基本求导法则与导数公式

基本求导法则与导数公式
基本求导法则与导数公式

四、基本求导法则与导数公式

1. 基本初等函数的导数公式和求导法则

基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式

(1)

(2) (3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

函数的和、差、积、商的求导法则

设,都可导,则

(1)

(2)

(是常数)

(3)

(4)

反函数求导法则

若函数在某区间

内可导、单调且

,则它的反函数

在对应

区间

内也可导,且

0)(='C 1

)(-='μμμx

x x x cos )(sin ='x

x sin )(cos -='x

x 2

sec

)(tan ='x

x 2

csc )(cot -='x x x tan sec )(sec ='x x x cot csc )(csc -='a

a a x

x

ln )(='(e )e

x

x

'=a

x x a

ln 1)(log

=

'x x 1)(ln =

'2

11)(arcsin x

x -=

'2

11)(arccos x

x --

='2

1(arctan )1x x

'=

+2

1(arc cot )1x x

'=-

+)(x u u =)(x v v =v u v u '

±'='±)(u C Cu '

=')(C v u v u uv '

+'=')(2v v u v u v u '-'='

???

??)

(y x ?=y

I 0

)(≠'y ?)

(x f y =x

I

复合函数求导法则

设,而且及都可导,则复合函数的导数为

上述表中所列公式与法则是求导运算的依据,请读者熟记.

2. 双曲函数与反双曲函数的导数.

双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

)(1

)(y x f ?'=

'dy

dx dx

dy

1=

)(u f y =)(x u ?=)(u f )(x ?)]([x f y ?=dy dy du dx

du dx =

()()y f u x ?'''=

高等数学公式导数基本公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 222122an 11cos 12sin u du dx x t u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x x x x a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(cot sec )(tan 22= '='?-='?='-='='2 2 22 11 )cot (11 )(arctan 11 )(arccos 11 )(arcsin x x arc x x x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x xdx x C x dx x x C x xdx x dx C x xdx x dx x x )ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x a x a dx C x x xdx C x x xdx C x xdx C x xdx t +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln an 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

基本初等函数的导数公式及运算法则

课时授课计划

教师活动 教学过程: 一?创设情景 2 1 四种常见函数y=c、y = x、y =x、y —的导数公式及应用 :■?新课讲授 学生活动学生自行预习

(二)导数的运算法则导数运算法则 1. 〔f(X)土g(x)i = f'(x) ±g'(x) 2. [f(x) g(x)]' = f'(x)g(x)±f(x)g'(x) I f (x) I f (x) g (x) - f (x) g (x) / . . 3. = ——(g(x)HO) ]g(x) 一[g(x)f (2)推论:lcf(x) I - Cf'(x) (常数与函数的积的导数,等于常数乘函数的导数) 三.典例分析 例1 .假设某国家在20年期间的年均通货膨胀率为5% ,物价p (单位:元)与时间t (单位:年)有如下函数关系p(t) = p0(1 - 5%亍,其中p0 为t = 0时的物价.假定某种商品的p0 = 1,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有p'(t) =1.0“ In 1.05 所以p (10) =1.0510|n1.05 : 0.08 (元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2?根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1) y = x3 -2x 3 (2) y 1 1 (3) y = x sin x ln x; (4)y (5)y (6)y 4x 1 -ln x 1 l n x (2 x2—5 x + 1) e x / 、sin x—xcosx (7) y =-------------------------- cosx +xsin x 通过预习自行完成 在老师的指导下独立完成后面几道题

常用的基本求导定律

1.基本求导公式 ⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',21 )1(x x -=',x x 21)(='。 ⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷ x x 1)(ln =';一般地,)1,0( ln 1 )(log ≠>='a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3 ,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)??=dx x f k dx x kf )()((k 为常数) 5、定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴ ??? +=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则

导数及求导

导数定义: [1](一)导数第一定义:设函数y = f(x) 在点x0 的某个邻域内有定义,当自变量x 在x0 处有增量△x ( x0 + △x 也在该邻域内) 时,相应地函数取得增量△y = f(x0 + △x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数y = f(x) 在点x0 处可导,并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即 导数第一定义 (二)导数第二定义:设函数y = f(x) 在点x0 的某个邻域内有定义,当自变量x 在x0 处有变化△x ( x - x0 也在该邻域内) 时,相应地函数变化△y = f(x) - f(x0) ;如果△y 与△x 之比当△x→0 时极限存在,则称函数y = f(x) 在点x0 处可导,并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即 导数第二定义 (三)导函数与导数:如果函数y = f(x) 在开区间I 内每一点都可导,就称函数f(x)在区间I 内可导。这时函数y = f(x) 对于区间I 内的每一个确定的x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x) 的导函数,记作y', f'(x), dy/dx, df(x)/dx。导函数简称导数。

导数的几何意义是,导数在几何上表现为切线的斜率。对于一元函数,某一点的导数就是平面图形上某一点的切线斜率;对于二元函数而言,某一点的导数就是空间图形上某一点的切线斜率,故必须对极限的定义及几何意义非常了解,不然无法了解倒数的意义。 对于单侧可导,设函数f(x)在点x0及x0的某个领域内有定义 则当h从h=0的右边逼近于h=0即原点时,若lim[f(x0+h)-f(x0)]/h存在,这个极限就是f(x)在x=x0的右导数。左导数类似。区别在于逼近的方向不同。几何意义即函数f(x)左右的切线斜率,如果函数f(x)在点x0的左导数与右导数存在且相同,则称函数f(x)在点x0处可导。 同时,若函数f(x)在点x0可导,则函数f(x)在点x0一定连续,但f(x)在点x0连续却不一定可导。

常用的基本求导定律

1 .基本求导公式 ⑴(C) 0 (C 为常 数) ⑵ (x n ) nx ;般地,(x ) x 。 特别地: 2 (x) 1 , (x ) 2x , 1 (―) x 2 , ( '、x) x 2、X ⑶(e x ) x e ; -般地, (a x ) a x ln a (a 0,a 1)。 ⑷(lnx) 1 一般地, (lo g a x)- 1 (a 0,a 1)。 x xln a 2 .求导法则⑴四则运算法则 设 f (x ), g (x )均在点 X 可导,则有:(I) (f(x) g(x)) f (x) g (x); (n) (f (x)g(x)) f (x)g(x) f(x)g (x),特别(Cf (x)) Cf (x)(C 为常数); 常用的不定积分公式 5、定积分 b b a f(x)dx F(x) |a F(b) b b & a f (x) dx k 2 a g(x)dx x dx (1) x 3 dx 1 x 1 4 x c 4 ( 1), dx x c, xdx c , x 2 dx (2) ^dx x In | x| C e x dx e x C ; a x dx x a ln a C (a 0,a 1); (3) kf(x)dx k f (x)dx (k 为常 数) 5)(g(x) f(x) ) f(x)g(x) 2‘ f(x)g(x) ,(g(x) g 2(x) 0) ,特别爲 g (x) 。 3 .微分函数y f (x )在点x 处的微分: dy y dx (x)dx F(a) b a [k 1 f (x) k 2g(x)]dx a

求导法则与求导公式

§2.2 求导法则与导数的基本公式 教学目标与要求 1. 掌握并能运用函数的和、差、积、商的求导法则 2. 理解反函数的导数并能应用; 3. 理解复合函数的导数并会求复合函数的导数; 4. 熟记求导法则以及基本初等函数的导数公式。 教学重点与难度 1. 会用函数的和、差、积、商的求导法则求导; 2. 会求反函数的导数; 3. 会求复合函数的导数 前面,我们根据导数的定义,求出了一些简单函数的导数。但是,如果对每一个函数都用定义去求它的导数,有时候将是一件非常复杂或困难的事情。因此,本节介绍求导数的几个基本法则和基本初等函数的导数公式。鉴于初等函数的定义,有了这些法则和公式,就能比较方便地求出常见的函数——初等函数的导数。 一、函数的和、差、积、商求导法则 1.函数的和、差求导法则 定理1 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =±在点x 处也可导,且 [()()]()()y u x v x u x v x ''''=±=± 同理可证:' ' ' [()()]()()u x v x u x v x -=- 即证。 注意:这个法则可以推广到有限个函数的代数和,即 12''' ' 12[()()()]()()()n n u x u x u x u x u x u x ±± ±=±±±, 即有限个函数代数和的导数等于导数的代数和。

例1 求函数4 cos ln 2 y x x x π =+++ 的导数 解 4 c o s l n 2y x x x π'??'=+++ ?? ? ()()()4 cos ln 2x x x π'??'''=+++ ??? 3 1 4s i n x x x =-+ 2.函数积的求导公式 定理2 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =在点x 也可导,且 ''''[()()]()()()()y u x v x u x v x u x v x ==+。 注意:1)特别地,当u c =(c 为常数)时, '''[()]()y cv x cv x ==, 即常数因子可以从导数的符号中提出来。而且将其与和、差的求导法则结合,可得: ''''[()()]()()y au x bv x au x bv x =±=±。 2)函数积的求导法则,也可以推广到有限个函数乘积的情形,即 ''' '12 1212 12 ()n n n n u u u u u u u u u u u u =+++。 例2 求下列函数的导数。 1)32 3254sin y x x x x =+-+; 解 ()()()()3 2 3254sin y x x x x '''''=+-+

导数公式及其运算法则

§1.2.2基本初等函数的导数公式及导数的运算法则(两课时) 学习目标 1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数. 3.复合函数的分解,求复合函数的导数. 一、预习与反馈(预习教材P 14~ P 19,找出疑惑之处) 复习1:常见函数的导数公式: (1) '____C =(C 为常数);(2)()'________n x =, n ∈N +;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =; (7)(ln )'______x =; (8) e x x a a log 1)'(log = 复习2:根据常见函数的导数公式计算下列导数 (1)6y x = (2 )y = (3)21y x = (4 )y = 新知 1.可导函数的四则运算法则 法则1 '[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差). 法则2 [()()]____________u x v x '=. (口诀:前导后不导,后导前不导,中间是正号) 法则3 ()[]_______________(()0)() u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号)

例1. 根据基本初等函数的导数公式和导数运算法则,求函数3123y x x x =-++导数. 变式:( 1)2log y x =; (2)2x y e =; (3)522354y x x x =-+-; (4)3cos 4sin y x x =- 例2求下列函数的导数: (1)32log y x x =+; (2)n x y x e = (3)y=2e -x 2. 复合函数: 1.定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记住 2.复合函数的求导法则 复合函数(())y f g x =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。 例。3 求下列函数的导数: (1)2(23)y x =+; (2)1x y e -+=; (3)sin()y x π?=+

导数公式证明大全(更新版)

(麻烦那些盗取他人成果的人素质点,最近总有人把我的作品抄袭过去,改改标题就作为他的东西。愤怒啊!!!!!!) 导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)

证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx

=lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx

(完整版)【经典】常用的求导和定积分公式(完美)

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2 v v u v u v u '-'= ' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应区间x I 内也可导,且

)(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+ (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)21 tan cos dx x C x =+? (9)21 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+?

求导公式

1. y=c(c 为常数) y'=0 2. y=x^n y'=nx^(n-1) 3. y=a^x y'=a^xlna y=e^x y'=e^x 4. y=logax y'=logae/x y=lnx y'=1/x 5. y=sinx y'=cosx 6. y=cosx y'=-sinx 7. y=tanx y'=1/cos^2x 8. y=cotx y'=-1/sin^2x 9. y =arcsinx y'=1/√1-x^2 10. y=arccosx y'=-1/√1-x^2 11. y=arctanx y'=1/1+x^2 12. y=arccotx y'=-1/1+x^2 1、a 是一个常数,对数的真数,比如ln5 5就是真数 2、log 对数 lognm 这里的n 是指底数,m 是指真数, 当底数为10时,简写成lgm 当底数为e (e = 2.718281828459)是一个常数 数学中成为超越数 经常要用到)时,简写成lnm 3、sin ,cos ,tan ,sec ,cot ,csc 分别为三角函数 分别表示正弦、余弦、正切、正割、余切、余割。 正弦余弦是一对,正切余切是一对,正割余割是一对 这六个是最基本的三角函数 4、arc 是指的反三角函数 比如反正弦Sin30°=0.5 则arcsin0.5=30°(角度制)=π/6(弧度制) 反正切 反余弦 反余切等等都是同一道理 四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) 0 )(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -='

基本导数公式

基本导数公式-CAL-FENGHAI.-(YICAI)-Company One1

基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x '= ⑿()1log ln x a x a '= ⒀()arcsin x '= ⒁()arccos x '= 微分公式与微分运算法则 ⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =? ⑻()csc csc cot d x x xdx =-? ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x = ⑿()1log ln x a d dx x a = ⒀()arcsin d x = ⒁()arccos d x = ⒂()21arctan 1d x dx x = + ⒃()21arccot 1d x dx x =-+ 微分运算法则 ⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udv d v v -??= ??? 基本积分公式 ⑴kdx kx c =+? ⑵11x x dx c μμ μ+=++? ⑶ln dx x c x =+? ⑷ln x x a a dx c a =+? ⑸x x e dx e c =+? ⑹cos sin xdx x c =+? ⑺sin cos xdx x c =-+? ⑻ 221sec tan cos dx xdx x c x ==+?? ⑼221csc cot sin xdx x c x ==-+?? ⑽21arctan 1dx x c x =++?

一般常用求导公式57219

四、基本求导法则与导数公式 1.基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要 如下: 基本初等函数求导公式 ⑴ (C) =0 (2) (x 」)=」x 」」 ⑶ (sin x) = cosx (4) (cosx) - - sin x (5) (tan x) = sec 2 x (6) (cot x) - - csc 2 x ⑺ (secx) = secx tan x (8) (cscx) - - cscxcot x ⑼ (a x )'=a x ln a (10) (e x ) =e x 反函数求导法则 若函数x =B (y)在某区间I y 内可导、单调且平( y)尹0,则它的反函数y = f(x) 的作用,我们必须熟练的掌握它, 为了便于查阅, 我们把这些导数公式和求导法则归纳 (11) Zl 、 1 (log a X)=— xln a (12) (ln x) =1 x , (13) (arcsin x) . ----------- 2 .1 —x (14) (arccosx)』-1 2 .1 - x? (15) 1 (arctan x) = ------ ^ 1 x (16) 函数的和、差、 积、商的求导法则 (1) (3) =u(x), v =v(x) 都可导,则 (u 二 v) = u - v (uv) = u v uv (2) (C u)' = Cu‘(C 是常数) (4) u : —I

在对应区间^内也可导,且 dy _ 1 dx 史 或 d y 复合函数求导法则 设y = f (u ),而u=%x )且f (u )及中(x )都可导,则复合函数y= fp (x )]的 导数为 dy du du^x 或 y'=f '⑴序'(x) 上述表中所列公式与法则是求导运算的依据,请读者熟记. 2 .双曲函数与反双曲函数的导数 . 双曲函数与反双曲函数都是初等函数, 它们的导数都可以用前面的求导公式和求导 法则求出. 可以推出下表列出的公式: f (x) : (y) dy dx

导数公式及其运算法则

§122基本初等函数的导数公式及导数的运算法则 (两课时) 学习目标 1. 理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2. 理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数 3. 复合函数的分解,求复合函数的导数 . 一、预习与反馈(预习教材P l4~ P l9,找出疑惑之处) 复习1:常见函数的导数公式: cosx)' ________ ; (5) (e x )' ________ ; ⑹(a x )' 1 ⑺(l nx)' ________ ; (8) (log a x)' log a e x 复习2:根据常见函数的导数公式计算下列导数 新知 1. 可导函数的四则运算法则 法则1 [u(x) v(x)]' ______________ . ( 口诀:和与差的导数等于导数的和与差 ). 法则2 [u(x)v(x)] ____________ . ( 口诀:前导后不导,后导前不导,中间是正号 ) 法则3 [凹] __________________ ( v(x) 0)( 口诀:分母平方要记牢,上导下不导,下 v(x) (1) C' _______ (C 为常数);(2) (x n )' n € N +; (3) (sin x)' ______ 6 (1)y x (2) y - x

导上不导,中间是负号) 1 例1. 根据基本初等函数的导数公式和导数运算法则,求函数 y x 3 2x 丄3导数. x 变式:(1) y log 2x ; 例2求下列函数的导数: (1) y x 3 log 2 x ; 2. 复合函数: 1. 定义:一般地,对于两个函数y =f (u )和u g(x)如果通过变量u,y 可以表示成x 的函数, 那么这个函数为函数 _________ 和 ______________ 的复合函数,记住 _____________________ 2. 复合函数的求导法则 复合函数y f(g(x))的导数和函数y =f (u ), u g(x)的导数间的关系式 为 ________________ ,即y 对x 的导数等于 _________________ 的乘积。 例。3求下列函数的导数: 2 x 1 (1) y (2x 3) ; ( 2) y e ; (3) y sin( x ) x (2) y 2e ; (3) y 2x 5 3x 2 5x 4; (4) y 3cosx 4sin x (3)y=2e -x

1常见函数的导数公式

1.常见函数的导数公式: (1)0'=C (C 为常数); (2)1)'(-=n n nx x (Q n ∈); (3)x x cos )'(sin =; (4)x x sin )'(cos -=; (5)a a a x x ln )'(=; (6)x x e e =)'(; (7)e x x a a log 1)'(log = ; (8)x x 1)'(ln = . 2.导数的运算法则: 法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 ''(0)u u v uv v v v -?? =≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 例题:一:1:求函数323y x x =-+的导数. 2: y = x x sin 2.函数y =x 2cos x 的导数为 。 函数y =tanx 的导数为 。 2:求下列复合函数的导数: ⑴3 2 )2(x y -=; ⑵2 sin x y =; ⑶)4 cos(x y -=π ; ⑷)13sin(ln -=x y .3 2 c bx ax y ++=

4.曲线y =x 3的切线中斜率等于1的直线 ( ) A .不存在 B .存在,有且仅有一条 C .存在,有且恰有两条 D .存在,但条数不确定 5.曲线3()2f x x x =+-在0P 处的切线平行于直线41y x =-,则0P 点的坐标为( ) A 、( 1 , 0 ) B 、( 2 , 8 ) C 、( 1 , 0 )和(-1, -4) D 、( 2 , 8 )和 (-1, -4) 6.f (x )=ax 3 +3x 2 +2,若f ′(-1)=4,则a 的值等于 ( ) A. 3 19 B. 3 16 C. 3 13 D. 3 10 7.曲线22x y =在点(1,2)处的瞬时变化率为( ) A 2 B 4 C 5 D 6 8.已知曲线122+=x y 在点M 处的瞬时变化率为-4,则点M 的坐标是( ) A (1,3) B (-4,33) C (-1,3) D 不确定 9.物体按照s (t )=3t 2+t +4的规律作直线运动,则在4s 附近的平均变化率 . 10.曲线y =x 3-3x 2 +1在点(1,-1)处的切线方程为__________________. 11.已知l 是曲线y = 3 1x 3 +x 的切线中,倾斜角最小的切线,则l 的方程是 . 12.已知过曲线y =3 1x 3上点P 的切线l 的方程为12x -3y =16,那么P 点坐标只能为 ( ) A.?? ? ??38, 2 B.?? ? ??- 34,1 C.?? ? ??- -328,1 D.?? ? ??320, 3 13.已知c bx ax x f ++=24)(的图象经过点(0,1),且在x =1处的切线方程是y=x -2. 求)(x f y =的解析式. 14.求过点(2,0)且与曲线y = x 1相切的直线的方程.

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、=n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、 sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b 内,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的 单调增区间。 2、如果在(,)a b 内,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的

单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x15 = (2) ) - y x x 3 =≠0 ( (3) ) y x x 5 4 =0 ( (4) ) y x x 2 3 =0 ( (5) ) - y x x 2 3 =0 ( (6)y x5 = (7) sin y x = (8) cos y x = (9) x y=2 (10) ln y x = (11) x y e = 2、求下列函数在给定点的导数; (1)y x 1 4 =,x=16

(2)sin y x = , x π=2 (3)cos y x = ,x π=2 (4)sin y x x = , x π=4 (5)3y x = ,1128(,) (6) +x y x 2=1 ,x =1 (7)y x 2= ,,24() 3、计算下列各类函数的导数; (1)x +-y x x 765 =3

导数公式证明大全

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) 证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx

f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x f'(x) =lim (a^(x+Δx)-a^x)/Δx =lim a^x*(a^Δx-1)/Δx (设a^Δx-1=m,则Δx=loga^(m+1)) =lim a^x*m/loga^(m+1) =lim a^x*m/[ln(m+1)/lna] =lim a^x*lna*m/ln(m+1) =lim a^x*lna/[(1/m)*ln(m+1)]

导数计算公式

导数公式 一、基本初等函数的导数公式 已知函数:(1)y =f (x )=c ;(2)y =f (x )=x ;(3)y =f (x )=x 2;(4)y =f (x )=1 x ;(5)y =f (x )=x . 问题:上述函数的导数是什么? 提示:(1)∵ Δy Δx =f (x +Δx )-f (x )Δx =c -c Δx =0,∴y ′=lim Δx →0 Δy Δx =0. 2)(x )′=1,(3)(x 2 )′=2x ,(4)? ???? 1x ′=-1x 2,(5)(x )′=12x . 函数(2)(3)(5)均可表示为y =x α(α∈Q *)的形式,其导数有何规律? 提示:∵(2)(x )′=1·x 1-1,(3)(x 2)′=2·x 2-1,(5)(x )′=(x 1 2 )′ =12 x 112 -=1 2x ,∴(x α)′=αx α-1. 基本初等函数的导数公式

二、导数运算法则 已知f(x)=x,g(x)=1 x. 问题1:f(x),g(x)的导数分别是什么? 问题2:试求Q(x)=x+1 x,H(x)=x- 1 x的导数. 提示:∵Δy=(x+Δx)+ 1 x+Δx-? ? ? ? ? x+ 1 x=Δx+ -Δx x(x+Δx), ∴Δy Δx=1- 1 x(x+Δx),∴Q′(x)= lim Δx→0 Δy Δx= lim Δx→0? ? ? ? ? ? 1- 1 x(x+Δx)=1- 1 x2.同理H′(x)=1+1 x2. 问题3:Q(x),H(x)的导数与f(x),g(x)的导数有何关系? 提示:Q(x)的导数等于f(x),g(x)导数的和,H(x)的导数等于f(x),g(x)导数的差. 导数运算法则 1.[f(x)±g(x)]′=f′(x)±g′(x) 2.[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x)

常用的基本求导公式

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 1.基本求导公式 ⑴ 0)(='C (C 为常数)⑵ 1 )(-='n n nx x ;一般地,1 )(-='αααx x 。 特别地:1)(='x ,x x 2)(2 =',21 )1(x x - =',x x 21)(='。 ⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷ x x 1)(ln = ';一般地,)1,0( ln 1)(log ≠>='a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 4、 常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)? ?=dx x f k dx x kf )()((k 为常数) 5、定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴ ??? +=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则 ?? -=b a b a b a x du x v x v x u x dv x u )()()()()()(

基本初等函数的导数公式及运算法则教案

§1.2.2基本初等函数的导数公式及导数的运算法则 一.教学目标: 1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点: 基本初等函数的导数公式和导数的四则运算法则的应用 三.教学过程: (一).创设情景 复习五种常见函数y c =、y x =、2y x =、1y x = 、y = 用 (二).新课讲授 1(1)基本初等函数的导数公式表

(2)根据基本初等函数的导数公式,求下列函数的导数. (1)2y x =与2x y = (2)3x y =与3log y x = 2.(1 推论:[]' '()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 提示:积法则,商法则, 都是前导后不导, 前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+(2)sin y x x =?;(3)2(251)x y x x e =-+?;(4)4 x x y =; 【点评】 ① 求导数是在定义域内实行的. ② 求较复杂的函数积、商的导数,必须细心、耐心. 四.典例精讲 例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 分析:商品的价格上涨的速度就是函数关系()(15%)t p t =+的导数。 解:根据基本初等函数导数公式表,有'() 1.05ln 1.05t p t = 所以'10(10) 1.05ln 1.050.08p =≈(元/年)

常用的求导积分公式及解法

常用的求导积分公式及解法 1.基本求导公式 ⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',2 1)1(x x - =',x x 21 )(='。 ⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷ x x 1)(ln = ';一般地,)1,0( ln 1 )(log ≠>= 'a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2 ≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 4、 常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3,2,),1( 1143 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+= ?a a C a a dx a x x ; (3)? ?=dx x f k dx x kf )()((k 为常数) 5、定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴ ??? +=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则

相关文档
最新文档