2PSK数字调制系统

2PSK数字调制系统
2PSK数字调制系统

二○一三~二○一四学年第二学期

电子信息工程系

课程设计计划书

班级:电信2011级3班>

姓名:陈凯

学号: 6068

课程名称: 2PSK数字调制系统

学时学分: 1学分

指导教师:王文武

二○一四年六月二十四日

1、课程设计目的:

通过课程设计,巩固对课堂上基本理论知识的理解,加强理论联系实际,增强动手能力和通信系统仿真的技能。

2、课程设计内容及要求:

1)设计任务:设计一种数字调制系统(2FSK, 2PSk, 2ASK,2DPSK)

2)设计基本要求:

(1)设计出规定的数字通信系统的结构,包括信源,调制,发送滤波器模块,信道,接受滤波器模块以及信宿;

(2)根据通信原理,设计出各个模块的参数(例如码速率,滤波器的截止频率等);

@

(3)观察仿真结果并进行波形分析(眼图,);

(4)分析影响系统性能的因素。

3)实施要求

具体要求如下:

使用Matlab/Simulink进行仿真

a) 完成2ASK、2FSK 、2PSk或 2DPSK中任何一种调制和解调系统。传输信道模型选用下面三种之一:AWGN Channel、Rayleigh fading propagation channel 和 Binary Symmetric Channel Channel;

b) 分析已调信号的功率谱密度; c) 分析信道噪声对误码率的影响。

2PSK 的基本原理

相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不

变。在2PSK 中,通常用初始相位为0和π表示二进制的“1”和“0”。因此2PSK 的信号的时域表达式为: e2psk (t)=Acos(ωc t+φn )

)

其中,φn 表示第n 个符号的绝对相位:

0 发送“0”时 φn =

π 发送“1”时

因此,上式可改写为

Acos ωc t 概率为P

$

图 2PSK 信号的时间波形

由于表示信号的两种码元的波形相同,记性相反,鼓2PSK 信号一般可以表

述为一个双极性全占空矩形脉冲序列与一个正弦载波相乘,即

e2psk (t)=s(t)cos ωc t

其中

- Acos ωc t 概率为1-P

e2psk (t)=

s(t)= ∑a

n g(t-nT

s

)

这里,g(t)是脉宽为Ts的单个矩形脉冲,而an得统计特性为

1 概率为P

a

n

= -1 概率为1-P

即发送二进制符号“0”时(an取+1),e2psk(t)取0相位;发送二进制

符号“1”时(an取-1),e2psk(t)取π相位。

2PSK的实现

数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即

把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊

情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字

调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移

键控(PSK)基本的调制方式。

数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到

正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果

其中一个开始得迟了一点,就可能不相同了。如果一个达到正最大值时,另一

个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。

如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是

反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。

载波的初始相位就有了移动,也就带上了信息。

相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不

变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。

二进制移相键控信号的调制原理图如图所示. 其中图(a)是采用模拟调制

的方法产生2PSK信号,图(b)是采用数字键控的方法产生2PSK信号。

(a) (b)

)

图2PSK信号的调制原理图

2PSK信号的解调通常都是采用相干解调, 解调器原理图如图所示.在相干解调过程中需要用到与接收的2PSK信号同频同相的相干载波。

2PSK信号相干解调各点时间波形如图所示,当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错。

图2PSK信号的解调原理图

图2PSK信号相干解调各点时间波形

图2-4是2PSK解调器在无噪声情况下能对2PSK信号的正确解调。(a)是收到的2PSK信号;(b)是本地载波提取电路提取的同频同相载波信号;(c)是接收的2PSK信号与本地载波相乘得到的波形示意图,此波形经过低通滤波器滤波后得到低通信号;(d)是取样判决器在位定时信号;(e)是对(d)波形取样,

再与门限进行比较,做出相应的判决得到恢复的信号;需要注意的是判决规则应与调制规则一致。

误码率分析

|

在实际通信系统中往往存在噪声,噪声会对判决值产生影响,即会产生误

码率,一般假设信道的噪声为高斯白噪声,下面讨论2PSK 解调器在高斯白噪声干扰下的误码率:

(1)发端发‘1’时收到的2PSK 信号为

()2cos 2PSK c S t a f t

π=-

带通滤波器的输出时信号加窄带噪声:

()()()()cos2[]cos2sin 2c i I c Q c a f t n t a n t f t n t f t

πππ-+=-+-

上式与本地载波相乘后:

()()()()2cos2[]cos 2sin2cos2c i I c Q c c a f t n t a n t f t n t f t f t

ππππ-+=-+-

()()()111

[][]cos 4sin 4222I I c Q c a n t a n t f t n t f t ππ=

-++-+-

经低通滤波后:

()()

I x t a n t =-+ 所以x(t)的取样判决值的概率密度函数为:

(

)()2221n

x a f x +-

σ=

(2)发端发‘0’时,收到的2PSK 信号:

()2cos2PSK c S t a f t

π=

带通滤波器的输出时信号加窄带噪声:

()()()()cos 2[]cos 2sin 2c i I c Q c a f t n t a n t f t n t f t

πππ+=+-

上式与本地载波相乘后:

()(

)()()2cos2[]cos 2sin 2cos2c i I c Q c c a f t n t a n t f t n t f t f t

ππππ+=+-

()()()111

[][]cos 4sin 4222I I c Q c a n t a n t f t n t f t ππ=

+++-

经低通滤波后:

()()

I x t a n t =+

{

所以x(t)的取样判决值的概率密度函数为:

()()2

2211

2n

x a n

f x e π--

σ=

σ

综上所述可画出概率密度函数曲线:

图 取样值概率密度函数示意图

当P(0)=P(1)时,最佳门限应选在两条曲线的交点处。即从图可看出最佳判决门效应为0.

所以发‘1’错判‘0’概率为:

()()()10

0/11

0/12

x

P f x d P erfc r ∞

==

?

发‘0’错判‘1’的概率等于发‘1’错判‘0’概率

()()1

1/00/12

P P erfc

r ==

}

根据图2-5及上式可得2PSK相干解调器的误码率公式为

()(

)

11

[01]

22

e

P erfc P P erfc

=+=

式中

2

2

/2

n

a

r=

σ

模型建立

2PSK调制与解调及误码分析的总体仿真模型:

图 2PSK调制与解调及误码分析的总体仿真模型

参数设置

正相载波(Sine Wave Function2)参数设置:

"

图正相载波参数设置

正相载波:4HZ,幅度+2

设置依据:载波频率本来应该很高,但是为了波形观察方便,故频率设为4HZ。

反相载波(Sine Wave Function1)参数设置:

图反相载波参数设置

反相正弦波:4HZ,幅度-2

设置依据:载波频率本来应该很高,但是为了波形观察方便,故频率设为

4HZ;又要求与载波反相,故幅度设为-2。

伯努利二进制随机序列产生器(Bernoulli Binary Generator)参数设置:

图伯努利二进制随机序列产生器参数设置伯努利二进制随机数产生器:幅度为2,周期为3,占0比为1/2。码型变化器(Unipolar to Bipolar Converter)参数设置:

图码型变化器参数设置

极性为“Positive”

设置依据:采用0变1不变调制。

多路选择器(Switch)参数设置:

图多路选择器参数设置

设置依据:当二进制序列大于0时,输出第一路信号;当二进制序列小于0时,输出第二路信号。

带通滤波器(Digital Filter Design)参数设置:

图带通滤波器参数设置

带通滤波器参数:带通范围为2~7HZ

设置依据:载波频率为4HZ,而基带号带宽为1HZ,考滤到滤波器的边沿缓降,故设置为2~7HZ。

低通滤波器(Digital Filter Design1)参数设置:

图低通滤波器参数设置

低通滤波器参数:截止频率为1HZ

设置依据:二进制序列的带宽为1HZ,故取1HZ。

取样判决器(Sign)参数设置:

图取样判决器参数设置

取样判决器设置:门限值取为,取样时间为1

设置依据:当大于时输出1,当小于时输出0,能达到在0变1不变的取样规则下正确解码的目的。

仿真波形

调制波形:

图调制波形

图中第一个图为正相载波的波形,第二个图为随机产生的二进制序列,第三个图为通过码型变换器后的波形,最后一个图为调制后的2PSK信号。

)

解调波形:

图解调波形

图中第一个图为收到的2PSK波形,第二个图为与同频同向载波相乘后的波形,第三个图为通过带通滤波器后的波形,第四个图为通过低通滤波器后的波形,最后一个图为解调后的二进制序列。

不同信噪比的误码率

1) 信噪比设为10:

此时误码率为:

解调后的波形:

图解调波形1 2)信噪比设为30时:

此时误码率为:

解调后的波形:

图解调波形2 3)信噪比设为50时:

此时误码率为:

解调后的波形:

图解调波形3

从仿真中可以看出,在2PSK调制系统中由于存在信道干扰和码间串扰,会影响调制系统的性能,即存在一定的误码率,误码率与信噪比相关,当信噪比提高时,误码率下降。

5、心得体会

在同学的帮助和上网查资料下我顺利的完成了本次课程设计,在课程设计中,使用MATLAB下的simulink功能对2PSK进行建模仿真与分析。对数字调制和MATLAB有了进一步的认识,本次的课程设计,培养了我综合应用设计课程与其他课程的理论知识相结合、理论联系实际和应用生产实际知识解决工程实际问题的能力。在设计的过程中还培养了我们的团队精神,同学们共同协作,解决了许多个人无法解决的问题,在今后的学习过程中我们会更加努力和团结。

实验四 2PSK调制与解调实验

实验四 2PSK 调制与解调实验 1、 实验箱中2PSK 调制器用的调制方法是什么? 答:移相键控调制的直接调相法。 2、 2PSK 调制能否用非相干解调方法? 答:不能。 3、 相位模糊产生的原因和解决方法? 答:①原因:在调制过程中采用了分频,而二分频器的输出电压有相差180度的两种可能相位,即其输出电压的相位决定了分频器的初始状态,这就是会导致分频出的载波存在相位模糊(2PSK 采用的是相移方式) ②解决办法:使用2DPSK 二相相对移相键控 4、 绝/相、相/绝变换的框图? 答: 5、 绝/相、相/绝变换电路是怎么实现的。 答:绝/相变换电路是把数据信息源输出的绝对码变相对码,2DPSK 信号由相对码进行绝对调相得到。它由模二加10A U (74LS86)和D 触发器9A U (74LS74)组成,其逻辑关系为:i a ⊕i-1b =i b ,其中i a 是绝对码,i-1b 是延迟一个码元的相对码,i b 是相对码。 相/绝变换电路由14B U (74LS74)和15B U (74LS86)组成,其逻辑关系可表示为i-1b ⊕i b =i a ,其中i b 为相对码,i-1b 为延迟一个码元的相对码,i a 为绝对码。 6、 画出实验板中2PSK 、2DPSK 调制与解调器的原理框图; 答:

7、本实验中,2PSK 信号带宽是多少?用数字示波器如何测量? 答:B=2 f=2/Ts。先按MATH按钮,再选择FFT选项。 s 8、测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测? 示波器的触发源该选哪一种信号?为什么? 答:绝对码波形。原始信号。触发源信号应该选择频率较低、稳定度高的信号。 9、解调电路各点信号的时延是怎么产生的? 答:由滤波与抽样产生。 10、码再生的目的是什么? 答:①防止噪声干扰的累加,恢复出基带信号。②把码元展宽。 11、用D触发器做时钟判决的最佳判决时间应该如何选择? 答:眼图中眼睛张开最大时刻,即码元能量最大时刻,把各个信号叠加在一起。 12、解调出的信码和调制器的绝对码之间的时延是怎么产生的? 答:由滤波与抽样产生。 13、在接收机带通滤波器之后的波形出现了起伏是什么原因,带通滤波器的 带宽设计多大比较合适? 答:符号切换造成了旁瓣的产生,0、1跳变使得高频成份丰富。π→0→π转换点导致的频谱扩展特别大,通过滤波器会缩小。带宽设计为2/Ts。

matlab实验报告 数字调制解调

实验报告 姓名:李鹏博实验名称:数字调制解调 学号:2011300704 课程名称:数字信号处理 班级:03041102 实验室名称:航海西楼303 组号: 1 实验日期:2014.06.27 一、实验目的、要求 掌握掌握数字调制以及对应解调方法的原理。 掌握数字调制解调方法的计算机编程实现方法,即软件实现。 二、实验原理 二进制数字频率调制(2FSK) 二进制数字频率调制,简称频移键控2FSK,是利用二进制数字基带信号控制载波的频率,进行频谱变换的过程。在发送端,由基带信号控制载波,用不同频率的载波振荡信号来传输数字信号“1”和“0”;接收端则根据不同频率的载波信号,将其还原成相应的数字基带信号。 PSK调制 在PSK调制时载波的相位随调制信号状态不同而改变。如果两个频率相同的载波同时开始振荡这两个频率同时达到正最大值同时达到零值同时达到负最大值此时它们就处于“同相”状态如果一个达到正最大值时另一个达到负最大值则称为“反相”。把信号振荡一次一周作为360度。如果一个波比另一个波相差半个周期两个波的相位差180度也就是反相。当传输数字信号时“1”码控制发0度相位“0”码控制发180度相位。 三、实验环境 PC机,Windows2000,office2000,Matlab6.5以上版本软件。 四、实验内容、步骤 实验内容 已知消息信号为一个长度为8的二进制序列;载波频率为 800 c f Hz ,采样频率为 4KHz。编程实现一种调制、传输、滤波和解调过程。 实验步骤 根据参数产生消息信号s和载波信号。调用函数randint生成随机序列。 编程实现调制过程。调用函数y=fskmod(s,M,FREQ_SEP,NSAMP)完成频率调制,y=pskmod(s,M) 完成相位调制,或者。调用函数modulate完成信号调制。 编程实现信号的传输过程。产生白噪声noise,并将其加到调制信号序列。或者调用函

通信原理实验——2PSK调制与解调

贵州大学实验报告 学院:计信学院专业:网络工程班级:101 姓名学号实验组实验时间2013.06.16 指导教师成绩 实验项目名称实验二2PSK调制与解调 实 验目的1、掌握2PSK调制的原理及实现方法。 2、掌握2PSK解调的原理及实现方法。 实验原理 1、2PSK调制 2PSK信号产生的方法有两种:模拟调制法和数字调制法。 码型变换乘法器 NRZ输入双极性NRZ调制输出 载波输入 图16-1 2PSK调制模拟相乘法原理框图 上图16-1是2PSK调制模拟相乘法原理框图。信号源模块提供码速率96K的NRZ 码和384K正弦载波。在2ASK中数字基带信号是单极性的,而在2PSK中数字基带信号是双极性的。故先将单极性NRZ码经码型变换电路转换为双极性NRZ码,然后与384K正弦载波相乘,便得2PSK调制信号。乘法器的调制深度可由“调制深度调节”旋转电位器调节。 载波1 384K 开关电路2 调制输出 NRZ输入 开关电路1 反相器 图16-2 2PSK调制数字键控法原理框图 上图16-2是2PSK调制数字键控法原理框图。为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz正弦载波信号,NRZ码为“1”的一个码元对应0相位起始的正弦载波的4个周期,NRZ码为“0”的一个码元对应π相位起始的正弦载波的4个周期。 实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来

控制门的通/断。当NRZ 码为高电平时,模拟开关1导通,模拟开关2截止,0相位起始的正弦载波通过门1输出;当NRZ 码为低电平时,模拟开关2导通,模拟开关1截止,π相位起始的正弦载波通过门2输出。门的输出即为2FSK 调制信号,如下图16-3所示。 NRZ输入 调制信号 1 1 00 1 PSK 图16-3 2PSK 调制信号波形 2、2PSK 解调 2PSK 信号的解调通常采用相干解调法,原理框图如下图16-4所示。 LPF 相乘器电压判决 抽样判决 调制输入 BS输入 PSK/DPSK 判决电压调节 载波输入相乘输出 滤波输出 解调输出 判压输出 图16-4 2PSK 解调相干解调法原理框图 设已调信号表达式为1()cos(())s t A t t ω?=?+(A 1为调制信号的幅值), 经过模拟乘法器与载波信号A 2cos t ω(A2为载波的幅值)相乘,得 0121 ()[cos(2())cos ()]2 e t A A t t t ω??= ++ 可知,相乘后包括二倍频分量121 cos(2())2 A A t t ω?+和cos ()t ?分量(()t ?为时 间的函数)。因此,需经低通滤波器除去高频成分cos(2())t t ω?+,得到包含基带信号的低频信号。 然后再进行电压判决和抽样判决。此时,“解调类型选择”拨位开关拨到“PSK ”一端。 解调过程中各测试点波形如下图16-5所示。

数字调制系统的性能比较

衡量一个数字通信系统性能优劣的最为主要的指标是有效性和可靠性,下面主要针对二进制频移键控(2FSK)、二进制相移键控(BPSK)、二进制差分相移键控(DBPSK)以及四进制差分相移键控(DQPSK)数字调制系统,分别从误码率、频带利用率、对信道的适应能力以及设备的可实现性大小几个方面讨论。 1. 误码率 通信系统的抗噪声性能是指系统克服加性噪声影响的能力。在数字通信系统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量。 在信道高斯白噪声的干扰下,各种二进制数字调制系统的误码率取决于解调器输入信噪比,而误码率表达式的形式则取决于解调方式:相干解调时为互补误 差函数erfc形式(k只取决于调制方式),非相干解调时为指数函数形式。 图1和图2是在下列前提条件下得到: ①二进制数字信号“1”和“0”是独立且等概率出现的; ②信道加性噪声n(t)是零均值高斯白噪声,单边功率谱密度为0n,信道参 恒定; ③通过接受滤波器后的噪声为窄带高斯噪声,其均值为零,方差为2nσ; ④由接收滤波器引起的码间串扰很小,忽略不计; ⑤接收端产生的相干载波的相位差为0。

图1 各种数字调制系统误码率 图2 二进制数字调制系统的误码率曲线 DBPSK ()erfc r 12r e - DQPSK (2sin )2erfc r M π —

图3a MDPSK 信号误码率曲线 图3b MPSK 信号的误码率曲线 (1) 通过图1从横向来看并结合图2得到: 对同一调制方式,采用相干解调方式的误码率低于采用非相干解调方式的误码率,相干解调方式的抗噪声性能优于非相干解调方式。但是,随着信噪比r 的增大,相干与非相干误码性能的相对差别越不明显,误码率曲线有所靠拢。 (2) 通过图1从纵向来看: ①若采用相干解调,在误码率相同的情况下,2224ASK FSK BPSK r r r ==,转化成分贝表示为22()3()6()ASK FSK BPSK r dB dB r dB dB r dB =+=+,即所需要的信噪比的要求为:BPSK 比2FSK 小3dB ,2FSK 比2ASK 小3dB ;BPSK 和DBPSK 相比,信噪比r 一定时,若 ()e BPSK P 很小,则()()/2e DBPSK e BPSK P P ≈,若()e BPSK P 很大,则有()()/1e DBPSK e BPSK P P ≈,意味着()e DBPSK P 总是大于()e BPSK P ,误码率增加,增加的系数在1~2之间变化,说明DBPSK 系统抗加性白噪音性能比BPSK 的要差;总之,使用相干解调时,在二进制数字调制系统中,BPSK 的抗噪声性能最优。 ②若采用非相干解调,在误码率相同的情况下,信噪比的要求为:DBPSK

数字信号调制与解调技术论文---副本

数字信号调制与解调技术 张海超(天津712) 摘要 调制技术是把基带信号变换成传输信号的技术。它将模拟信号抽样量化后,以二进制数字信号“1”或“0”对光载波进行通断调制,并进行脉冲编码(PCM)。数字调制的优点是抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。它的缺点是需要较宽的频带,设备也复杂。 调制技术又分为模拟调制技术与数字调制技术,其主要区别是:模拟调制是对载波信号的某些参量进行连续调制,在接收端对载波信号的调制参量连续估值,而数字调制是用载波信号的某些离散状态来表征所传送信息,在接收端只对载波信号的离散调制参量进行检测。与模拟调制系统中的调幅、调频和调相相对应,数字调制系统中也有幅度键控(ASK)、移频键控(FSK)和移相键控(PSK)三种方式,其中移相键控调制方式具有抗噪声能力强、占用频带窄的特点,在数字化设备中应用广泛,具体的数字调制方式有2FSK、2ASK、2PSK、QPSK、QAM、GSMK、MSK等。 数字调制的优点是抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。在现在文明高速发展的今天,人们越来越离不开数字信息,数字通信也越来越重要,因此数字调制解调技术越来越被广泛应用。 由于信道资源的紧张与人们越来越希望更快的通信速度与更好通信质量的要求的矛盾,将来必然还要寻找更加好的调制技术,它要求功率效率高,频带利用率高,并且易于实现,节能低碳,环保。激光调制通信、卫星通信、非恒包络调制等都是研究方向。数字调制解调的发展,必定会有力地推进通信、数字技术等各个领域的进步。 关键字:数字、调制方式、解调方式

一、概述 调制是将各种基带信号转换成适于信道传输的调制信号(已调信号或频带信号),就是用基带信号去控制载波信号的某个或几个参量的变化,将信息荷载在其上形成已调信号传输,而解调是调制的反过程,通过具体的方法从已调信号的参量变化中将恢复原始的基带信号。 调制技术分为模拟调制技术与数字调制技术,其主要区别是:模拟调制是对载波信号的某些参量进行连续调制,在接收端对载波信号的调制参量连续估值,而数字调制是用载波信号的某些离散状态来表征所传送信息,在接收端只对载波信号的离散调制参量进行检测。 1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以后才开始的。随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。常用的数字调制技术有2ASK(Amplitude Shift Keying,幅移键控)、4ASK、8ASK、BIT/SK(Phase Shift Keying,相移键控)、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。更有将幅度与相位联合调制的QAM(Quadrature Amplitude Modulation,正交振幅调制)技术,目前数字微波中广泛使用的256QAM,其频带利用率可达8bit/s/Hz,8倍于2ASK或BIT/SK。此外,还有可采用减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。 数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性,除此之外,数字调制抗干扰能力强,中继时噪声及色散的影响不积累,因此可实现长距离传输。在现在文明高速发展的今天,人们越来越离不开数字信息,数字通信也越来越重要,因此数字调制解调技术越来越被广泛应用。

多进制数字调制系统抗噪性能分析

安康学院 学年论文﹙设计﹚ 题目多进制数字调制系统抗噪性能分析 学生姓名任永森学号 2009222343 所在院(系)安康学院 专业班级电子信息工程 09级(1班) 指导教师张申华 2012年 6月8日

多进制数字调制系统抗噪性能分析 (作者:任永森) (安康学院电子与信息工程系电子信息工程专业09级,陕西安康725000) 指导教师:张申华 【摘要】本文以双模噪声为背景噪声,详细分析了二进制数字调制系统的抗噪声性能。它是对原建立在高斯噪声基础上通信与信号处理理论的完善与补充,有一定的普遍意义。在理论分析的基础上,给出了仿真结果并进行了分析。 【关键词】双模噪声相干检测非相干检测高斯型混合 Anti-noise performance of M-ary digital modulation system Author: Ren Y ongsen (Department of electronics and Information Engineering Ankang University of electronic information engineering09,Ankang 725000,Shaanxi) Directed by Zhang Shenhua Abstract:The bimodal noise background noise, a detailed analysis of the binary digital modulation noise immunity performance of. It is to build in the Gauss noise based on communication and signal processing theory perfect and supplement, has certain common sense. On the basis of theoretical analysis, simulation results and analysis. Key words:Bimodal Noise coherent detection noncoherent detection Gauss hybrid 0 引言 通信与信号处理理论一般是建立在高斯噪声基础之上的,它对建立在高斯噪声基础上的数字调制系统中的背景噪声为高斯噪声时的性能分析理论上已经比较完善。非高斯噪声研究是现代信号处理的核心内容之一,其应用范围以涉及地球物理各个领域。在信号处理方法中,特别是对于各种污染非高斯噪声的接收信号的检测和处理,用高斯噪声进行近似分析不能得到满意效果,所以在处理信号和数据时,首先要分清混有那类噪声,建立其数学模型进行处理。非高斯噪声比高斯噪声更具

2FSK数字频率调制解调仿真通信原理课程设计

XXXXXXXXXXXX 通信原理课程设计 题目2FSK数字频率调制解调计算机仿真 院(系)电子工程与电气自动化学院 专业电子信息工程 学生姓名XXXXXXXXXXXXXXXXXXXXXXXXXX 学号XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 指导教师XXXXXX 职称讲师 论文字数

摘要 本文主要利用Systemview来实现2FSK数字调制系统解调器的设计。该设计模块包含信源调制、发送滤波器模块、信道、接收滤波器模块、解调以及信宿,并对各个模块进行相应的参数设置。在此基础上熟悉Systemview的功能及操作,最后通过观察仿真波形进行波形分析及系统的性能评价。 2FSK信号的产生方法主要有两种:一种是模拟调频法,另一种是键控法,即在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率源进行选通,使其在每一个码元Ts期间输出f1或f2两个载波之一。这两种方法产生2FSK信号的差异在于:由调频法产生的2FSK信号在相邻码元之间的相位是连续变化的,而键控法产生的2FSK信号是由电子开关在两个独立的频率源之间转换形成,故相邻码元之间的相位不一定连续。本实验采用的是模拟调频法产生2FSK信号。2FSK信号的接受也分相干和非相干接受两种,非相干接收方法不止一种,他们都不利用信号的相位信息。故本设计采用相干解调法。 关键词:2FSK Systemview 调制解调误码率 Computer simulation of 2FSK modulation and demodulation Abstract The design of this paper use Systemview to achieve 2FSK demodulator for digital

2PSK调制与解调系统的仿真(1)

科类理工科编号(学号) 本科生毕业论文(设计) PSK调制与解调系统的仿真 The simulation of PSK modulation and demodulation system 秦安东 指导教师:赵红伟(讲师) 云南农业大学昆明黑龙潭650201 学院:基础与信息工程学院 专业:电子信息工程年级: 论文(设计)提交日期:答辩日期: 答辩委员会主任: 云南农业大学 年月

目录 摘要 ................................................................................................................ 错误!未定义书签。ABSTRACT.. (5) 1.前言 (5) 2.设计原理 (5) 2.1 2PSK信号的调制与解调 (5) 2.1.1 2PSK信号的调制原理 (5) 2.1.2 2PSK信号的解调原理 (7) 2.2 4PSK信号的调制与解调 (5) 2.2.1 4PSK信号的调制原理 (5) 2.2.2 4PSK信号的解调原理 (7) 2.3 8PSK信号的调制与解调 (5) 2.3.1 8PSK信号的调制原理 (5) 2.3.2 8PSK信号的解调原理 (7) 3仿真结果 (8) 4.1 2PSK信号的仿真结果如下图所示......................................... 错误!未定义书签。 4.2 4PSK信号的仿真结果如下图所示 (7) 4.3 8PSK信号的仿真结果如下图所示......................................... 错误!未定义书签。 5.心得体会 (9) 参考文献 (10) 致谢··················································································································错误!未定义书签。 附录··················································································································错误!未定义书签。

数字调制系统(数字频带传输系统)

121 第六章 数字调制系统(数字频带传输系统) 6.1 引 言 在实际通信中,有不少信道都不能直接传送基带信号,而必须用基带信号对载波波形的某些参量进行控制,使载波的这些参量随基带信号的变化而变化,即所谓调制。 数字调制是用载波信号的某些离散状态来表征所传送的信息,在收端对载波信号的离散调制参量进行检测。 数字调制信号也称键控信号。 在二进制时,有 ASK ~ 振幅键控 FSK ~ 移频键控 PSK ~ 移相键控 正弦载波的三种键控波形 见樊书P129,图6-1 6.2 二进制数字调制原理 6.2.1 二进制振幅键控(2ASK ) 一、一般原理及实现方法 2ASK 是用“0”,“1” 码基带矩形脉冲去键控一个连续的载波,使载波时 断时续地输出。 最早使用的载波电报就是这种情况。 数字序列{}n a ()t s 单极性基带脉冲序列 ()()t t s t e c ω=cos 0 与t c ωcos 相乘,()t s 频谱搬移到c f ±附近,实现2ASK 。 {}n a 信号 2ASK 调制的方框图 转换成 数字调制系统的基本结构图

122 带通滤波器滤出所需已调信号,防止带外辐射,影响邻台。 二、2ASK 信号的功率谱及带宽 ()()()() ∑∞-∞ =-=ω=n s n c nT t g a t s t Cos t s t e 0 ???-=p p a n 110,概率为,概率为随机变量 ()()()()()() ()()()s s T f j s a s T j s a s e fT S T f G e T S T G E t e S t s G t g 002 π-ω-?π=???? ??ω=ωω?ω?ω?或,设 ()()()[]c c S S E ω-ω+ω+ω=ω21 ()()()的功率为: 则在频率轴上互不重叠,,假如t e S S c c 0ω-ωω+ω ()()()[]()()()[] c S c S E c S c S E f f P f f P f P P P P -++=ω-ω+ω+ω= ω4 1 4 1 或 )(f P S 为)(t s 的功率谱, 可见,知道了)(f P S 即可知道)(f P E 。 由前面,二进制随机序列)(t s 的功率谱: 的门函数 12s 2 s t t t

实验的三基于某simulink地2FSK数字调制与解调仿真

河北北方学院信工 学院 数据通信原理实验(2013/2014学年第二学期) 课程名称:数据通信原理 题目:基于Simulink的2FSK数字调制与解调 专业班级:信息工程三班 学生姓名:王璐伟201342250 宋帅楠201342291 指导教师:刘钰 设计周数:1周 设计成绩: 2014年11月22日 第1章实验目的

1、熟悉2FSK系统的调制、解调原理 2、进一步熟悉MATLAB环境下的Simulink仿真平台 3、锻炼学生分析问题和解决问题的能力 第2章设计基础及要求 2.1 数字通信系统数学模型 图1.1 数字通信系统模型 图2-1 数字通信系统 典型的数字通信系统由信源、编码解码、调制解调、信道及信宿等环节构成,如图 1-1所示,数字调制是数字通信系统的重要组成部分,数字调制系统的输入端是经编码器编码后适合在信道中传输的基带信号。对数字调制系统进行仿真时,我们并不关心基带信号的码型,因此,我们在仿真的时候可以给数字调制系统直接输入数字基带信号,不用在经过编码器。 2.2 项目目的 基于Simulink的数字通信系统仿真—采用2FSK调制技术 2.2.1技术要求及原始数据 (1)对数字通信系统主要原理和技术进行研究,包括二进制频移键控(2FSK)及解调技术 和高斯噪声信道原理等; (2)建立数字通信系统数学模型; (3)建立完整的基于2FSK的模拟通信系统仿真模型; (4)对系统进行仿真、分析。 2.2.2主要任务 (1)建立模拟通信系统数学模型; (2)利用Simulink的模块建立模拟通信系统的仿真模型; (3)对通信系统进行时间流上的仿真,得到仿真结果;

2PSK数字信号的调制与解调

中南民族大学 软件课程设计报告 电信学院级通信工程专业 题目2PSK数字信号的调制与解调学生学号 42 指导教师 2012年4月21日

基于MATLAB数字信号2PSK的调制与解调 摘要:为了使数字信号在信道中有效地传播,必须使用数字基带信号的调制与解调,以使得信号与信道的特性相匹配。基于matlab实验平台实现对数字信号的2psk的调制与解调的模拟。本文详细的介绍了PSK波形的产生和仿真过程加深了我们对数字信号调制与解调的认知程度。 关键字:2PSK;调制与解调;MATLAB 引言 当今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段。因此,数字信号的调制就显得非常重要。 调制分为基带调制和带通调制。不过一般狭义的理解调制为带通调制。带通调制通常需要一个正弦波作为载波,把基带信号调制到这个载波上,使这个载波的一个或者几个参量上载有基带数字信号的信息,并且还要使已调信号的频谱倒置适合在给定的带通信道中传输。特别是在无线电通信中,调制是必不可少的,因为要使信号能以电磁波的方式发送出去,信号所占用的频带位置必须足够高,并且信号所占用的频带宽度不能超过天线的的通频带,所以基带信号的频谱必须用一个频率很高的载波调制,使期带信号搬移到足够高的频率上,才能够通过天线发送出去。 主要通过对它们的三个参数进行调制,振幅,角频率,和相位。使这三个参量都按时间变化。所以基带的数字信号调制主要有三种方式:FSK,PSK,ASK。在这三种调制的基础上为了得到更高的效果也出现了很多其它的调制方式,如:DPSK,MASK,MFSK,MPSK,APK。它们其中有的一些是将基本的调制方式用在多进制上或者引入了一些新的方式来解决基本调制的一些问题如相位模糊和无法提取位定时信号,另外一些由是组合多种基本的调制方式来达到更好的效果。 基带信号的调制主要分为线性调制和非线性调制,线性调制是指已调信号的频谱结构与原基带信号的频谱结构基本相同,只是占用的频率位置搬移了。而非线性调制则是指它们的结构完全不同不仅仅是频谱搬移,在接收方会出现很多新的频谱分量。在三种基本的调制中,ASK 属于线性调制,而FSK和PSK属于非线性调制。已调信号会在接收方通过各种方式通过解调得到,但是由于噪声和码间串扰,总会有一定的失真。所以人们总是在寻找不同的接收方式来降低误码率,其中的接收方式主要有相干接收和非相干接收。在接收方通过载波的相位信号去检测信号的方法称为相干检测,反之若不利用就称为非相干检测,而对于一些特别的调制有特别的解调方式,如过零检测法。 系统的性能好坏取决于传输信号的误码率,而误码率不仅仅与信道、接收方法有关还和发送端采用的调制方式有很大的关系。我们研究的ASK,FSK,PSK等就主要是发送方的调制方式。

数字调制技术

数字调制技术 一般情况下,信道不能直接传输由信息源产生的原始信号,信息源产生的信号需要变换成适合信号,才能在信道中传输。将信息源产生的信号变换成适合于信道传输的信号的过程称为调制。在调制电路中,调制信号是数字信号,因此这种调制称为数字调制。数字调制是现代通信的重要方法,它与模拟调制相比有许多优点:数字调制具有更好的抗干扰性能、更强的抗信道损耗及更高的安全性。在数字调制中,调制信号可以表示为符号或脉冲的时间序列,其中每个符号可以有m种有限状态,而每个符号又可采用n比特来表示。主要的数字调制方式包括幅移键控(amplitude shift keying,ASK)、频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)、多电平正交调幅(multi level quadrature amplitude modulation,mQAM)、多相相移键控(multiphase shift keying,mPSK),也包括近期发展起来的网格编码调制(trellis coded modulation,TCM)、残留边带(vestigial sideband,VSB)调制、正交频分复用(orthogonal frequency division multiplexing,OFDM)调制等。 1.幅移键控 幅移键控就是用数字信号控制高频振荡的幅度,可以通过乘法器和开关电路来实现。幅移键控载波在数字信号1或0的控制下通或断。在信号为1的状态下,载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么,在接收端就可以根据载波的有无还原出数字信号1和0。移动通信要求调制方式抗干扰能力强、误码性能好、频谱利用率高。二进制幅移键控的抗干扰能力和抗衰落能力差,误码率高于其他调制方式,因此一般不在移动通信中使用。 2. 频移键控 频移键控或称数字频率控制,是数字通信中较早使用的一种调制方式。频移键控广泛应用于低速数据传输设备中。它的调制方法简单、易于实现,解调不需要回复本地载波,可以异步传输,抗噪声和抗衰落能力强。因此,频移键控成为在模拟电话网上传输数据的低速、低成本异步调制解调器的一种主要调制方式。频移键控是用载波的频率来传送数字消息的,即用所传送的数字消息控制载波的

PSK调制解调实验报告标准范本

报告编号:LX-FS-A22577 PSK调制解调实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

PSK调制解调实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B

5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控

基于simulink 2psk调制概要

1.项目的目的、要求 1.1 目的 (1)掌握课程设计涉汲到的相关知识、概念及原理。 (2)仿真图设计合理、能够正确运行。 (3)按照要求撰写课程设计报告。 1.2 要求 (1)通过利用matlab simulink ,熟悉matlab simulink 仿真工具。 (2)通过课程设计来更好的掌握课本相关知识,熟悉2PSK 的调制与解调。 (3)更好的了解通信原理的相关知识,磨练自己分析问题、查阅资料、巩固知识、创新等 各方面能力。 2.项目设计正文 2.1 2PSK 2.1.1 2PSK 的基本原理 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK 中,通常用初始相位为0和π表示二进制的“1”和“0”。因此2PSK 的信号的时域表达式为: e2psk (t)=Acos(ωc t+φn ) (2-1) 其中,φn 表示第n 个符号的绝对相位: 发送“0”时 φn = (2-2) π 发送“1”时 因此,上式可改写为 Acos ωc t 概率为P (2-3) - Acos ωc t 概率为1-P e2psk (t)=

图 2-1 2PSK信号的时间波形 由于表示信号的两种码元的波形相同,极性相反,故2PSK信号一般可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波相乘,即 e2psk(t)=s(t)cosωc t (2-4) 其中 s(t)= ∑a n g(t-nT s) (2-5) 这里,g(t)是脉宽为Ts的单个矩形脉冲,而an得统计特性为 1 概率为P a n= (2-6) -1 概率为1-P 即发送二进制符号“0”时(an取+1),e2psk(t)取0相位;发送二进制符号“1”时(an取-1),e2psk(t)取π相位。 2.1.2 2PSK的产生 二进制相位调制就是用二进制数字信息控制正弦载波的相位,使正弦载波的相位随着二进制数字信息的变化而变化。二进制绝对调相就是用数字信息直接控制载波的相位。例如,当数字信息为‘1’时,使载波反相;当数字信息为‘0’时,载波相位不变。图2-2为2PSK波形图(为方便作图,在一个码元周期内画两个周期的载波)。

各种数字调制方法对比

调制是所有无线通信的基础,调制是一个将数据传送到无线电载波上用于发射的过程。如今的大多数无线传输都是数字过程,并且可用的频谱有限,因此调制方式变得前所未有地重要。 如今的调制的主要目的是将尽可能多的数据压缩到最少的频谱中。此目标被称为频谱效率,量度数据在分配的带宽中传输的速度。此度量的单位是比特每秒每赫兹(b/s/Hz)。现在已现出现了多种用来实现和提高频谱效率的技术。 幅移键控(ASK)和频移键控(FSK) 调制正弦无线电载波有三种基本方法:更改振幅、频率或相位。比较先进的方法则通过整合两个或者更多这些方法的变体来提高频谱效率。如今,这些基本的调制方式仍在数字信号领域中使用。 图1显示了二进制零的基本串行数字信号和用于发射的信号以及经过调制后的相应AM和FM信号。有两种AM信号:开关调制(OOK)和幅移键控(ASK)。在图1a中 ,载波振幅在两个振幅级之间变化,从而产生ASK调制。在图1b中,二进制信号关断和导通载波,从而产生OOK调制。 图1:三种基本的数字调制方式仍在低数据速率短距离无线应用中相当流行: 幅移键控(a)、开关键控(b)和频移键控(c)。在载波零交叉点发生二进制状态变化时,这些波形是相 干的。 AM在与调制信号的最高频率含量相等的载波频率之上和之下产生边带。所需的带宽是最高频率含量的两倍,包括二进制脉冲调制信号的谐波。 频移键控(FSK)使载波在两个不同的频率(称为标记频率和空间频率,即fm和fs)之间变换(图1c)。FM会在载波频率之上和之下产生多个边带频率。产生的带宽是最高调制频率(包含谐波和调制指数)的函数,即: m = Δf(T) Δf是标记频率与空间频率之间的频率偏移,或者: Δf = fs –fm T是数据的时间间隔或者数据速率的倒数(1/bit/s)。

数字信号处理综合设计实验报告

数字信号处理实验八 调制解调系统的实现 一、实验目的: (1)深刻理解滤波器的设计指标及根据指标进行数字滤波器设计的过程(2)了解滤波器在通信系统中的应用 二、实验步骤: 1.通过SYSTEMVIEW软件设计与仿真工具,设计一个FIR数字带通滤波器,预先给定截止频率和在截止频率上的幅度值,通过软件设计完后,确认滤波器的阶数和系统函数,画出该滤波器的频率响应曲线,进行技术指标的验证。 建立一个两载波幅度调制与解调的通信系统,将该滤波器作为两个载波分别解调的关键部件,验证其带通的频率特性的有效性。系统框图如下: 规划整个系统,确定系统的采样频率、观测时间、细化并设计整个系统,仿真调整并不断改进达到正确调制、正确滤波、正确解调的目的。(参考文件

zhan3.svu) (1)检查滤波器的波特图,看是否达到预定要求; (2)检查幅度调制的波形以及相加后的信号的波形与频谱是否正常; (3)检查解调后的的基带信号是否正常,分析波形变形的原因和解决措施;(4)实验中必须体现带通滤波器的物理意义和在实际中的应用价值。 2.熟悉matlab中的仿真系统; 3.将1.中设计的SYSTEMVIEW(如zhan3.svu)系统移植到matlab中的仿真环境中,使其达到相同的效果; 4.或者不用仿真环境,编写程序实现该系统,并验证调制解调前后的信号是否一致。 实验总共提供三个单元的时间(6节课)给学生,由学生自行学习和自行设计与移植 三、系统设计 本系统是基于matlab的simulink仿真软件设计的基带信号调制与解调的系统,利用matlab自带的数字信号仿真模块构成其原理框图并通过设置载波、带通滤波器以及低通滤波器等把基带信号经过载波调制后再经乘法器、带通滤波器和低通滤波器等电路系统能解调出基带信号。 1、实验原理框图

2psk调制通信系统

2psk 调制通信系统 一,设计任务与要求 课程设计需要运用MA TLAB 编程实现2PSK 调制解调过程,并且输出其调制及解调过程中的波形,讨论其调制和解调效果。 二,实验基本原理 数字调制技术的两种方法: ①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理。 ②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(2PSK )基本的调制方式。相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK 中,通常用初始相位0和π分别表示二进制“1”和“0”。 2psk 调制器可以采用相乘器,也可以采用相位选择器就模拟调制法而言,与产生2ASK 信号的方法比较,只是对s(t)要求不同,因此2PSK 信号可以看作是双极性基带信号作用下的DSB 调幅信号。而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ 或双极性NRZ 脉冲序列信号均可。2PSK 信号属于DSB 信号。 本次实验采用的的模拟相乘法即通过载波和双极性不归零码的相乘得到2psk 信号,则2psk 信号产生的调制原理框图和时域表达式如下: ?? ?-±=p t P t t p s k e -,c o s ,c o s c o s 2_概率为概率为ωωω 图1时域表达式 图2调制原理框图 2psk 典型波形如下:

三,仿真方案和参数设置 参数设置如下所示: 每码元采样点数Fn=500; 码元数m=50; 载波频率fc=2; 码元速率Rm=1; 加入的白噪声的信噪比snr分别为10,30,50 MATLAB产生2psk信号的程序框图如下:

数字调制系统-2ASK

成绩 西安邮电大学 《通信原理》软件仿真实验报告 实验名称:数字频带系统--2ASK系统 院系:通信与信息工程学院 专业班级: 学生姓名: 学号: (班内序号) 指导教师:张明远 报告日期:2013年10月13日

●实验目的: 1、掌握2ASK信号的波形和产生方法; 2、掌握2ASK信号的频谱特点; 3、掌握2ASK信号的解调方法; 4*、掌握2ASK系统的抗噪声性能。 ●知识要点: 1、2ASK信号的波形和产生方法; 2、2ASK信号的频谱; 3、2ASK信号的解调方法; 4*、2ASK系统的抗噪声性能。 ●仿真设计电路及系统参数设置: 采用模拟相乘法和键控法产生2ASK信号,经调制后用相干解调法和包络解波法进行解调系统框图: 时间参数:No. of Samples =8192;Sample Rate =10000Hz 单极性不归零码Rate = 200Hz,Amp =0.5V,Offset = 0.5V 载波Amp = 1V,Frep = 1000Hz; 图14为带通滤波器,Low Fc = 8000Hz,Hi Fc = 1200Hz 图18为全波整流器 图4和19为低通滤波器,截止频率为200Hz 图5和20为采样器,采样频率为200Hz 图8和21为保持器 图7和22为比较器,比较条件为a>=b,True Output=1v,False Output=-1v ●仿真波形及实验分析: 1.调制信号 原始信号,模拟相乘法得2ASK,键控法得2ASK瀑布图

原始信号频谱 模拟相乘法得2ASK 键控法的2ASK信号 分析:原始信号经模拟相乘法和键控法所得的2ASK信号波形相同,频谱也相同。所以两种方法均可获得2ASK信号

数字调制解调实验

武汉大学教学实验报告 电子信息学院 ** 专业 2016 年 ** 月 ** 日 实验名称数字调制解调实验指导教师 *** 姓名 *** 年级 14级学号 20143012***** 成绩 图1 FSK调制电路原理框图

代表信号载波的恒定偏移。 FSK 的信号频谱如图2 所示。 图2 FSK 的信号频谱 公式给出:,其中B 为数字基带信号的带宽。假设信号带宽限制在主 FSK 的传输带宽变为:。 图3 FSK锁相环解调器原理示意图 锁相解调的工作原理是十分简单的,只要在设计锁相环时, 此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。FSK锁相环解调器原理图如图3所示。FSK 。其中,压控振荡器的频率是由5C2.5R3.5R4.5U3等元件参数确定,中心频率设计在 电位器进行微调。当输入信号为32KHz时,环路锁定,经形成电路后,输出高电平;当输入信号为 失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

图4 PSK、DPSK调制电路原理框图 ,通过4P5和4P6两个铆孔输入到FPGA中,FPGA软件完成 解调器电路采用科斯塔斯环(Constas环)解调,其原理如图5所示。 图5 解调器原理方框图 输入电路由射随器和比较器组成,射随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。比较电路是将正弦信号转换为脉冲信号,目的是便于控制科斯塔斯特环中的乘法器。由于跟随器电源电压已调波信号幅度不能太大,一般控制在1.8V左右,否则会产生波形失真。 )科斯塔斯环提取载波原理(原理中标号参见原理图) 采用科斯塔斯特环解调,科斯塔斯特环方框原理如图6所示。 图6 科斯塔斯特环电路方框原理如图 解调输入电路的输出信号被加到模拟门5U6C和5U6D构成的乘法器,前者为正交载波乘法器,相当于图 ,后者为同相载波乘法器,相当于框图中乘法器1。5U7A,5U7B周边电路为低通滤波器。 的作用是将低通滤波后的信号整形,变成方波信号。PSK解调信号从5U8的7脚经5U11B.C ,若5U10A两输入信号分别为A和B,因(A、B同为 5E2用来稳压,以便提高VCO的频率稳定度。VCO信号从7脚经5C21输出至移相90o90o移

相关文档
最新文档