令人信心满满。截止2014年底,尽管多家厂商发布了一些产品进展公告,但是600V / 650V氮化镓高电子迁移率场效晶体管(HEMT)的商业可用性还存在问题。快到2016年时,终端用户不仅可以从Effcient Power Conversion公司购买到低压(小于200V)氮化镓器件,也可以从Transphorm、GaN Systems和Panasonic等公司购买到高压(600V / 650V)氮化镓器件。 另外,2016年3月初创公司Navitas Semiconductor发布了氮化镓功率IC,随后Dialog Semiconductors于2016年8月发布了氮化镓功率IC。还有一些厂商也想将氮化镓从功率半导体引入更大的模拟IC市场。例如,Effcient Power Conversion公司和GaN Systems公司都在研发一个更加集成化的解决方案,模拟IC领头羊——德州仪器(Texas Instruments)已经涉足氮化镓领域,并在2015年和2016年分别发布了80V功率级和600V功率级产品。 尽管有上述令人振奋的产业发展,但是相比巨大的硅基半导体市场(3350亿美元),氮化镓功率器件市场仍显得很小。事实上,根据Yole调研数据显示,2015年氮化镓功率器件市场低于1000万美元。但是,请再三打量“氮化镓”,它刚刚在市场上抛头露面,所以目前的市场规模是合理的。首个氮化镓器件直到2010年才实现商用,可见氮化镓行业才仅仅6岁。更重要的是氮化镓的未来市场潜力:预计氮化镓功率器件市场将在2021年达到3亿美元,2016~2021年的复合年增率为86%。本报告提供氮化镓功率器件市场及应用,以及未来发展趋势。

N沟道增强型高压功率MOS场效应晶体管SVD4N60D(F)(FG)(T)说明书_1.4-L

SVD4N60D/F(G)/T 说明书
4A、600V N沟道增强型场效应管
描述
SVD4N60D/F(G)/T N沟道增强型高压功率MOS场效应晶体 管采用士兰微电子的S-RinTM平面高压VDMOS 工艺技术制造。 先进的工艺及条状的原胞设计结构使得该产品具有较低的导通电 阻、优越的开关性能及很高的雪崩击穿耐量。 该产品可广泛应用于 AC-DC 开关电源,DC-DC 电源转换 器,高压 H 桥 PWM 马达驱动。
特点
? ? ? ? ?
4A,600V,RDS(on)(典型值)=2.0 Ω@VGS=10V 低栅极电荷量 低反向传输电容 开关速度快 提升了 dv/dt 能力
命名规则
产品规格分类
产 品 名 称 SVD4N60T SVD4N60F SVD4N60FG SVD4N60D SVD4N60DTR 封装形式 TO-220-3L TO-220F-3L TO-220F-3L TO-252-2L TO-252-2L 打印名称 SVD4N60T SVD4N60F SVD4N60FG SVD4N60D SVD4N60D 材料 无铅 无铅 无卤 无铅 无铅 包装 料管 料管 料管 料管 编带
https://www.360docs.net/doc/89141677.html,
版本号:1.4
2011.09.01 共9页 第1页

SVD4N60D/F(G)/T 说明书
极限参数(除非特殊说明,TC=25°C)
参数名称 漏源电压 栅源电压 漏极电流 漏极脉冲电流 耗散功率(TC=25°C) - 大于 25°C 每摄氏度减少 单脉冲雪崩能量(注 1) 工作结温范围 贮存温度范围 TC=25°C TC=100°C 符号 VDS VGS ID IDM PD EAS TJ Tstg 100 0.8 参数范围 SVD4N60T SVD4N60F(G) 600 ±30 4.0 2.5 16 33 0.26 276 -55~+150 -55~+150 77 0.62 SVD4N60D 单位 V V A A W W/°C mJ °C °C
热阻特性
参数名称 芯片对管壳热阻 芯片对环境的热阻 符号 RθJC RθJA 参数范围 SVD4N60T 1.25 62.5 SVD4N60F(G) 3.85 120 SVD4N60D 1.61 110 单位 °C/W °C/W
关键特性参数(除非特殊说明,TC=25°C)
参 数 漏源击穿电压 漏源漏电流 栅源漏电流 栅极开启电压 导通电阻 输入电容 输出电容 反向传输电容 开启延迟时间 开启上升时间 关断延迟时间 关断下降时间 栅极电荷量 栅极-源极电荷量 栅极-漏极电荷量 符号 BVDSS
B
测试条件 VGS=0V,ID=250μA VDS=600V,VGS=0V VGS=±30V,VDS=0V VGS= VDS,ID=250μA VGS=10V, ID=2A VDS=25V,VGS=0V, f=1.0MHZ VDD=300V,ID=4A, RG=25Ω (注 2,3) VDS=480V,ID=4A, VGS=10V (注 2,3)
最小值 600 --2.0 ------------
典型值 ----2.0 672 66 4.7 27 19 160 22 19.8 4 7.2
最大值 -10 ±100 4.0 2.4 -----------
单位 V μA nA V Ω
IDSS IGSS VGS(th) RDS(on) Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd
pF
ns
nC
https://www.360docs.net/doc/89141677.html,
版本号:1.4
2011.09.01 共9页 第2页

功率场效应晶体管MOSFET基本知识

功率场效应晶体管(MOSFET)基本知识功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。 电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压UGS,并且使UGS大于或等于管子的开启电压UT,则管子开通,在漏、源极间流过电流ID。UGS超过UT越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数

绝缘栅场效应晶体管工作原理及特性

绝缘栅场效应晶体管工作原理及特性 场效应管(MOSFET)是一种外形与普通晶体管相似,但控制特性不同的半导体器件。它的输入电阻可高达1015W,而且制造工艺简单,适用于制造大规模及超大规模集成电路。场效应管也称为MOS管,按其结构不同,分为结型场效应晶体管和绝缘栅场效应晶体管两种类型。在本文只简单介绍后一种场效应晶体管。 绝缘栅场效应晶体管按其结构不同,分为N沟道和P沟道两种。每种又有增强型和耗尽型两类。下面简单介绍它们的工作原理。 1、增强型绝缘栅场效应管 2、图6-38是N沟道增强型绝缘栅场效应管示意图。 在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,称为漏极D和源极S如图6-38(a)所示。然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装一个铝电极,称为栅极G。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。它的栅极与其他电极间是绝缘的。图6-38(b)所示是它的符号。其箭头方向表示由P(衬底)指向N(沟道)。 图6-38 N沟道增强型场效应管 场效应管的源极和衬底通常是接在一起的(大多数场效应管在出厂前已联结好)。从图 6-39(a)可以看出,漏极D和源极S之间被P型存底隔开,则漏极D和源极S之间是两个背靠背的PN结。当栅-源电压UGS=0时,即使加上漏-源电压UDS,而且不论UDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流ID≈0。 若在栅-源极间加上正向电压,即UGS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同时P衬底中的电子(少子)被吸引到衬底表面。当UGS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图6-39(b)所示。UGS增加时,吸引到P衬底表面层的电子就增多,当UGS达到某一数值时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图6-39(c)所示。UGS越大,作用于半导体表面的电场就越强,吸引到P衬底

场效应管工作原理

场效应管工作原理(1) 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109?)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表 材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 三、场效应管的参数 场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数: 1、I DSS — 饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS =0时的漏源电流。 2、U P — 夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。 3、U T — 开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、g M — 跨导。是表示栅源电压U GS — 对漏极电流I D 的控制能力,即漏极电流I D 变化量与栅源电压U GS 变化量的比值。g M 是衡量场效应管放大能力的重要参数。 5、BU DS — 漏源击穿电压。是指栅源电压U GS 一定时,场效应管正常工作所能承受的最大漏源电压。这是一 项极限参数,加在场效应管上的工作电压必须小于BU DS。

晶体管分类及对应型号

一)晶体管的结构特性 1.晶体管的结构晶体管内部由两PN结构成,其三个电极分别为集电极(用字母C或c表示),基极(用字母B或b表示)和发射极(用字母E或e表示)。如图5-4所示,晶体管的两个PN结分别称为集电结(C、B极之间)和发射结(B、E极之间),发射结与集电结之间为基区。 根据结构不同,晶体管可分为PNP型和NPN型两类。在电路图形符号上可以看出两种类型晶体管的发射极箭头(代表集电极电流的方向)不同。PNP型晶体管的发射极箭头朝内,NPN型晶体管的发射极箭头朝外。 2.三极管各个电极的作用及电流分配晶体管三个电极的电极的作用如下: 发射极(E极)用来发射电子; 基极(B极)用来控制E极发射电子的数量; 集电极(C极)用业收集电子。 晶体管的发射极电流IE与基极电流IB、集电极电流IC之间的关系如下:IE=IB+IC 3.晶体管的工作条件晶体管属于电流控制型半导体器件,其放大特性主要是指电流放大能力。所谓放大,是指当晶体管的基极电流发生变化时,其集电极电流将发生更大的变化或在晶体管具备了工作条件后,若从基极加入一个较小的信号,则其集电极将会输出一个较大的信号。 晶体管的基本工作条件是发射结(B、E极之间)要加上较低的正向电压(即正向偏置电压),集电结(B、C极之间)要加上较高的反向电压(即反向偏置电压)。晶体管各极所加电压的极性见图5-5。 晶体管发射结的正向偏置电压约等于PN结电压,即硅管为0.6~0.7V,锗管为0.2~0.3V。集电结的反向偏置电压视具体型号而定。 4.晶体管的工作状态晶体管有截止、导通和饱和三种状态。 在晶体管不具备工作条件时,它处截止状态,内阻很大,各极电流几乎为0。 当晶体管的发射结加下合适的正向偏置电压、集电结加上反向偏置电压时,晶体管导通,其内阻变小,各电极均有工作电流产生(IE=IB+IC)。适当增大其发射结的正向偏置电压、使基极电流IB增大时,集电极电流IC和发射极电流IE也会随之增大。 当晶体管发射结的正向偏置电压增大至一定值(硅管等于或略高于0.7V,锗管等于或略高于0.3V0时,晶体管将从导通放大状态进入饱和状态,此时集电极电流IC将处于较大的恒定状态,且已不受基极电流IB控制。晶体管的导通内阻很小(相当于开关被接通),集电极与发射极之间的电压低于发射结电压,集电结也由反偏状态变为正偏状态。 (二)高频晶体管 高频晶体管(指特征频率大于30MHZ的晶体管)可分为高频小功率晶体管和高频大功率晶体管。 常用的国产高频小功率晶体管有3AG1~3AG4、3AG11~3AG14、3CG3、3CG14、3CG21、3CG9012、3CG9015、3DG6、3DG8、3DG12、3DG130、3DG9011、3DG9013、3DG9014、3DG9043等型号,部分国产高频小功率晶体管的主要参数见表5-1。 常用的进口高频小功率晶体管有2N5551、2N5401、BC148、BC158、BC328、BC548、BC558、9011~9015、S9011~S9015、TEC9011~TEC9015、2SA1015、2SC1815、2SA562、2SC1959、2SA673、2SC1213等型号。表5-2是各管的主要参数。 2.高频中、大功率晶体管高频中、大功率晶体管一般用于视频放大电路、前置放大电路、互补驱动电路、高压开关电路及行推动等电路。 常用的国产高频中、大功率晶体管有3DG41A~3DG41G、3DG83A~3DG83E、3DA87A~3DA87E、3DA88A~3DA88E、3DA93A~3DA93D、3DA151A~3DG151D、3DA1~3DA5、3DA100~3DA108、3DA14A~3DA14D、3DA30A~3DA30D、3DG152A~3DG152J、3CA1~3CA9等型号。表5-3是各管的主要参数。 常用的进口高频中、大功率晶体管有2SA634、2SA636、2SA648A、2SA670、2SB940、2SB734、2SC2068、2SC2258、2SC2371、2SD1266A、2SD966、2SD8829、S8050、S8550、BD135、

相关文档
最新文档