印刷偶极子天线设计

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

宽带印刷偶极子天线设计

宽带印刷偶极子天线设计 何庆强何海丹 (中国西南电子技术研究所,成都610036) 摘要:构建了一个宽带印刷偶极子天线,基于等效电路模型进行分析,给出了一套完整的设计计算公式。采用该方法进行设计,可一次成功,不必进行参数扫描和优化。给出的例子所得天线带宽达到54.15%,优于最新的国内外报道。 关键词:偶极子,巴伦,等效电路,宽带 Design of a Broadband Printed Dipole Antenna He Qingqiang He Haidan (Southwest China Institute of Electronic Technology, Chengdu 610036) Abstract: A broadband printed dipole antenna is created. Based on the analysis of equivalent circuit model, a perfect designing calculated process is given. Applying the proposed method, the dipole design can be successful once time and doesn’t need parameter tune and optimization. The designed dipole obtains a 54.15% bandwidth and has a better wideband characteristic compared with recent reports. Keywords: Dipole; Balun; Equivalent circuit; Broadband 1 引言 印刷巴伦偶极子天线最早研究起源于1974年[1]。最近几年的研究表明:通过快速的单元模型分析 计算,天线带宽可以达到18%[2];通过采用V形地平面,天线带宽可以达到33%以上[3];通过神经网络参数优化,天线的带宽可以达到40%[4];采用等效电路优化结合周期性加载原理,印刷偶极子天线的带宽可以达到47.8%[5]。 在这篇文章里,我们基于等效电路模型进行分析,计算出了偶极子天线的物理参数尺寸。采用该方法进行设计,可一次成功,无须参数优化,所得天线的带宽可达54.15%,优于文献[1-5]给出的设计结果。2 等效电路模型分析与设计 图1给出了偶极子天线的几何结构及其参数。图中实线部分为天线结构示意图,该天线印刷在厚度为h,介电常数为 r ε的介质板上。印刷振子辐射臂长为L t,宽为L w;振子的下底长为L H,宽为L d。在振子的中间,刻有一纵向长槽,长为L ab,宽为S w。该天线采用标准的50欧SMA馈电。

矩形微带天线设计与分析

矩形微带天线设计与分析 万聪,沈诚诚, 王一平 2011级通信2、4班 沈诚诚:主要负责资料准备与整理 王一平:主要负责论文的格式与后期资料扩充 万聪:主要负责设计模型 三人共同学习hfss软件设计模型,共同参与讨论编写论文,发扬团结合作的精神,克服所遇到问题,完成好老师布置的作业。 摘要:微带天线以其体积小、重量轻、低剖面等独特的优点引起了相关领域的广泛重视,已经被广泛应用在1OOMHz—1OOGHz的宽广频域上的大量的无线电设备中。本文介绍了一种谐振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。本论文给出了详细的设计流程:根据理论经验公式初步计算出矩形微带天线的尺寸,然后在HFSS里建模仿真,根据仿真结果反复调整天线的尺寸,直到仿真结果中天线的中心频率不再偏离2.44GHz为止。微带天线固有的缺陷是窄带性,它的窄带性主要是受尺寸的影响,在不改变天线中心频率的前提下,通过理论经验公式与仿真软件的结合,给出了微带天线比较合理的尺寸。通过HFSS 13.0软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:微带天线、谐振频率、HFSS

Abstract: the microstrip antenna has attracted wide attention from related fields with the advantages of small volume, light weight, low profile, unique, a lot of radio equipment has been widely applied in broad frequency range 1OOMHz - 1OOGHz of the. This paper introduces a 2.45GHz resonant frequency, input impedance of the antenna for the rectangular microstrip antenna using a 50 ohm coaxial feed. This paper gives a detailed design process: according to the theory of empirical formula calculated the size of rectangular microstrip antenna, then modeling and Simulation in HFSS, repeated adjustment according to the simulation results of the antenna size, until the simulation results in the center frequency antenna can not depart from the 2.44GHz to stop. The inherent defects of microstrip antenna is narrow, narrow band it is mainly affected by the size, in the premise of not changing the antenna center frequency, through a combination of theoretical formula and simulation software, the reasonable size of microstrip antenna. The antenna is simulated by HFSS 13 software, optimization, and ultimately get the best performance. Keywords: microstrip antenna, resonant frequency, HFSS

900MHz同轴馈电矩形微带天线设计与HFSS仿真

900MHz 同轴馈电矩形微带天线设计与HFSS 仿真 微带天线它是在一块厚度远小于工作波长的介质基片的一面敷以金属辐射片、一面敷以金属薄层做接地板而成。辐射片可以根据不同的要求设计成各种形状。 微带天线馈电有多种馈电方式,如微带线馈电、同轴线馈电、耦合馈电和缝隙馈电等。其中,最常用的是微带线馈电和同轴线馈电两种馈电方式。 同轴线馈电又称背馈,它是将同轴插座安装在接地板上,同轴线内的导体穿过介质基片接在辐射贴片上。若寻取正确的馈电点位置,就可以获得良好的匹配。 1 矩形微带天线的特性参数 1.1 微带辐射贴片尺寸估算 设计微带天线的第一步是选择合适的介质基片,假设介质的介电常数为r ε,对于工作频率f 的矩形微带天线,可以用下式设计出高效率辐射贴片的宽度ω,即为: 2 1 )2 1(2-+=r f c εω(1) 式中,c 是光速,8 10*3=c 。 辐射贴片的长度一般取为 2 e λ,e λ是介质内的导波波长,即为: e e f c ελ= (2) 式中,e ε是有效介电常数,即为: 2 1 )121(2 1 2 1 -+-+ += ω εεεh r r e (3) 考虑到边缘缩短效应后,实际上的辐射单元长度L 应为: L f c L e ?-= 22ε(4) 式中,L ?是等效辐射缝隙长度,即为: ) 8.0)(258.0() 264.0)(3.0(412.0+-++=?h h h L e e ωεωε(5)

2. 同轴馈电矩形微带天线设计 在使用同轴馈电时,在阻抗匹配方面,在主模10TM 工作模式下,馈电点在矩形辐射贴片长度L 方向边缘处(x=±L/2)的输入阻抗最高,约为100Ω-400Ω。馈电点在宽度ω方向的位移对输入阻抗的影响很小。但在宽度方向上偏离中心位置时,会激发n TM 1模式,增加天线的交叉极化辐射。因此,宽度方向上馈电点的位置一般取在中心点。 由下式可以近似计算出输入阻抗为50Ω时的馈电点的位置: )1 1(2 1re L L ξ- = (6) 式中, 2 1 )121(21 2 1 )(-+-+ += L h L r r re εεξ(7) 3. 设计要求 使用HFSS 设计中心频率为915MHz 的矩形微带天线,并给出天线参数。介质基片采用厚度为1.6mm 的RF4环氧树脂板,天线馈电方式采用50Ω同轴线馈电。 x 图1 同轴馈电俯视图 天线初始尺寸的计算: 辐射贴片宽度:mm 77.99=ω 辐射贴片长度:mm L 89.77= 50Ω匹配点初始位置1L ,计算出初始位置后,然后再使用HFSS 的参数扫描分析和优化设计功能,分析给出50Ω匹配点的实际位置即可,mm L 91.191=。

半波偶极子天线的HFSS仿真设计

天线原理与设计华中科技大学 半波偶极子天线的HFSS仿真设计 一、实验目的 1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法; 2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法; 3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图 特性等; 4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法; 二、实验仪器 1、装有windows系统的PC一台 2、HFSS13.0软件 3、截图软件 三、实验原理 1、首先明白一点:半波偶极子天线就是对称阵子天线。 图1 对称振子对称结构及坐标 2、对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为a,长度为l。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。对称振子的长度与波长相比拟,本身已可以构成实用天线。 3、在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。取图1的坐标,并忽略振子损耗,则其电流分布可以表示为: 式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心点对称;超过半波长就会出现反相电流。 4、在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

图2 对称振子辐射场的计算 如图2 所示,电流元I(z)所产生的辐射场为 其中 5、方向函数 四、实验步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 提前定义对称阵子天线的基本参数并初始化 2、创建偶极子天线模型,即圆柱形的天线模型。 其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。 3、设置端口激励 半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个沿Z轴放置的圆柱模型,材质为空气。把圆柱体的表面设置为辐射边界条件。 5、外加激励求解设置 分析的半波偶极子天线的中心频率在3G Hz,同时添加2.5 G Hz ~3.5 G Hz频段内的扫频设置,扫频类型为快速扫频。

矩形微带天线设计

班级: 姓名: 学号: 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

1微带天线简介 微带天线的概念首先是有Deschaps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期造出了实际的微带天线。微带天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。 假设矩形贴片的有效长度设为L e ,则有 L e =λg /2 式中,λg 表示导波波长,有 λg =λ0/ε 式中,λ0表示自由空间波长;εe 表示有效介电常数,且 εe =21)121(2121-+-++w h εε 式中,εr 表示介质的相对介电常数;h 表示介质厚度;w 表示微带贴片的宽度。 因此,可计算出矩形贴片的实际长度L ,有 L=L e -2ΔL=λ0/e ε-2ΔL=2102-e f c εΔL 式中,c 表示真空中的光速;f 0表示天线的工作频率;ΔL 表示等效的辐射缝隙的长度,且有 ΔL=0.412h ()()()() 8.0264.0258.03.0++-+h W h W εε 矩形贴片的宽度W 可以由下式计算, W=21 2102-??? ??+εf c 对于同轴线馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。在微波应用中通常是使用50Ω的标准阻抗,因此需要确定馈点的位置使天线的输入阻抗等于50Ω.对于如图所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心以(x f ,y f )表示馈点的位置坐标。

对于TM 10模式,在W 方向上的电场强度不变,因此理论上的W 方向上的任一点都可以作为馈点,为了避免激发TM 1n 模式,在W 方向上的馈点的位置一般取在中心点,即 y f =0 在L 方向上电场有λg /2的改变,因此在长度L 方向上,从中心点到两侧,阻抗逐渐变大;输入阻抗等于50Ω时的馈点可以由下式计算, x f =) (2L L ξ 式中, )121(2121 21)(l h L +--++=εεξ 上述分析都是基于参考地平面是无限大的基础上的,然而实际设计中,参考地都是有限面积的,理论分析证明来了当参考地平面比微带贴片大出6h 的距离时,计算结果就可以达到足够的准确,因此设计中参考地的长度L GND 和宽度W GND 只需要满足以下条件即可, L GND ≥L+6h W GND ≥W+6h 2设计指标和天线结构参数计算 我这次设计的矩形微带天线工作于ISM 频段,其中心频率为 2.45GHz ;无线局域网(WLAN )、蓝牙、ZigBee 的无线网络均可以工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr =3.38,厚度h=5mm ;天线使用同轴线馈电。微带天线的三个关键参数如下:工作频率f 0=2.45GHz ;介质板材的相对介电常数εr =3.38;介质厚到h=5mm 。 1.矩形贴片的宽度W 把c=3.0×108 m/s ,f0=2.45GHz ,εr =3.38带入,可以计算出微带天线矩形贴片的宽度,即 W=0.0414m=41.4mm

印刷偶极子天线FSS仿真研究报告

印刷偶极子天线设计及振子长度对天线特性影响的研究 温州大学 愚 公 2012年10月20日 一、 所用仪器 1、装有windows XP系统的PC一台 2、HFSS10.0仿真软件 二、 操作步骤 1、设计变量 设置求解类型为Driven Model 类型,并设置长度单位为毫米。 定义对称偶极子天线的基本参数并初始化,如下表。 2、创建印刷偶极子天线模型如图。其中另外一个臂是通过坐标轴复制来实现的。过程 省略。

3、设置端口激励 印刷偶极子天线由中心位置馈电。 4、设置辐射边界条件 要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。这里创建一个长方体设置为辐射边界条件。 5、外加激励求解设置 设计的印刷偶极子天线的中心频率在2.45G Hz,同时添加2.0G Hz ~3.0G Hz频段内的扫频设置,扫频类型为快速扫频。 三、 实验结果 1、回波损耗S11 回波损耗回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射,是天线设计需要关注的参数之一。HFSS10.0的设置方法与HSFF13有较大区别,具体步骤 如下面三个图所示:

其余各项结果的输出基本类似。以下不再赘述。

图中所示是在2G Hz ~3 G Hz频段内的回波损耗,设计的印刷偶极子天线中心频率约为2.45G Hz。 2、电压驻波比VSWR 电压驻波比VSWR,是指驻波的电压峰值与电压谷值之比。 由图可以看到在2.45GHz附近时,电压驻波比约为1.1,说明此处接近行波,传输特性比较理想。 3、smith圆图 史密斯圆图是一种计算阻抗、反射系数等参量的简便图解方法。采用双线性变换,

矩形微带天线

一.微带天线简介 微带天线的概念首先是有Deschaps于1953年提出来的,经过20年左右的发展,Munson和Howell于20世纪70年代初期造出了实际的微带天线。微带天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。 上图是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介点常数ε和损耗正切tanδ、介质的长度LG和宽度WG。图中所示的天线是采用微带线来馈电的,本次我要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层与辐射元相连接。 对于矩形贴片微带天线,理论分析时采用传输线模型来分析其性能。矩形贴片微

带天线的工作模式是TM 10模,意味着电场在长度L 方向上有λg /2的改变,而在 宽度W 方向上保持不变,如图所示,在长度方向上可以看成有两个终端开路的缝隙辐射出电磁能量,在宽度方向的边缘由于终端开路,所以电压值最大电流值最小。从图中可以看出微带线边缘的电场可以分解成垂直参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。 假设矩形贴片的有效长度设为L e ,则有 L e =λg /2 式中,λg 表示导波波长,有 λg =λ0/ε 式中,λ0表示自由空间波长;εe 表示有效介电常数,且 εe =21)121(2121-+-++w h εε 式中,εr 表示介质的相对介电常数;h 表示介质厚度;w 表示微带贴片的宽度。 因此,可计算出矩形贴片的实际长度L ,有 L=L e -2ΔL=λ0/e ε-2ΔL= 2102-e f c εΔL 式中,c 表示真空中的光速;f 0表示 ΔL 表示等效的辐射缝隙的长度,且有 ΔL=0.412h ()()()() 8.0264.0258.03.0++-+h W h W εε 矩形贴片的宽度W 可以由下式计算, W=21 2102-??? ??+εf c 对于同轴线馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。在微波应用中通常是使用50Ω的标准阻抗,因此需要确定馈点的位置使天线的输入阻抗等于50Ω. 对于如图所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心以 (x f ,y f )表示馈点的位置坐标。

CST-偶极子相控阵天线的仿真及优化

实验报告 学生:学号:指导教师: 实验地点:实验时间: 一、实验室名称: 二、实验项目名称:微波工程CAD实验 三、实验学时:20 四、实验原理: CST仿真软件是基于有限积分法,将整个计算区域离散化并进行数值计算,模拟各种实际器件得出场分布及其各种参数的特性曲线,最后可根据实际要求对所得结果进行优化,得出最优化下的器件尺寸参数。 本次实验利用CST对偶极子相控阵天线及微带到波导转换模型进行了仿真模拟,以此来掌握CST的应用。 五、实验目的: 了解并掌握CST仿真软件的基本操作,学习利用CST仿真软件进行一些简单的工程设计。 六、实验容: 第一题偶极子相控阵天线的仿真与优化:①偶极子天线尺寸如下图,在4~12GHz的频率围,请优化单个偶极子天线的工作频率谐振在f0=8GHz,待优化的变量Lambda初值取为29mm,绘出在该工作频率点的方向图;②将该单个天线在x和y方向分别以Lambda/4作为空间间隙、以90度作为相位间隙,扩展成一个2*2的相控阵天线阵,请使用三种方法计算该天线阵的方向图;③对结果进行比较、分析和讨论。

第二题微带到波导转换的仿真与优化:在26~30GHz频率围优化下图微带到波导的转换,使全频带反射最小,并绘出中心频点28GHz的电场、磁场与表面电流的分布;微带是Duroid5880基片,介电常数2.2,基片厚0.254mm,金属层厚0.017mm,介质上的空气尺寸3*1*8mm,标准50欧姆微带线宽0.77mm;波导是Ka波段的BJ320波导,尺寸7.112*3.556*10mm;L 是微带基片底面到波导短路面距离,W0*L0是伸入波导中的微带探针的宽与长,W1*L1是第一段变阻线的宽与长,W2*L2是第二段变阻线的宽与长,7个待优化变量可取下图给的初值。 七、实验器材(设备、元器件): 台式计算机;CST Design Environment 2009仿真软件;U盘(学生自备)。 八、实验步骤: 第一题:偶极子相控阵天线的仿真 a.单个偶极子天线模型 单个偶极子天线方向图

矩形微带贴片天线设计及仿真

《现代电子电路》课程设计题目矩形微带天线的设计与仿真 单位(院、系):信息工程学院 学科专业: 电子与通信工程 学号:416114410159 姓名:曾永安 时间:2011.4.25

矩形微带天线的设计与仿真 学科专业:电子与通信工程学号:416114410159 姓名:曾永安指导老师:吴毅强 摘要:本文介绍了一种谢振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。通过HFSS V10软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:HFSS,微带线,天线

Design and Simulation of Rectangular Microstrip Antenna Abstract:This paper introduces a rectangular microstrip antenna which works at resonance frequency of 2.45GHz and antenna input impedance of 50Ω and is fed by coaxial cable. The model of the antenna is set up a nd simulated by ANSOFT HFSS V10 ,and the optimal parameters of the microstrip antenna are obtained as well. Key words:HFSS,Microstrip,Antenna

1.引言 微带天线的概念首先是由Deschamps于1953年提出来的,经过20多年的发展,Munson和Howell于20世纪70年代初期制造了实际的微带天线。微带天线结构简单,体积小,能与载体共形, 能和有源器件、电路等集成为统一的整体,已被大量应用于100MHz~100GHz宽频域上的无线电设备中, 特别是在飞行器和地面便携式设备中得到了广泛应用。微带天线的特征是: 比通常的微波天线有更多的物理参数, 可以有任意的几何形状和尺寸;能够提供50Ω输入阻抗,不需要匹配电路或变换器;比较容易精确制造, 可重复性较好;可通过耦合馈电, 天线和RF电路不需要物理连接;较易将发射和接收信号频段分开;辐射方向图具有各向同性。本文设计的矩形微带天线工作于ISM频段,其中心频率为2.45GHz;无线局域网、蓝牙、ZigBee等无线网络均可工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr=3.38,厚度h=5mm;天线使用同轴线馈电。 2.微带贴片天线理论分析 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介电常数 r和损耗角正切tanδ、介质层的长度LG和宽度WG。图1所示的微带贴片天线采用微带线馈电,本文将要设计的矩形微带天线采用的是同轴线馈电,也就是将同轴线街头的内芯线穿过参考点和介质层与辐射元相连接。 图1 微带天线的结构

平面印刷天线的设计

编号 潍坊学院 毕业设计技术报告 课题名称:平面印刷天线的设计 学生姓名:胡郭伟 学号: 11021340107 专业:通信工程 班级: 2011级1班 指导教师:李厚荣 2015年6月

平面印刷天线的设计 【摘要】:在本世纪,电子技术和无线通信技术得到了迅速发展。作为现代无线通信系统中的重要组成部分,它们经常需要具有小天线,多频带和宽带特性。目前,由于采用先进的印刷电路板技术和工艺,印刷天线,因为易加工,重量轻,低轮廓,容易与有源器件和微波电路集成的特点已经广泛的关注和研究。微带贴片天线具有良好的指向性图案,在双极化和圆极化方面容易实现,适合阵列的组合从而得到一个高增益;印刷单极和隙缝天线全向性好,容易实现多频带和宽带特性,这些平面印刷天线被广泛用于雷达,卫星通信,移动通信和其他通信设备之间。因此,对平面印刷天线的研究有着很大的价值和实际意义。在本文中,结合科研的需要和各种无线通信系统的需求,对双极化微带阵列天线和多频带和宽频带平板天线的印刷的相关几个问题展开了研究。本文先是对国内天线技术进行了分析,了解了一下国内外对平面印刷天线的研究的情况,并且了解了对该技术研究的现状,并且重点研究了多层双极化微带阵列天线技术和多频带平面印刷天线设计,并对它们做了一系列的研究的分析。对多层双极化未带阵列天线技术主要分析了单脉冲技术、双极化微带天线、以及阵列的排布方式和其方向图的估算方面。最后并且对结果做了分析。在多频带平面印刷天线设计方面主要讲解了多频段环形单极天线、加载曲折线枝节的矩形环天线和双频段U形环天线方面,并且做了一系列的研究,展示研究结果。研究了多频带平面印刷天线的相关方面。通过在矩形环内部加载直线枝节和曲折线枝节,设计出两种三频带矩形环单极天线,可用于WLAN/WiMAX 2.5/3.5/S.SGHz无线通信。 【关键词】:平面印刷天线微带天线阵列天线单脉冲多频段天线

天线CAD大作业微带天线设计

天线CAD大作业 学院:电子工程学院 专业:电子信息工程

微带天线设计 一、设计要求: (1)工作频带1.1-1.2GHz ,带内增益≥4.0dBi ,VSWR ≤2:1。微波基板介电常数为r ε = 6,厚度H ≤5mm ,线极化。总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等。 (2)拓展要求:检索文献,学习并理解微带天线实现圆极化的方法,尝试将上述天线设计成左旋圆极化天线,并给出轴比计算结果。 二、设计步骤 计算天线几何尺寸 微带天线的基板介电常数为r ε= 6,厚度为 h=5mm,中心频率为 f=1.15GHz,s m /103c 8?=天线使用50Ω同轴线馈电,线极化,则 (1)辐射切片的宽度2 1 )2 1(2-+=r f c w ε=69.72mm (2)有效介电常数2 1)12 1(2 1 2 1 r e - +-+ += w h r εεε=5.33 (3)辐射缝隙的长度) 8.0/)(258.0() 264.0/)(3.0(h 412.0+-++=?h w e h w e L εε=2.20 (4)辐射切片的长度L e f c L ?-=22ε=52.10mm (5)同轴线馈电的位置L1 21 )121(21 2 1)(re - +-++= L h r r L εεξ=5.20 )1 1(21re L L ξ-= =14.63mm 三、HFSS 设计 (1)微带天线建模概述 为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:

微带天线的HFSS设计模型如下: 立体图俯视图 模型的中心位于坐标原点,辐射切片的长度方向沿着x轴,宽度方向沿着y 轴。介质基片的大小是辐射切片的2倍,参考地和辐射切片使用理想导体来代替。对于馈电所用的50Ω同轴线,这用圆柱体模型来模拟。使用半径为0.6mm、坐标为(L1,0,0);圆柱体顶部与辐射切片相接,底部与参考地相接,及其高度使用变量H表示;在与圆柱体相接的参考地面上需要挖一个半径为1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50Ω。模型建立好后,设置辐射边界条件。辐射边界表面距离辐射源通常需要大于1/4波长,1.15GHz时自由空间中1/4个波长约为65.22mm,用变量length 表示。 (2) HFSS设计环境概述 *求解类型:模式驱动求解。 *建模操作 ①模型原型:长方体、圆柱体、矩形面、圆面。 ②模型操作:相减操作 *边界条件和激励 ①边界条件:理想导体边界、辐射边界。 ②端口激励:集总端口激励。 *求解设置:

用ADS设计微带天线

用ADS 设计微带天线 一、原理 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-? ? ? ??+=r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 2 2z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。 二、计算 基于ADS系统的一个比较大的弱点:计算仿真速度慢。特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet中的仿真电路图如下:

S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

GHz矩形微带贴片天线设计

燕山大学 课程设计说明书 题目: 基于ADS的矩形微带贴片天线的设计 学院(系):理学院 年级专业:电子信息科学与技术13 学号: 学生姓名:张凤麒任春宇 指导教师:徐天赋 教师职称:副教授 燕山大学课程设计(论文)任务书 院(系):理学院基层教学单位:电子信息科学与技术13

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。年月日燕山大学课程设计评审意见表

基于ADS的矩形微带贴片天线设计 The Design of Rectangular microstrip patch antenna with ADS 摘要:本文研究了通信系统中的矩形微带贴片天线。首先介绍了矩形微带贴片的背景及微带馈电的设计考虑。使用了安捷伦辅助仿真工具ADS对2GHz矩形微带贴片天线结构及相应的参数进行了设置仿真及优化,尽可能达到其相应的技术指标。 Abstract:This paper studies the rectangular microstrip patch antenna in communication system. Firstly, the background of rectangular microstrip patch and the design considerations of microstrip feed are introduced. The microstrip patch antenna structure and corresponding parameters of 2GHz rectangular microstrip patch antenna are simulated and optimized by ADS, and the corresponding technical index is reached as far as possible. 关键词:矩形微带贴片天线 ADS 设计 Keyword:Rectangular microstrip patch antenna ADS design 一.矩形微带贴片天线的背景 微带贴片天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。微带贴片天线由接地板、介质基片和介质基片上的辐射贴片构成的,其中辐射贴片可以是任意的几何形状,但是只有有限的几何形状能计算出辐射特性,比如矩形,圆形,椭圆形,三角形、半圆形、正方形等比较规则的几何形状,其中矩形和圆形贴片的研究最多,可以作为单独的天线使用也可以作为阵元使用。当然在实际应用中,也有矩形和圆形贴片达不到要求的情况,这就促使了人们对各种几何形状微带贴片天线的研究。本文选用矩形贴片来研究微带天线。

实验五对称振子天线的设计与仿真

实验五对称振子天线的设计与仿真 、实验目的 1. 设计一个对称振子天线 2. 查看并分析该对称振子天线的反射系数及远场增益方向 、实验设备 装有HFSS 软件的笔记本电脑一台 三、实验原理 1、电流分布 对于从中心馈电的偶极子,其两端开路,故电流为零。工程上通常将其电流分布近似为正弦分布。 假设天线沿z 轴放置,其中心坐标位于坐标原点,如图所示,则长度为l 的偶极子天线的电流分布为:I(z)=Imsink(l-|z|) ,其中Im是波腹电流,k波数。对半波偶极子而言l= λ/4. 则半波偶极子的电流分布,可以写成:I(z)=Imsin (π/2 -kz ) =Imcos ( kz )。 首先明白一点:半波偶极子天线就是对称阵子天线。 2、辐射场和方向图 已知半波偶极子天线上的电流分布,可以利用叠加原理来计算半波偶极子天线的辐射场。 式中,

称为半波偶极子的方向性函数。 3、方向系数: 对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。一臂的导线半径为,长度为I 。两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=21。对称振子的 长度与波长相比拟,本身己可以构成实用天线。在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布,忽略振子损耗。根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称; 超过半波长就会出现反相电流。在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z) ,长度为dz 的电流元件串联而成。利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。 四、实验内容 利用HFSS软件设计一个近似理想导体平面的UHF 对称振子天线。 中心频率为,采用同轴线馈电,并考虑平衡馈电的巴伦结构。最后得到反射系数和二维辐射远场仿真结果。 五、实验步骤 . 建立新工程 了方便建立模型,在Tool>Options>HFSS Options 中讲Duplicate Boundaries with geometry 复选框选中。 2. 将求解类型设置为激励求解类型: (1)在菜单栏中点击HFSS>Solution Type 。 (2)在弹出的Solution Type 窗口中 (a)选择Driven Modal 。 (b)点击OK按钮。 3. 设置模型单位 (1)在菜单栏中点击3D Modeler>Units 。 (2)在设置单位窗口中选择:in 。

半波偶极子实验报告

邢台学院 实验报告 课程名称电磁波与天线技术 实验项目 2 偶极子和单极子天线设计授课教师 专业班级 实验时间 学号 学生姓名 系部数学与信息技术学院2015~2016学年度第1学期

●实验学时:4 ●实验目的及要求: 1、掌握偶极子和单极子天线的几个基本参数; 2、使用HFSS设计半波偶极子天线。 3、使用HFSS设计单极子天线。 ●实验环境: 1、Windows操作系统 2、PC连接到Internet 实验容及步骤: 1、新建设计工程。 2、添加和定义设计变量。 3、设计建模。 4、求解设置。 5、设计检查和运行仿真计算。 6、HFSS天线问题的数据后处理。 ●实验结果及体会: 1、建立工程 菜单Project->Insert HFSS Design 2、设置求解模式 菜单HFSS->Solution Type->天线为Driven Modal 3、设置模型尺寸长度单位

菜单Modeler->Units->mm->OK 单位一般设置为毫米mm。 4、添加和定义设计变量。 5、设计建模 1)创建一个沿z轴方向放置的细圆柱体模型作为偶极子天线的一个臂2)通过沿着坐标轴复制,生成偶极子天线的另一个臂。 3)设置端口激励。 4)设置边界条件。

6、求解设置。 7、设计检查和运行仿真计算。 8、HFSS天线问题的数据后处理

1)S11扫频分析: 2)电压驻波比: 3)Smith圆图查看归一化输入阻抗: 4)输入阻抗: m1: m2:

5)方向图: 6)三维方向图: 体会:通过仿真软件对半波偶极子设计仿真,得到符合要求的半波偶极子天线。通过仿真得到了天线的回波损耗,电压驻波比,3D方向增益图等参数。从结果可以看出,当工作波长为100mm时,半波偶极子的谐振点在3Ghz

半波偶极子天线设计

天津职业技术师范大学Tianjin University of Technology and Education 毕业设计 专业: 班级学号: 学生姓名: 指导教师: 二○一三年六月

天津职业技术师范大学本科生毕业设计 半波偶极子天线设计 The Design of the Half Wave Dipole Antenna 专业班级: 学生姓名: 指导教师: 系别: 2013年6月

摘要 近年来,Radio frequency identification(RFID)技术飞速发展并逐渐成为自动物体 识别应用中的主要技术[1].现今有很多种RFID天线类型,如偶极子天线、分形天线、环形槽天线和微带贴片天线等[2].这里着重研究RFID技术中的半波偶极子天线,即是对称振子天线,最常用的是半波振子,偶极子天线是研究天线的基础,具有很多特性,比如辐射特性阻抗特性,波长缩短效应,谐振特性等,它既可作为简单的天线单独使用,又可作为天线阵的单元或面天线的馈源[3-4].所以深入了解半波偶极子天线的设计理论与优化技术是非常重要的.传统的天线设计方法是由设计师根据天线的分析理论以及自己的经验通过编程进行数值计算的方法来确定天线的各参数,这样做不仅花费了大量的时间和精力,而且费用昂贵.本设计采用现代计算机为基础,使用High Frequency Structure Simulator(HFSS)三维电磁仿真软件对半波偶极子天线进行设计及仿真、优化分析方法可以节省时间和精力,设计出符合要求的天线. 论文从课题研究的背景和目的出发,介绍了半波偶极子天线的基本知识、设计原理.随后从设计和实现角度出发,针对半波偶极子天线提出了优化设计方案,并加以仿真并验证.最后依照仿真数据进行实物设计制作并验证其性能. 关键词:3GHz;天线;HFSS10;偶极子天线

2印刷偶极子

附录: 3D模型 回波损耗(S11)

输入阻抗 三维增益方向图

天线臂长对谐振频率的影响 平衡三角形对带宽的影响

印刷偶极子天线 一、实验目的 1.了解印刷偶极子天线的结构 2.学会分析仿真结果 3.了解微波巴伦结构 二、实验原理 1、印刷偶极子天线的结构 如下图为设计的微带巴伦馈线印刷偶极子天线的结构模型,该天线属于半波偶极子天线的变形。整个天线结构大致可以分为5部分,即介质层、偶极子天线臂、微带巴伦线、微带传输线和天线馈电面。 介质层的材质为环氧树脂玻璃纤维板(FR4),其相对介电常数εr =4.4。 在介质层的两面分别敷有良导体的金属传输线,构成偶极子天线的两个臂、微带传输线和微带巴伦线。激励信号从天线馈电点处馈入,经过微带巴伦结构和微带传输线传输到偶极子天线的两个臂。在微带传输线上,电流方向相反,因此不会辐射电磁波。在偶极子天线的两个臂上,金属片的电流方向相同,因此会辐射电磁波。由半波偶极子天线的理论分析可知,天线两个臂的总长度约为1/2个工作波长。 偶极子天线是一个对称结构,传输线上的馈电电流必须是对称分布的。 若是馈线采用双传输线结构,因为双传输线的电流为对称分布,所以天线的电流亦为对称分布。然而,若是馈线采用同轴线结构,因为同轴线内外导体并不对称,所以天线上的电流也不会对称分布,从而会影响天线的性能。为了保证偶极子天线上电流的平衡,通常在天线和同轴线之间插入一个不平衡到平衡的转换器,即微波巴伦,它可以将不平衡的电流转换成平衡的电流。 图中的三角形结构就是一个简单的微波巴伦,它可以实现不平衡到平衡的转换。 2、设计原理及尺寸估算 设计天线的中心频率为2.45GHz,若在自由空间中传播,对应的工作波长约

相关文档
最新文档