机器视觉三大组成部分

机器视觉三大组成部分
机器视觉三大组成部分

机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。

机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。

机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。

将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。

视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到

计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。

图像的获取

图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:

*照明

*图像聚焦形成

*图像确定和形成摄像机输出信号

1、照明

照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少30%的应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。

过去,许多工业用的机器视觉系统用可见光作为光源,这主要是因为可见光容易获得,价格低,并且便于操作。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。但是,这些光源的一个最大缺点是光能不能保持稳定。以日光灯为例,在使用的第一个100小时内,光能将下降15%,随着使用时间的增加,光能将不断下降。因此,如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。

另一个方面,环境光将改变这些光源照射到物体上的总光能,使输出的图像数据存在噪声,一般采用加防护屏的方法,减少环境光的影响。

由于存在上述问题,在现今的工业应用中,对于某些要求高的检测任务,常采用X射线、超声波等不可见光作为光源。但是不可见光不利于检测系统的操作,且价格较高,所以,目前在实际应用中,仍多用可见光作为光源。

照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,照像机拍摄要求与光源同步。

2、图像聚焦形成

被测物的图像通过一个透镜聚焦在敏感元件上,如同照像机拍照一样。所不同的是照像机使用胶卷,而机器视觉系统使用传感器来捕捉图像,传感器将可视图像转化为电信号,便于计算机处理。

选取机器视觉系统中的摄像机应根据实际应用的要求,其中摄像机的透镜参数是一项重要指标。透镜参数分为四个部分:放大倍率、焦距、景深和透镜安装。

3、图像确定和形成摄像机输出信号

机器视觉系统实际上是一个光电转换装置,即将传感器所接收到的透镜成像,转化为计算机能处理的电信号、摄像机可以是电子管的,也可是固体状态传感单元。

电子管摄像机发展较早,20世纪30年代就已应用于商业电视,它采用包含光感元件的真空管进行图像传感,将所接收到的图像转换成模拟电压信号输出。具有RS-170输出制式的摄像机可直接与商用电视显示器相连。

固体状态摄像机是在20世纪60年代后期,美国贝尔电话实验室发明了电荷耦合装置(CCD),而发展起来的。它上分布于各个像元的光敏二极管的线性阵列或矩形阵列构成,通过按一定顺序输出每个二极管的电压脉冲,实现将图像光信号转换成电信号的目的。输出的电压脉冲序列可以直接以RS-170制式输入标准电视显示器,或者输入计算机的内存,进行数值化处理。CCD是现在最常用的机器视觉传感器。

图像处理技术

机器视觉系统中,视觉信息的处理技术主要依赖于图像处理方法,它包括图像增强、数据编码和传输、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于计算机对图像进行分析、处理和识别。

1、图像的增强

图像的增强用于调整图像的对比度,突出图像中的重要细节,改善视觉质量。通常采用灰度直方图修改技术进行图像增强。

图像的灰度直方图是表示一幅图像灰度分布情况的统计特性图表,与对比度紧密相连。

通常,在计算机中表示的一幅二维数字图像可表示为一个矩阵,其矩阵中的元素是位于相应坐标位置的图像灰度值,是离散化的整数,一般取0,1,……,255。这主要是因为计

算机中的一个字节所表示的数值范围是0~255。另外,人眼也只能分辨32个左右的灰度级。所以,用一个字节表示灰度即可。

但是,直方图仅能统计某级灰度像素出现的概率,反映不出该像素在图像中的二维坐标。因此,不同的图像有可能具有相同的直方图。通过灰度直方图的形状,能判断该图像的清晰度和黑白对比度。

如果获得一幅图像的直方图效果不理想,可以通过直方图均衡化处理技术作适当修改,即把一幅已知灰度概率分布图像中的像素灰度作某种映射变换,使它变成一幅具有均匀灰度概率分布的新图像,实现使图象清晰的目的。

2、图像的平滑

图像的平滑处理技术即图像的去噪声处理,主要是为了去除实际成像过程中,因成像设备和环境所造成的图像失真,提取有用信息。众所周知,实际获得的图像在形成、传输、接收和处理的过程中,不可避免地存在着外部干扰和内部干扰,如光电转换过程敏感元件灵敏度的不均匀性、数字化过程的量化噪声、传输过程中的误差以及人为因素等,均会使图像变质。因此,去除噪声,恢复原始图像是图像处理中的一个重要内容。

3、图像的数据编码和传输

数字图像的数据量是相当庞大的,一幅512*512个像素的数字图像的数据量为256K 字节,若假设每秒传输25帧图像,则传输的信道速率为52.4M比特/秒。高信道速率意味着高投资,也意味着普及难度的增加。因此,传输过程中,对图像数据进行压缩显得非常重要。数据的压缩主要通过图像数据的编码和变换压缩完成。

图像数据编码一般采用预测编码,即将图像数据的空间变化规律和序列变化规律用一个预测公式表示,如果知道了某一像素的前面各相邻像素值之后,可以用公式预测该像素值。采用预测编码,一般只需传输图像数据的起始值和预测误差,因此可将8比特/像素压缩到2比特/像素。

变换压缩方法是将整幅图像分成一个个小的(一秀取8*8或16*16)数据块,再将这些数据块分类、变换、量化,从而构成自适应的变换压缩系统。该方法可将一幅图像的数据压缩到为数不多的几十个特传输,在接收端再变换回去即可。

4、边缘锐化

图像边缘锐化处理主要是加强图像中的轮廓边缘和细节,形成完整的物体边界,达到将物体从图像中分离出来或将表示同一物体表面的区域检测出来的目的。它是早期视觉理论和算法中的基本问题,也是中期和后期视觉成败的重要因素之一。

5、图像的分割

图像分割是将图像分成若干部分,每一部分对应于某一物体表面,在进行分割时,每一部分的灰度或纹理符合某一种均匀测度度量。某本质是将像素进行分类。分类的依据是像素的灰度值、颜色、频谱特性、空间特性或纹理特性等。图像分割是图像处理技术的基本方法之一,应用于诸如染色体分类、景物理解系统、机器视觉等方面。

图像分割主要有两种方法:一是鉴于度量空间的灰度阈值分割法。它是根据图像灰度直方图来决定图像空间域像素聚类。但它只利用了图像灰度特征,并没有利用图像中的其它有用信息,使得分割结果对噪声十分敏感;二是空间域区域增长分割方法。它是对在某种意义

上(如灰度级、组织、梯度等)具有相似性质的像素连通集构成分割区域,该方法有很好的分割效果,但缺点是运算复杂,处理速度慢。其它的方法如边缘追踪法,主要着眼于保持边缘性质,跟踪边缘并形成闭合轮廓,将目标分割出来;锥体图像数据结构法和标记松弛迭代法同样是利用像素空间分布关系,将边邻的像素作合理的归并。而基于知识的分割方法则是利用景物的先验信息和统计特性,首先对图像进行初始分割,抽取区域特征,然后利用领域知识推导区域的解释,最后根据解释对区域进行合并。

6、图像的识别

图像的识别过程实际上可以看作是一个标记过程,即利用识别算法来辨别景物中已分割好的各个物体,给这些物体赋予特定的标记,它是机器视觉系统必须完成的一个任务。

按照图像识别从易到难,可分为三类问题。第一类识别问题中,图像中的像素表达了某一物体的某种特定信息。如遥感图像中的某一像素代表地面某一位置地物的一定光谱波段的反射特性,通过它即可判别出该地物的种类。第二类问题中,待识别物是有形的整体,二维图像信息已经足够识别该物体,如文字识别、某些具有稳定可视表面的三维体识别等。但这类问题不像第一类问题容易表示成特征矢量,在识别过程中,应先将待识别物体正确地从图像的背景中分割出来,再设法将建立起来的图像中物体的属性图与假定模型库的属性图之间匹配。第三类问题是由输入的二维图、要素图、2·5维图等,得出被测物体的三维表示。这里存着如何将隐含的三维信息提取出来的问题,当是今研究的热点。

目前用于图像识别的方法主要分为决策理论和结构方法。决策理论方法的基础是决策函数,利用它对模式向量进行分类识别,是以定时描述(如统计纹理)为基础的;结构方法的核心是将物体分解成了模式或模式基元,而不同的物体结构有不同的基元串(或称字符串),

通过对未知物体利用给定的模式基元求出编码边界,得到字符串,再根据字符串判断它的属类。这是一种依赖于符号描述被测物体之间关系的方法。

机器视觉系统设计五大难点

机器视觉系统设计五大难点 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明

机器视觉光源的照明方式例举

机器视觉光源的照明方式例举 我们知道,在机器视觉检测系统中,好的打光方式可以让我们更准确地捕捉物体特征,提高物体与背景的对比度。那么本章,维视图像为您分享一下机器视觉光源的照明方式及应用特点。 角度照明 特点及应用:在一定工作距离下,光束集中、亮度高、均匀性好、照射面积相对较小。常用于液晶校正、塑胶容器检查、工件螺孔定位、标签检查、管脚检查、集成电路印字检查等。适用光源:30、45、60、75等角度环光。 垂直照明

特点及应用:照射面积大、光照均匀性好、适用于较大面积照明。可用于基底和线路板定位、晶片部件检查等。 适用光源:0角度环光、条型光源、面光源。 低角度照明 特点及应用:对表面凹凸表现力强。适用于晶片或玻璃基片上的伤痕检查。 适用光源:90度环光。

背光照明 特点及应用:发光面是一个漫射面,均匀性好。可用于镜面反射材料,如晶片或玻璃基底上的伤痕检测;LCD检测;微小电子元件尺寸、形状,靶标测试。 适用光源:背光源、平行背光源。 多角度照明 特点及应用:RGB三种不同颜色不同角度光照,可以实现焊点的三维信息的提取。适用于组装机板的焊锡部份、球形或半圆形物体、其它奇怪形状物体、接脚头。

适用光源:AOI光源。 碗状光照明 特点及应用:360度底部发光,通过碗状内壁发射,形成球形均匀光照。用于检测曲面的金属表面文字和缺陷。 适用光源:球积分光源,通常也叫圆顶光、漫反射光源。 同轴光照明

特点及应用:类似于平行光的应用,光源前面带漫反射板,形成二次光源,光线主要趋于平行。用于半导体、PCB板、以及金属零件的表面成像检测,微小元件的外形、尺寸测量。 适用光源:同轴光源,平行同轴光源。 以上是常用机器视觉光源的照明方式,此外,还有许多其他的照明方式或组合的用法,在此不再一一赘述。如有相关需求和问题,欢迎与维视图像取得联系,我们拥有AFT全系列视觉光源,可为您提供最合适的照明方案。

机器视觉基础知识详解

机器视觉基础知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。

机器视觉检测系统简述及系统构成

机器视觉检测系统简述及系统构成 1机器视觉检测的一般模式 机器视觉检测的目标千差万别,检测的方式也不尽相同。农产品如苹果、玉米等通常是检测其成熟度,大小,形态等,工业产品如工业零件,印刷电路板通常是检测其几何尺寸,表面缺陷等。不同的应用场合,就需要采用不同的检测设备和检测方法。如有的检测对精度要求高,就需要选择高分辨率的影像采集装置;有的检测需要产品的彩色信息,就需要采用彩色的工业相机装置。正是由于不同检测环境的特殊性,目前世界上还没有一个适用于所有产品的通用机器视觉检测系统。虽然各个检测系统采用的检测设备和检测方法差异很大,但其检测的一般模式却是相同的。机器视觉检测的一般模式是首先通过光学成像和图像采集装置获得产品的数字化图像,再用计算机进行图像处理得到相关检测信息,形成对被测产品的判断决策,最后将该决策信息发送到分拣装置,完成被测产品的分拣。 机器视觉检测的一般模式如图1所示: 图1机器视觉检测的一般模式 1.1图像获取 图像获取是机器视觉检测的第一步,它影响到系统应用的稳定性和可靠性。图像的获取实际上就是将被测物体的可视化图像和内在特征转换成能被计算机处理的图像数据。机器视觉检测系统一般利用光源,光学镜头,相机,图像采集卡等设备获取被测物体的数字化图像。 1.2视觉检测 视觉检测通过图像处理的方法从产品图像中提取需要的信息,做出结果处理并发送相应消息到分拣机构。通常这部分功能由机器视觉软件来完成。优秀的机器视觉软件可对图像中的目标特征进行快速准确地检测,并最大限度地减少对硬件系统的依赖性,而算法设计不够成熟的机器视觉软件则存在检测速度慢,误判率高,对硬件依赖性强等特点。在机器视觉检测系统中视觉信息的处理主要依赖于图像处理方法,它包括图像增强,数据编码和传输,平滑,边缘锐化,分割,特征提取,目标识别与理解等内容。 1.3分拣 对于一个检测系统而言,最终是要实现次品(含不同种类的次品)与合格品的分离即分拣,这部分功能由分拣机构来完成。分拣是机器视觉检测的最后一个也是最为关键的一个环节"对于不同的应用场合,分拣机构可以是机电系统!液压系统!气动系统中的某一种。但无论是哪一种,除了其加工制造和装配精度要严格保证以外,其动态特性,特别是快速性和稳定性也十分重要,必须在设计时予以足够的重视。 2机器视觉检测系统的构成 一个典型的机器视觉检测系统主要包括光源、光学镜头、数字相机、图像采集卡、图像处理模块、分拣机构等部份。其构成如图2所示。 图2典型的机器视觉检测系统 3光源

《机器视觉及其应用》习题

第一章机器视觉系统构成与关键技术 1、机器视觉系统一般由哪几部分组成?机器视觉系统应用的核心目标是什么?主要的分 成几部分实现? 用机器来延伸或代替人眼对事物做测量、定位和判断的装置。组成:光源、场景、摄像机、图像卡、计算机。用机器来延伸或代替人眼对事物做测量、定位和判断。三部分:图像的获取、图像的处理和分析、输出或显示。 2、图像是什么?有那些方法可以得到图像? 图像是人对视觉感知的物质再现。光学设备获取或人为创作。 3、采样和量化是什么含义? 数字化坐标值称为取样,数字化幅度值称为量化。采样指空间上或时域上连续的图像(模拟图像)变换成离散采样点(像素)集合的操作;量化指把采样后所得的各像素的灰度值从模拟量到离散量的转换。采样和量化实现了图像的数字化。 4、图像的灰度变换是什么含义?请阐述图像反色算法原理? 灰度变换指根据某种目标条件按照一定变换关系逐点改变原图像中每一个像素灰度值,从而改善画质,使图像的显示效果更加清晰的方法。对于彩色图像的R、G、B各彩色分量取反。 第二章数字图像处理技术基础 1、对人类而言,颜色是什么?一幅彩色图像使用RGB色彩空间是如何定义的?24位真彩 色,有多少种颜色? 对人类而言,在人类的可见光范围内,人眼对不同波长或频率的光的主观感知称为颜色。 一幅图像的每个像素点由24位编码的RGB 值表示:使用三个8位无符号整数(0 到255)表示红色、绿色和蓝色的强度。256*256*256=16,777,216种颜色。 2、红、绿、蓝三种颜色为互补色,光照在物体上,物体只反射与本身颜色相同的色光而吸 收互补色的光。一束白光照到绿色物体上,人类看到绿色是因为? 该物体吸收了其他颜色的可见光,而主要反射绿光,所以看到绿色。 3、成像系统的动态范围是什么含义? 动态范围最早是信号系统的概念,一个信号系统的动态范围被定义成最大不失真电平和噪声电平的差。而在实际用途中,多用对数和比值来表示一个信号系统的动态范围,比如在音频工程中,一个放大器的动态范围可以表示为: D = lg(Power_max / Power_min)×20; 对于一个底片扫描仪,动态范围是扫描仪能记录原稿的灰度调范围。即原稿最暗点的密度(Dmax)和最亮处密度值(Dmin)的差值。 我们已经知道对于一个胶片的密度公式为D = lg(Io/I)。那么假设有一张胶片,扫描仪向其投射了1000单位的光,最后在共有96%的光通过胶片的明亮(银盐较薄)部分,而在胶片的较厚的部分只通过了大约4%的光。那么前者的密度为: Dmin=lg(1000/960)= 0.02; 后者的密度为: Dmax=lg(1000/40)= 1.40 那么我们说动态范围为:D=Dmax-Dmin=1.40-0.02=1.38。

机器视觉系统概述.

2 机器视觉系统概述 2.1 机器视觉的概念 美国制造工程师协会(SME Society of Manufacturing Engineers)机器视觉分会和美国机器人工业协会(RIA Robotic Industries Association)的自动化视觉分会对机器视觉下的定义为:“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置”。 在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。 工业线扫描相机系统 一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。 当这些要求完全确定后,这个系统就设计并建立来满足这些精确的要求。机器视觉的优点包括以下几点: ■精度高 作为一个精确的测量仪器,设计优秀的视觉系统能够对一千个或更多部件的一个进行空间测量。因为此种测量不需要接触,所以对脆弱部件没有磨损和危险。 ■连续性

视觉系统可以使人们免受疲劳之苦。因为没有人工操作者,也就没有了人为造成的操作变化。多个系统可以设定单独运行。 ■成本效率高 随着计算机处理器价格的急剧下降,机器视觉系统成本效率也变得越来越高。一个价值10000美元的视觉系统可以轻松取代三个人工探测者,而每个探测者每年需要20000美元的工资。另外,视觉系统的操作和维持费用非常低。 ■灵活性 视觉系统能够进行各种不同的测量。当应用变化以后,只需软件做相应变化或者升级以适应新的需求即可。 许多应用满意过程控制(SPC)的公司正在考虑应用机器视觉系统来传递持续的、协调的和精确的测量SPC命令。在SPC中,制造参数是被持续监控的。整个过程的控制就是要保证这些参数在一定的范围内。这使制造者在生产过程失去控制或出现坏部件 时能够调节过程参数。 机器视觉系统比光学或机器传感器有更好的可适应性。它们使自动机器具有了多样性、灵活性和可重组性。当需要改变生产过程时,对机器视觉来说“工具更换”仅仅是软件的变换而不是更换昂贵的硬件。当生产线重组后,视觉系统往往可以重复使用。 2.2 机器视觉系统的构成 机器视觉技术用计算机来分析一个图像,并根据分析得出结论。现今机器视觉有两种应用。机器视觉系统可以探测部件,在此光学器件允许处理器更精确的观察目标并对哪些部件可以通过哪些需要废弃做出有效的决定;机器视觉也可以用来创造一个部件,即运用复杂光学器件和软件相结合直接指导制造过程。 尽管机器视觉应用各异,但都包括以下几个过程; ■图像采集 光学系统采集图像,图像转换成模拟格式并传入计算机存储器。 ■图像处理 处理器运用不同的算法来提高对结论有重要影响的图像要素。 ■特性提取 处理器识别并量化图像的关键特性,例如印刷电路板上洞的位置或者连接器上引脚的个数。然后这些数据传送到控制程序。 ■判决和控制

机器视觉光源主要种类有哪些

机器视觉光源主要种类有哪些 首先咱们先来说说,上海选择机器视觉光源哪家好?上海嘉肯光电科技有限公司是一家专业从事机器视觉光源的研发、生产和销售为一体的高新技术企业。以工业检测、机器视觉、图像处理、科学研究等领域为主要研发及经营方向。 环形光源 最常见的LED光源之一,提供基本的照明作用。 随着光源距离产品的工作距离LWD变化而产生的亮度分布,如下图暖色表示亮;冷色表示暗。 条形光源 最常见的LED光源之一,可对长尺区域进行均匀照射,同时通过角度改变可以完成多种照明效果。 比如安装为斜向照射,以漫反射光进行拍摄、辨别,从而避免产生引起光晕的镜面反射光。此外,还可将CCD 与照明呈相同角度倾斜,以获取镜面反射光,从而突显出刻印等的边缘成分。

碗形光源 常见的LED光源,可以实现照明效果是均匀的无影光。 同轴光源 常见的LED光源,其突出特点是具备高对比度,在检测镜面、光泽面或希望以光泽差异进行辨别时非常有效。 低角度光源 和同轴光源的平行照射的理念正好相反,通过从小角度或几乎平行的角度照射LED,可仅突出边缘,轮廓或者表面的缺陷划伤。 点光源 最大特点是节省空间,同时可以实现小范围高亮度照明。 多角度光源 更加柔和的照明,以及放在不同高度可以实现不同的效果。 背光光源 以上介绍的所有通用照明的相同点是:光源位于相机和工件之间,使用正面打光,通过获取工件表面的反光而获得工件的表面信息。

以上介绍的即为常用的LED光源标准品类型。当然对于特殊的应用,也有很多种尺寸和形状的定制光源,有配合线扫描相机的线性光源,配合2.5D相机的多方向发光光源,配合贴片检测的多色AOI光源等等。 上海嘉肯光电科技有限公司是一家专业从事机器视觉光源的研发、生产和销售为一体的高新技术企业。以工业检测、机器视觉、图像处理、科学研究等领域为主要研发及经营方向。此外,公司还代理工业镜头、工业相机、图像采集卡、图像处理软件和各类视觉附件。上海嘉肯光电科技有限公司将坚持“用心,创造未来”的企业经营理念,并持续不断地把最优秀、性价比最高的视觉产品提供给广大用户,以不断满足客户日益增长的要求。出师表 两汉:诸葛亮 先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。 宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。 侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。 将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。 亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。 臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

机器视觉系统——光源篇

机器视觉——光源篇收藏 一、为什么要使用光源 ?目的 将被测物体与背景尽量明显分别,获得高品质、高对比度的图像?地位 机器视觉三大技术(采像技术,处理技术,运动控制技术)之一?重要性 直接影响系统的成败,处理精度和速度 二、光源的种类 ?理想的光源应该是明亮,均匀,稳定的 ?视觉系统使用的光源主要有三种 高频荧光灯 光纤卤素灯 LED(发光二极管)照明 ?高频荧光灯 使用寿命约1500-3000小时 优点:扩散性好、适合大面积均匀照射 缺点:响应速度慢,亮度较暗 ?光纤卤素灯 使用寿命约1000小时 优点:亮度高 缺点:响应速度慢,几乎没有光亮度和色温的变化 ?LED灯

使用寿命约10000-30000小时 可以使用多个LED达到高亮度,同时可组合不同的形状 响应速度快,波长可以根据用途选择 三、LED光源的优势 ?可制成各种形状、尺寸及各种照射角度; ?可根据需要制成各种颜色,并可以随时调节亮度; ?通过散热装置,散热效果更好,光亮度更稳定; ?使用寿命长(约3万小时,间断使用寿命更长); ?反应快捷,可在10微秒或更短的时间内达到最大亮度; ?电源带有外触发,可以通过计算机控制,起动速度快,可以用作频闪灯;?运行成本低、寿命长的LED,会在综合成本和性能方面体现出更大的优势;?可根据客户的需要,进行特殊设计。 四、LED光源的颜色 ?主要颜色 红色 蓝色 绿色 白色 ?其他颜色 橙色 红外 紫外 五、照明技术的基础知识 1、照射光的种类

(1)直射光 主要来自于一个方向的光,可以在亮色和暗色阴影之间产生相对高的对比度图像。 (2)漫射光(扩散光) 各种角度的光源混合在一起的光。日常的生活用光几乎都是扩散光。 (3)偏振光 在垂直于传播方向的平面内,光矢量只沿某一个固定方向振动的光。通常是利用偏光板(片)来防止特定方向的反射。 (4)平行光 照射角度一致的光。太阳光就是平行光。发光角度越窄的LED直射光越接近平行光。 对比度:对比度对机器视觉来说非常重要。机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够保证需要检测的特征突出于其他背景。 2、六种照明技术 通用照明,背光,同轴(共轴),连续漫反射,暗域及结构光。(1)一般目的的照明 通用照明一般采用环状或点状照明。环灯是一种常用的通用照明方式,其很容易安装在镜头上,可给漫反射表面提供足够的照明。 (2)背光照明: 背光照明是将光源放置在相对于摄像头的物体的背面。这种照明方式与别的照明方式有很大不同因为图像分析的不是发水光而是入射光。背光照明产生了很强的对比度。应用背光技术时候,物体表面特征可能会丢失。例如,可以应用背光技术测量硬币的直径,但是却无法判断硬币的正反面。 (3)同轴照明: 同轴照明是与摄像头的轴向有相同的方向的光照射到物体的表面。同轴照明使用一种特殊的半反射镜面反射光源到摄像头的透镜轴方向。半反射镜面只让从物体表面反射垂直于透镜的光源通过。同轴照明技术对于实现扁平物体且有镜面特征的表面的均匀照明很有用。此外此技术还可以实现使表面角度变化部分高亮,因为不垂直于摄像头镜头的表面反射的光不会进入镜头,从而造成表面较暗。连续漫反射照明:连续漫反射照明应用于物体表面的反射性或者表面有复杂的角度。连续漫反射照明应用半球形的均匀照明,以减小影子及镜面反射。这种照明方式对于完全组装的电路板照明非常有用。这种光源可以达到170立体角范围的均匀照明。 (4)暗域照明: 暗域照明是相对于物体表面提供低角度照明。使用相机拍摄镜子使其在其视野内,如果在视野内能看见光源就认为使亮域照明,相反的在视野中看不到光源就是暗域照明。因此光源是亮域照明还是暗域照明与光源的位置有关。典型的,暗域照明应用于对表面部分有突起的部分的照明或表面纹理变化的照明。 (5)结构光:结构光是一种投影在物体表面的有一定几何形状的光(如线形、圆形、正方形)。典型的结构光涉及激光或光纤。结构光可以用来测量相机到光源的距离。多轴照明:在许多应用中,为了使视野下不同的特征表现不同的对比度,需要多重照明技术。

解读机器视觉系统解析及优缺点

解读机器视觉系统解析及优缺点 在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。 由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。 一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。当这些要求完全确定后,这个系统就设计并建立来满足这些精确的要求。 机器视觉的优点包括以下几点: ■精度高 作为一个精确的测量仪器,设计优秀的视觉系统能够对一千个或更多部件的一个进行空间测量。因为此种测量不需要接触,所以对脆弱部件没有磨损和危险。 ■连续性 视觉系统可以使人们免受疲劳之苦。因为没有人工操作者,也就没有了人为造成的操作变化。多个系统可以设定单独运行。 ■成本效率高 随着计算机处理器价格的急剧下降,机器视觉系统成本效率也变得越来越高。一个价值10000美元的视觉系统可以轻松取代三个人工探测者,而每个探测者每年需要20000美元的工资。另外,视觉系统的操作和维持费用非常低。 ■灵活性 视觉系统能够进行各种不同的测量。当应用变化以后,只需软件做相应变化或者升级以适应新的需求即可。 许多应用满意过程控制(SPC)的公司正在考虑应用机器视觉系统来传递持续的、协调的和精确的测量SPC命令。在SPC中,制造参数是被持续监控的。整个过程的控制就是要保证这些参数在一定的范围内。这使制造者在生产过程失去控制或出现坏部件时能够调节过程参数。 机器视觉系统比光学或机器传感器有更好的可适应性。它们使自动机器具有了多样性、灵活性和可重组性。当需要改变生产过程时,对机器视觉来说“工具更换”仅仅是软件的变换而不是更换昂贵的硬件。当生产线重组后,视觉系统往往可以重复使用 机器视觉系统的构成 机器视觉技术用计算机来分析一个图像,并根据分析得出结论。现今机器视觉有两种应用。机器视觉系统可以探测部件,在此光学器件允许处理器更精确的观察目标并对哪些部件可以通过哪些需要废弃做出有效的决定;机器视觉也可以用来创造一个部件,即运用复杂光学器件和软件相结合直接指导制造过程。 尽管机器视觉应用各异,但都包括以下几个过程;

机器视觉入门知识详解

机器视觉入门知识详解 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 啤酒厂采用的填充液位检测系统为例来进行说明: 当每个啤酒瓶移动经过检测传感器时,检测传感器将会触发视觉系统发出频闪光,拍下啤酒瓶的照片。采集到啤酒瓶的图像并将图像保存到内存后,视觉软件将会处理或分析该图像,并根据啤酒瓶的实际填充液位发出通过-未通过响应。如果视觉系统检测到一个啤酒瓶未填充到位,即未通过检测,视觉系统将会向转向器发出信号,将该啤酒瓶从生产线上剔除。操作员可以在显示屏上查看被剔除的啤酒 瓶和持续的流程统计数据。

机器人视觉引导玩偶定位应用: 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘2中,振动盘2作用是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 视觉检测在电子元件的应用:

机器视觉(相机、镜头、光源 )全面概括

机器视觉(相机、镜头、光源)全面概括 分类:机器视觉2013-08-19 10:52 1133人阅读评论(0) 收藏举报机器视觉工业相机光源镜头 1.1.1视觉系统原理描述 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 2.1.1视觉系统组成部分 视觉系统主要由以下部分组成 1.照明光源 2.镜头 3.工业摄像机 4.图像采集/处理卡 5.图像处理系统 6.其它外部设备 2.1.1.1相机篇 详细介绍: 工业相机又俗称摄像机,相比于传统的民用相机(摄像机)而言,它具有高的图像稳定性、高传输能力和高抗干扰能力等,目前市面上工业相机大多是基于CCD(Charge Coupled Device)或CMOS(Complementary Metal Oxide

Semiconductor)芯片的相机。CCD是目前机器视觉最为常用的图像传感器。它集光电转换及电荷存贮、电荷转移、信号读取于一体,是典型的固体成像器件。CCD的突出特点是以电荷作为信号,而不同于其它器件是以电流或者电压为信号。这类成像器件通过光电转换形成电荷包,而后在驱动脉冲的作用下转移、放大输出图像信号。典型的CCD相机由光学镜头、时序及同步信号发生器、垂直驱动器、模拟/数字信号处理电路组成。CCD作为一种功能器件,与真空管相比,具有无灼伤、无滞后、低电压工作、低功耗等优点。CMOS图像传感器的开发最早出现 在20世纪70 年代初,90 年代初期,随着超大规模集成电路(VLSI) 制造工艺技术的发展,CMOS图像传感器得到迅速发展。CMOS图像传感器将光敏元阵列、图像信号放大器、信号读取电路、模数转换电路、图像信号处理器及控制器集成在一块芯片上,还具有局部像素的编程随机访问的优点。目前,CMOS图像传感器以其良好的集成性、低功耗、高速传输和宽动态范围等特点在高分辨率和高速场合得到了广泛的应 用。、 分类: 任何东西分类一定有它自己的分类标准,工业相机也不例外,按照芯片类型可以分为CCD相机、CMOS相机;按照传感器的结构特性可以分为线阵相机、面阵相机;按照扫描方式可以分为隔行扫描相机、逐行扫描相机;按照分辨率大小可以分为普通分辨率相机、高分辨率相机;按照输出信号方式可以分为模拟相机、数字相机;按照输出色彩可以分为单色(黑白)相机、彩色相机;按照输出信号速度可以分为普通速度相机、高速相机;按照响应频率范围可以分为可见光(普通)相机、红外相机、紫外相机等。 区别: 1、工业相机的性能稳定可靠易于安装,相机结构紧凑结实不易损坏,连续工作时间长,可在较差的环境下使用,一般的数码相机是做不到这些的。例如:让民用数码相机一天工作24小时或连续工作几天肯定会受不了的。 2、工业相机的快门时间非常短,可以抓拍高速运动的物体。 例如,把名片贴在电风扇扇叶上,以最大速度旋转,设置合适的快门时间,用工业相机抓拍一张图像,仍能够清晰辨别名片上的字体。用普通的相机来抓拍,是不可能达到同样效果的。

机器视觉光源照明设计基本要素分析

判断机器视觉的照明的好坏,首先必须了解什么是光源需要做到的!显然光源应该不仅仅是使检测部件能够被摄像头“看见”。有时候,一个完整的机器视觉系统无法支持工作,但是仅仅优化一下光源就可以使系统正常工作。照明的目的是增强对比度。在一幅机器视觉的图像中,对比度代表着图像信号的质量,它反应了两个区域间的差别,比如物体和背景的差别。因此,设计光源照明的第一步是确定区域间的不同,然后用光源来突出这些不同之处。 对比度:对比度对机器视觉来说非常重要。机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够保证需要检测的特征突出于其他背景。 亮度:当选择两种光源的时候,最佳的选择是选择更亮的那个。当光源不够亮时,可能有三种不好的情况会出现。第一,相机的信噪比不够;由于光源的亮度不够,图像的对比度必然不够,在图像上出现噪声的可能性也随即增大。其次,光源的亮度不够,必然要加大光圈,从而减小了景深。另外,当光源的亮度不够的时候,自然光等随机光对系统的影响会最大。 鲁棒性:另一个测试好光源的方法是看光源是否对部件的位置敏感度最小。当光源放置在摄像头视野的不同区域或不同角度时,结果图像应该不会随之变化。方向性很强的光源,增大了对高亮区域的镜面反射发生的可能性,这不利于后面的特征提取。在很多情况下,好的光源需要在实际工作中与其在实验室中的有相同的效果。好的光源需要能够使你需要寻找的特征非常明显,除了是摄像头能够拍摄到部件外,好的光源应该能够产生最大的对比度、亮度足够且对部件的位置变化不敏感。光源选择好了,剩下来的工作就容易多了!机器视觉应用关心的是反射光(除非使用背光)。物体表面的几何形状、光泽及颜色决定了光在物体表面如何反射。机器视觉应用的光源控制的诀窍归结到一点就是如何控制光源反射。如何能够控制好光源的反射,那么获得的图像就可以控制了。因此,在机器视觉应用中,当光源入射到给定物体表面的时候,明白光源最重要的方面就是要控制好光源及其反映。 光源可预测:当光源入射到物体表面的时候,光源的反映是可以预测的。光源可能被吸收或被反射。光可能被完全吸收(黑金属材料,表面难以照亮)或者被部分吸收(造成了颜色的变化及亮度的不同)。不被吸收的光就会被反射,入射光的角度等于反射光的角度,这个科学的定律大大简化了机器视觉光源,因为理想的想定的效果可以通过控制光源而实现。 物体表面:如果光源按照可预测的方式传播,那么又是什么原因使机器视觉的光源设计如此的棘手呢?使机器视觉照明复杂化的是物体表面的变化造成的。如果所有物体表面是相同的,在解决实际应用的时候就没有必要采用不同的光源技术了。但由于物体表面的不同,因此需要观察视野中的物体表面,并分析光源入射的反映。 控制反射:本文前面提到了,如果反射光可以控制,图像就可以控制了。这点再怎么强度也不为过。因此在涉及机器视觉应用的光源设计时,最重要的原则就是控制好哪里的光源反射到透镜及反射的程度。机器视觉的光源设计就是对反射的研究。在视觉应用中,当观测一个物体以决定需要什么样的光源的时候,首先需要问自己这样的问题:“我如何才能让物体显现?”“我如何才能应用光源使必须的光反射到镜头中以获得物体外表?” 影响反射效果的因素有:光源的位置,物体表面的纹理,物体表面的几何形状及光源的均匀性。

机器视觉光源的选择

机器视觉光源选择 一、机器视觉光源分类 OPT机器视觉光源共有25大系列 1、环形光源(OPT-RI系列) 特点:环形光源提供不同角度照射,能突出物体的三维信息,有效解决对角照射阴影问题。高密度LED阵列,高亮度;多种紧凑设计,节省安装空间;可选配漫射板导光,光线均匀扩散。 使用:PCB基板检测;IC元件检测;显微镜照明;液晶校正;塑胶容器检测;集成电路印字检测;通用外观检测。 2、条形光源(OPT-LI系列) 特点:条形光源是较大方形结构被测物的首选光源;颜色可根据需求搭配,自由组合;照射角度和安装随意可调。 使用:金属、玻璃等表面检查;表面裂缝检测;LCD面板检测;线阵相机照明;图像扫描。 3、高均匀条形光源(OPT-LIT系列) 特点:高密度贴片LED,高亮度,高散射漫射板,均匀性好;良好的散热设计确保产品稳定性和寿命;安装简单、角度随意可调;尺寸设计灵活;颜色多样可选,可定制多色混合、多类型排布非标产品。 使用:电子元件识别和检测;服装纺织;印刷品质量检测;家用电器外壳检测;圆柱体表面缺陷检测;食品包装检测;灯箱照明;替代荧光灯。 4、条形组合光源(OPT-LIM系列) 特点:四边配置条形光,每边照明独立可控;可根据被测物要求调整所需照明角度,适用性广。 使用:PCB基板检测,IC元件检测;显微镜照明,包装条码照明;二次元影像测量。 5、同轴光源(OPT-CO系列) 特点:高密度排列LED,亮度大幅提高;独特的散热结构,延长寿命,提高稳定性;高级镀膜分光镜,减少光损失;成像清晰,亮度均匀。 使用:此系列光源最适宜用于反射度极高的物体,如金属、玻璃、胶片、晶片等表面的划伤检测;芯片和硅晶片的破损检测,Mark点定位;包装条码识别。 6、底部背光源(OPT-FL系列) 特点:用高密度LED阵列面提供高强度背光照明,能突出物体的外形轮廓特征,尤其适合作为显微镜的载物台;红白两用背光源、红蓝多用背光源,能调配出不同的颜色,满足不同被测物多色要求。 使用:机械零件尺寸的测量;电子元件、IC的引脚、端子连接器检测;胶片污点检测;透明物体划痕检测等。

机器视觉光源选型

机器视觉光源 在机器视觉系统中,获得一张高质量的可处理的图像是至关 重要。系统之所以成功,首先要保证图像质量好,特征明显。一个机器视觉项目之所以失败,大部分情况是由于图像质量。? 目的:将被测物体与背景尽量明显分别,获得高品质、高对比度的图?地位 :机器视觉三大技术(采像技术,处理技术,运动控制技术)之一 · 重要性:直接影响系统的成败,处理精度和速度 透明矿泉水瓶表面日期检测,通过打光使得原本不易区分的字符与背景区分开来,取得图像对比度。

色温波长照度灰度值 色温是按绝对黑体来定义的,绝对黑体的辐射和光源在可见区的辐射完全相同时,此时黑体的温度就称此光源的色温。低色温光源的特征是能量分布中,红辐射相对来说要多些,通常称为“暖光”;色温提高后,能量分布中,蓝辐射的比例增加,通常称为“冷光”。指波在一个振动周期 内传播的距离。也就 是沿着波的传播方向, 相邻两个振动位相相 差2π的点之间的距 离。波长λ等于波速V 和周期T的乘积,即λ =VT。同一频率的波 在不同介质中以不同 速度传播,所以波长 也不同。 光照强度是指单位面 积上所接受可见光的 能量,简称照度[1] , 单位勒克斯(Lux或 Lx)。为物理术语, 用于指示光照的强弱 和物体表面积被照明 程度的量。 指黑白图像中点的颜 色深度,范围一般从 0到255,白色为255, 黑色为0,故黑白图 片也称灰度图像,在 医学、图像识别领域 有很广泛的用途。 关键词基本概念

基本概念波长 VLight光源标准波长为: 红光:625nm 绿光:525nm 蓝光:425nm 紫外:375nm 红外:850nm/940nm

机器视觉系统的5个主要组成结构介绍

机器视觉系统的5个主要组成结构介绍 从机器视觉系统字面意思就可看出主要分为三部分:机器、视觉和系统。机器负责机械的运动和控制;视觉通过照明光源、工业镜头、工业相机、图像采集卡等来实现;系统主要是指软件,也可理解为整套的机器视觉设备。下面我们重点说下机器视觉系统中的五大模块: 1.机器视觉光源(即照明光源) 照明光源作为机器视觉系统输入的重要部件,它的好坏直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的视觉光源,以达到最佳效果。常见的光源有:LED环形光源、低角度光源、背光源、条形光源、同轴光源、冷光源、点光源、线型光源和平行光源等。 2.工业镜头 镜头在机器视觉系统中主要负责光束调制,并完成信号传递。镜头类型包括:标准、远心、广角、近摄和远摄等,选择依据一般是根据相机接口、拍摄物距、拍摄范围、CCD尺寸、畸变允许范围、放大率、焦距和光圈等。 3.工业相机 工业相机在机器视觉系统中最本质功能就是将光信号转变为电信号,与普通相机相比,它具有更高的传输力、抗干扰力以及稳定的成像能力。按照不同标准可有多种分类:按输出信号方式,可分为模拟工业相机和数字工业相机;按芯片类型不同,可分CCD工业相机和CMOS工业相机,这种分类方式最为常见。 4.图像采集卡 图像采集卡虽然只是完整机器视觉系统的一个部件,但它同样非常重要,直接决定了摄像头的接口:黑白、彩色、模拟、数字等。比较典型的有PCI采集卡、1394采集卡、VGA 采集卡和GigE千兆网采集卡。这些采集卡中有的内置多路开关,可以连接多个摄像机,同时抓拍多路信息。 5.机器视觉软件

机器视觉基础知识详解

机器视觉基础知识详解 随着工业4、0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术就是如何工作的、它为什么就是实现流程自动化与质量改进的正确选择等。小编为您准备了这篇机器视觉入门学习资料。 机器视觉就是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统就是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布与亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有: 为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+视觉自动上下料定位的应用:

现场有两个振动盘,振动盘1作用就是把玩偶振动到振动盘2中,振动盘2作用就是把玩偶从反面振动为正面。该应用采用了深圳视觉龙公司VD200视觉定位系统,该系统通过判断玩偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人,机器人收到坐标后运动抓取产品,当振动盘中有很多玩偶处于反面时,VD200视觉定位系统需判断反面玩偶数量,当反面玩偶数量过多时,VD200视觉系统发送指令给振动盘2把反面玩偶振成正面。 该定位系统通过玩偶表面的小孔来判断玩偶就是否处于正面,计算出玩偶中心点坐标,发送给机器人。通过VD200视觉定位系统实现自动上料,大大减少人工成本,大幅提高生产效率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对每个元器件定位后,使用斑点工具检测产品固定区域的灰度值,来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的DragonVision视觉系统方案,使用两个相机及光源配合机械设备,达到每次检测双面8个产品,每分钟检测大约1500个。当出现产品不良时,立刻报警停机,保证了产品的合格率与设备的正常运行,提高生产效率。 案例三:啤酒厂采用的填充液位检测系统案例:

机器视觉基础知识详解

机器视觉基础知识详解 随着工业 4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让 更多用户获取机器视觉的相关基础知识, 包括机器视觉技术是如何工作的、 它为什么是实现 流程自动化和质量改进的正确选择等。小编为你准备了这篇机器视觉入门学习资料。 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量, 控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号, 传送给专用的 I 图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信 号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 光源 机器视觉优势:机器视觉系统具有高效率、 高度自动化的特点, 可以实现很高的分辨率精度 与速度。机器视觉系统与被检测对象无接触, 安全可靠。人工检测与机器视觉自动检测的主 要区别有: C C D 相机 高題 T 作时闻 工仙『可肖限 不易信息■棗成 人;」和倉理或本不斬上升 不适合齡和措辭境 V 工件 可靠性

为了更好地理解机器视觉,下面,我们来介绍在具体应用中的几种案例。 案例一:机器人+ 视觉 自动上下料定位的应用: 从反面振动为正面。该应用采用了深圳视觉龙公司 VD200视觉定位系统,该系统通过判断玩 偶正反面,把玩偶处于正面的坐标值通过串口发送给机器人, 机器人收到坐标后运动抓取产 品,当振动盘中有很多玩偶处于反面时, VD200视觉定位系统需判断反面玩偶数量,当反面 玩偶数量过多时,VD200视觉系统发送指令给振动盘 该定位系统通过玩偶表面的小孔来判断玩偶是否处于正面, 计算出玩偶中心点坐标,发 送给机器人。通过VD200视觉定位系统实现自动上料, 大大减少人工成本, 大幅提高生产效 率。 案例二:视觉检测在电子元件的应用: 此产品为电子产品的按钮部件,产品来料为料带模式,料带上面为双排产品。通过对 每个元器件定位后,使用斑点工具检测产品固定区域的灰度值, 来判断此区域有无缺胶情况。 该应用采用了深圳视觉龙公司的 Drag on Visi on 视觉系统方案,使用两个相机及光源配 合机械设备,达到每次检测双面 8个产品,每分钟检测大约 1500个。当出现产品不良时, 立刻报警停机,保证了产品的合格率和设备的正常运行,提高生产效率。 2把反面玩偶振成正面。 SB 3^ I i- I" 现场有两个振动盘,振动盘1作用是把玩偶振动到振动盘 2中,振动盘2作用是把玩偶

相关文档
最新文档