二次函数必背知识点(精辟)

二次函数必背知识点(精辟)
二次函数必背知识点(精辟)

二次函数必背知识点_ _冲刺中考

2

1. 定义:一般地,如果y ax bx c(a,b,c是常数,a 0),那么y叫做x的二次函数

2

2. 二次函数y ax的性质

(1)抛物线y ax2的顶点是坐标原点,对称轴是y轴.

(2)函数y ax2的图像与a的符号关系.

①当a 0时抛物线开口向上顶点为其最低点;

②当a 0时抛物线开口向下顶点为其最高点

(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为y ax2(a 0).

3?二次函数y ax bxc

的图像是对称轴平行于(包括重合)y轴的抛物线

2

4.二次函数y ax bx c用配方法可化成:y

b , 4a

c b2

2a,4a

a相等,抛物线的开口大小、形状相同

②平行于y轴(或重合)的直线记作x h.特别地,y轴记作直线x 0.

方向、开口大小完全相同,只是顶点的位置不同2

a x h k的形式,其中

5?二次函数由特殊到一般,可分为以下几种形式:① 2 2

y ax ;② y ax k :③

2 2 2

y a x h :④ y a x h k :⑤ y ax bx c.

6?抛物线的三要素:开口方向、对称轴、顶点

①a的符号决定抛物线的开口方向:当 a 0时,开口向上;当a 0时,开口向下;

7.顶点决定抛物线的位置?几个不同的二次函数, 如果二次项系数a相同,那么抛物线的开口

8.求抛物线的顶点、对称轴的方法(1 )公式法:y ax2bx c

2

b

2a

4ac b2

4a

2

(2)配方法:运用配方的方法,将抛物线的解析式化为

y a x h k 的形式,得到

顶点为(h , k ),对称轴是直线x h .

(3 )运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连

线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失

2

9?抛物线y ax bx c 中,a,b,c 的作用

2

(1) a 决定开口方向及开口大小,这与 y ax 中的a 完全一样.

(2)b 和a 共同决定抛物线对称轴的位置 ?由于抛物线y ax 2 bx c 的对称轴是直线

x

—,故:①b 0时,对称轴为y 轴;②一0 (即a 、b 同号)时,对称轴

2a a

b

在y 轴左侧;③一 0 (即a 、b 异号)时,对称轴在 y 轴右侧?

a

2

(3) c 的大小决定抛物线 y ax bx c 与y 轴交点的位置?

2

当x 0时,y c ,二抛物线y ax bx c 与y 轴有且只有一个交点(0, c ): ①c 0 ,抛物线经过原点;②c 0,与y 轴交于正半轴;③ c 0 ,与y 轴交于负半

顶点是( ―,

4ac b

),对称轴是直线x

2a 4a

b 2a

以上三点中,当结论和条件互换时, 仍成立.如抛物线的对称轴在

K

y 轴右侧,则一 a

0.

11. 用待定系数法求二次函数的解析式

(1)一般式:y ax2 bx c?已知图像上三点或三对x、y的值,通常选择一般式.

(2)顶点式:y ax h? k.已知图像的顶点或对称轴,通常选择顶点式

(3)交点式:已知图像与x轴的交点坐标x i、X2,通常选用交点式:

y ax x1x x2.

12. 直线与抛物线的交点

2

(1)y轴与抛物线y ax bx c得交点为(0, c).

2

(2)与y轴平行的直线x h与抛物线y ax bx c有且只有一个交点

2

(h, ah bh c).

(3 )抛物线与x轴的交点

二次函数y ax2 bx c的图像与x轴的两个交点的横坐标x1、x2,是对应一元

2

二次方程ax bx c 0的两个实数根.抛物线与x轴的交点情况可以由对应的一

元二次方程的根的判别式判定:

①有两个交点0 抛物线与x轴相交;

②有一个交点(顶点在x轴上)0 抛物线与x轴相切;

③没有交点0 抛物线与x轴相离.

(4)平行于x轴的直线与抛物线的交点

同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐

标相等,设纵坐标为 k ,则横坐标是ax 2 bx c k 的两个实数根?

(5)—次函数 y kx n k 0的图像I 与二次函数 y ax bx c a 0的图像G

y kx n

的交点,由方程组厂

2

的解的数目来确定:①方程组有两组不同的解

y ax bx c

时 I 与G 有两个交点;②方程组只有一组解时 I 与G 只有一个交点;③方程组

无解时 I 与G 没有交点.

2

A X i,0,

B X 2,0,由于X i 、X 2是方程ax bx c 0的两个根,故

b

c x 1 x 2 ,x 1 x 2 a

a

考点一、二次函数的概念和图像

(3~8分)

1、二次函数的概念

2

一般地,如果y ax bx c (a, b, c 是常数,a 0),那么y 叫做x 的二次函数。

2

y ax bx c (a, b,c 是常数,a 0)叫做二次函数的一般式。

2、二次函数的图像

二次函数的图像是一条关于 X ——对称的曲线,这条曲线叫抛物线。

a

抛物线的主要特征:

①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法:

(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点

M ,并用虚线

(6 )抛物线与 x 轴两交点之间的距离:若抛物线

2 (

y ax bx c 与x 轴两交点为

AB

x i

x 2

X i X 2 2

x 1 x 2 2

4x 1x 2

4c

b 2 4ac

画出对称轴

2

(2 )求抛物线y ax bx c 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点

A,B 及抛物线与y 轴的交点C ,再找

到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到 二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与

y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出 一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

考点二、 二次函数的解析式

(10~16分)

二次函数的解析式有三种形式:

(1) 一般式: y

2

ax bx c(a,b,c 是 常数,

a 0)

(2) 顶点式: y a(x h)2 k (a, h,k 是常

数,

a 0)

(3) 当抛物线 y

2

ax bx c 与x 轴有交点时, 即对应二次好方程

2

ax bx c 0

有实根

X i 和X 2存在时, 根据二次三项式的分解因式 ax

2

bx c a(x

X i )(x X 2),二

2

函数y ax bx c 可转化为两根式 y a (x xj (x x 2)。如果没有交点,则不能这样

表示。

(10分)如果自变量的取值范围是全体实数,那么函数

考点三、二次函数的最值 在顶点处取得最大值(或最小值),即当x

広时,y 最值

4ac b 2 4a

如果自变量的取值范围是

X i X X 2,那么,首先要看

b 2a

是否在自变量取值范围

X i x X 2内,若在此范围内,则当

x=

2a 时,y 最值

4ac b 2 4a

若不在此范围内,

则需要考虑函数在X i x X2范围内的增减性,如果在此范围内,y随X的增大而增大,则

当x X2时,y最大ax;bx2c,当x X!时, y最小2

aX[bx! c ;如果在此范围内,y随x的增大而减小,则当x x时,y最大2

ax i bx i c,当x x2时,

y最小2ax?bx2c。

考点四、二次函数的性质(6~14分)1、二次函数的性质

二次函数

y ax2 bx c(a,b,c 是常数,a 0)

a>0 a<0

图像

性质(1 )抛物线开口向上,并向上无限延伸;

b

(2 )对称轴是x= —,顶点坐标是(

2a

b

2a,

(1 )抛物线开口向下,并向下无限延伸;

(2)对称轴是x=—,顶点坐标是(—,

2a 2a

函数

2、二次函数y ax2 bx c(a,b,c是常数,a 0)中,a、b、c的含义:a表示开

口方向:a>0时,抛物线开口向上,,, a<0时,抛物线开口向下

K

b与对称轴有关:对称轴为x= 一

2a

c表示抛物线与y轴的交点坐标:(0,c)

3、二次函数与一元二次方程的关系

一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

因此一元二次方程中的b2 4ac,在二次函数中表示图像与x轴是否有交点。

>0时,图像与x轴有两个交点;

当=0时,图像与x轴有一个交点;

当<0时,图像与x轴没有交点。

补充:

1、两点间距离公式(当遇到没有思路的题时, 可用此方法拓展思路,以寻求解题方法)

i t y

如图:点A坐标为(x i,y i )点B坐标为(X2,y2)

2、 函数平移规律(中考试题中,只占 3分,但掌握这个知识点,对提高答题速度有很 大帮助,

可以大大节省做题的时间)

3、 直线斜率:

v 2 yi b 为直线在y 轴上的截距

k tan --

x 2 x 1

1,一般 一般直线方程 ax+by+c=O

由直线上两点确定的直线的两点式方程,简称两点式

常用,记牢

3

,点斜

知道一点与斜率y y 1 k(x x 1)

4,斜截

斜截式方程,简称斜截式:y = kx + b (k 工0)

5,截距 由直线在x 轴和y 轴上的截距确定的直线的截距

则AB 间的距离,即线段

AB 的长度为.x 1

2

X 2

2

y i y 2

2,两点

x y

式方程,简称截距式:1

记牢可大幅提高运算速度

5、设两条直线分别为,11: y bi I2: y k?x b2

若11 // 12,则有l i //12 k i k2 且b i b2 o

若l1 l2k1 k21

6、点P (x o, y o)到直线y=kx+b(即:kx-y+b=O) 的距离:

|kx o y o b |kx o y o b

d

对于点P( x o, y o)到直线滴一般式方程ax+by+c=0 滴距离有

常用记牢

7,二次函数图像与性质口诀

二次函数抛物线,图象对称是关键;

开口、顶点和交点,它们确定图象限;

开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y 轴作为参考线,左同右异中为0 ,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

A定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函

数。

图像叫做抛物线,定义域全体实数。

A定开口及大小,开口向上是正数。

绝对值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看

图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

二次函数的基本形式

2

y ax的性质:

1.二次函数基本形式:

结论:a的绝对值越大,抛物线的开口越小。

总结:

a的符号开口方向顶点坐标对称轴性质

x 0时,y随x的增大而增大;x 0时,y随x的增大而

a 0向上0, 0y轴

减小;x 0时,y有最小值0.

x 0时,y随x的增大而减小;x 0时,y随x的增大而增

a 0向下0, 0y轴

大;x 0时,y有最大值0.

2

2. y ax c的性质:

总结:

2

3. y a x h 的性质:

结论:左加右减。

同左上加,异右下减

a 的符号

开口方向

顶点坐标

对称轴

性质

a 0

向上

h ,0

X=h

x h 时,y 随x 的增大而增大;x h 时,y 随

x 的增大而减小;x h 时,y 有最小值0 ?

a 0

向下 h ,0

X=h

x h 时,y 随x 的增大而减小;x h 时,y 随

x 的增大而增大;x h 时,y 有最大值0 ?

2

4. y a x h k 的性质:

a

的符号开口方向顶点坐标对称轴性质

a 0向上h,k X=h

x h时,y随x的增大而增大;x h时,y随

x的增大而减小;x h时,y有最小值k .

a 0向下h,k X=h

x h时,y随x的增大而减小;x h时,y随

x的增大而增大;x h时,y有最大值k .

二次函数图象的平移

1. 平移步骤:

2

⑴将抛物线解析式转化成顶点式y a x h k,确定其顶点坐标h , k ;

⑵ 保持抛物线y ax2的形状不变,将其顶点平移到h,k处,具体平移方法如下:

2. 平移规律

在原有函数的基础上“ h 值正右移,负左移;k 值正上移,负下移”

概括成八个字“同左上加,异右下减”.

、二次函数y a x h 彳k 与y ax 2 bx c 的比较

2 2

请将y 2x 4x 5利用配方的形式配成顶点式。请将 y ax 2 bx c 配成

2

y a x h k 。

总结:

2 2

从解析式上看,yaxh k 与yax bx c 是两种不同的表达形式,后者通过配

2 2 2

b 4a

c b

b , 4a

c b

万可以得到刖者,即yax

,其中h , k

2a

4a 2a 4a

四、二次函数y ax 2 bx c 图象的画法

五点绘图法:利用配方法将二次函数 y ax 2 bx c 化为顶点式y a(x h)2 k ,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图

?一般我们

选取的五点为:顶点、与 y 轴的交点0 , c 、以及0 , c 关于对称轴对称的点 2h , c 、 与x 轴的交点 為,0 , X 2, 0 (若与x 轴没有交点,则取两组关于对称轴对称的点) .

画草图时应抓住以下几点:开口方向,对称轴,顶点,与

x 轴的交点,与y 轴的交点.

平移|k|个单位

y=ax 2

A y=ax 2+k

y=a(x_h)2

向右(h>0)【或左(h<0)】 平移|k|个单位

y=a(x h)2+k

向上(k>0)【或向下(k<0)】平移|k|个单位

向右(h>0)【或左(*0)】 向上(k>0)【或下(k<0)】平移|k 个单位

向上(k>0)【或下(k<0) 平移|k 个单位

向右(h>0)【或左(h<0)】 平移|k|个单位

六、二次函数解析式的表示方法

1. 一般式:y ax bx c ( a , b , c 为常数,a 0);

2.顶点式:y a (x h )2 k ( a , h , k 为常数,a 0);

3.两根式:y a (x xj (x X 2) ( a 0, x,, x 是抛物线与x 轴两交点的横坐标)

注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写

成交点式,只有抛物线与 x 轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交 点式表示?二次函数解析式的这三种形式可以互化

五、二次函数y ax 2 bx c 的性质

1.当a 0时,抛物线开口向上,对称轴为

恳,顶点坐标为

b 4a

c b 2 2a ' 4a

时, 2?当a 有最大值

一时,y 随x 的增大而减小; 2a

—时,y 随x 的增大而增大;当x 2a

b_ 2a

2

y 有最小值专

0时,抛物线开口向下,对称轴为

y 随x 的增大而增大;当

4ac b 2 4a

诗,顶点坐标为

b 4a

c b 2 2a ' 4a

石时,y 随x 的增大而减小;当x W 时,y

七、二次函数的图象与各项系数之间的关系

1. 二次项系数a

二次函数y ax2 bx c中,a作为二次项系数,显然a 0 ?

⑴ 当a 0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;

⑵ 当a 0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.

总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.

2. 一次项系数b

在二次项系数a确定的前提下,b决定了抛物线的对称轴.

⑴在a 0的前提下,

当b 0时,—0,即抛物线的对称轴在y轴左侧;ab同号同左上加

2a

当b 0时,一0,即抛物线的对称轴就是y轴;

2a

当b 0时,—0 ,即抛物线对称轴在y轴的右侧.a,b异号异右下减

2a

⑵在a

0的前提

下,

结论刚好与上述相反,即

当b0时,b

2a

0 ,即抛物线的对称轴在

y轴右

侧;

a,b异号异右下减

当b0时,

_b

_

2a

0,即抛物线的对称轴就是y轴;

当b0时,b

2a

0 ,即抛物线对称轴在y轴的左侧.

ab同号同左

上加

总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

二次函数知识点大全

二次函数知识点归纳及提高训练 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a b (即a 、b 同号)时,对称轴在y 轴左侧; ③0c ,与y 轴交于正半轴;③0

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

最新史上最全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线 h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对 称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

二次函数知识点整理

二次函数知识点整理: 1.二次函数的图象特征与a ,b ,c 及判别式ac b 42-的符号之间的关系 (1)字母a 决定抛物线的形状. 即开口方向和开口大小;决定二次函数有最大值或最小值. a >0时开口向上,函数有最小值; a <0时开口向下,函数有最大值; a 相同,抛物线形状相同,可通过平移、对称相互得到; a 越大,开口越小. (2)字母b 、a 的符号一起决定抛物线对称轴的位置. ab=0 (a ≠0,b=0), 对称轴为y 轴; ab >0(a 与b 同号),对称轴在y 轴左侧; ab <0(a 与b 异号),对称轴在y 轴右侧. (3)字母c 决定抛物线与y 轴交点的位置. c=0, 抛物线经过原点; c >0,抛物线与y 轴正半轴相交; c <0,抛物线与y 轴负半轴相交. (4)ac b 42-决定抛物线与x 轴交点的个数. ac b 42-=0,抛物线与x 轴有唯一交点(顶点); ac b 42->0抛物线与x 轴有两个不同的交点; ac b 42-<0抛物线与x 轴无交点. 2.任意抛物线()k h x a y +-=2 都可以由抛物线2ax y =经过平移得到,具体平移方法如 下: 【注意】 二次函数图象间的平移,可看作是顶点间的平移,因此只要掌握了顶点是如何平移的,就掌握了二次函数间的平移. 二次函数图象间对称变换也是同样的道理. 3.用待定系数法求二次函数的解析式 确定二次函数的解析式一般需要三个独立条件,根据不同条件选不同的设法 (1)设一般式:c bx ax y ++=2 (a ,b ,c 为常数、a ≠0)

若已知条件是图象上的三点,将已知条件代入所设一般式,求出a,b,c 的值 (2)设顶点式:()k h x a y +-=2 (a,h,k 为常数,a ≠0) 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),将已知条件代入所设顶点式,求出待定系数,最后将解析式化为一般形式. (3)设两点式:()()21x x x x a y --=(a ≠0,a 、1x 、2x 为常数) 若已知二次函数图象与x 轴的两个交点的坐标为()()0,0,21x x ,将第三点(m,n ) 的坐标(其中m ,n 为已知数)或其他已知条件代入所设交点式,求出待定系数a ,最后将解析式化为一般形式. 4. 二次函数c bx ax y ++=2(a ≠0)与一元二次方程02=++c bx ax 的关系 (1)二次函数c bx ax y ++=2(a ≠0)中,当y=0时,就变成了一元二次方程02=++c bx ax (2)一元二次方程02=++c bx ax 的根就是二次函数c bx ax y ++=2的图象与x 轴交点的横坐标. (3)二次函数的图象与x 轴交点的个数与一元二次方程根的个数一致. (4)在它俩的关系中,判别式△=ac b 42-起着重要作用. 二次函数的图象与x 轴有两个交点?对应方程的△>0 二次函数的图象与x 轴有一个交点?对应方程的△=0 二次函数的图象与x 轴无交点 ?对应方程的△<0 5.二次函数应用 包括两方面 (1)用二次函数表示实际问题中变量之间的关系; (2)用二次函数解决最大化问题即最值问题.

(完整版)九年级上册数学二次函数知识点汇总,推荐文档

新人教版九年级上二次函数知识点总结 知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如(是常数,)的函数,叫做二次函数.2y ax bx c =++a b c ,,0a ≠其中是二次项系数,是一次项系数,是常数项. a b c 知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶 ??点 2. 二次函数的图象与性质 ()2 y a x h k =-+(1)二次函数基本形式的图象与性质:a 的绝对值越大,抛物线的开口越小 2y ax = (2)的图象与性质:上加下减 2y ax c =+

(3)的图象与性质:左加右减 ()2 y a x h =-

(4)二次函数的图象与性质 ()2 y a x h k =-+ 3. 二次函数的图像与性质 c bx ax y ++=2 (1)当时,抛物线开口向上,对称轴为,顶点坐标为. 0a >2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而减小;当时,随的增大而增大;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最小值 .y 2 44ac b a - (2)当时,抛物线开口向下,对称轴为,顶点坐标为. 0a <2b x a =-2424b ac b a a ??-- ??? ,当时,随的增大而增大;当时,随的增大而减小;当时,2b x a <- y x 2b x a >-y x 2b x a =-有最大值 .y 2 44ac b a -

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点.(2)二次函数图象的平移平移步骤: ①将抛物线解析式转化成顶点式,确定其顶点坐标;()2 y a x h k =-+()h k ,② 可以由抛物线经过适当的平移得到具体平移方法如下: 2 ax 【【【(h <0)【【【 【【(h >0)【【【(h 【【|k|【【【 平移规律:概括成八个字“左加右减,上加下减”.(3)用待定系数法求二次函数的解析式①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:,∴顶点是,对称轴a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=),(a b ac a b 4422--是直线.a b x 2- =②配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(, ()k h x a y +-=2 h ),对称轴是直线. k h x =

(完整word版)初中二次函数知识点总结(全面)

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=ax 2+bx+c (a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a >0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可 以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上

二次函数知识点汇总及详细剖析

二次函数知识点汇总及详细剖析 函数中,有一种多项式函数形如y= ax2+bx+c(a,b,c是常数,a≠0),最高次数是2,这种函数,我们称之为二次函数。二次函数知识点颇多,初高中都会出现,在初中,刚刚出现在一次函数数形结合学习之后,因此,二次函知识点离不开数形结合思想。二次函数主要知识点: 一、定义与定义表达式: 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 二、二次函数的三种表达式 一般式:y=ax2;+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h) 2;+k[抛物线的顶点P(h,k)] 交点式:y=a(x- x1)(x- x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac- b2)/4a x1,x2=(-b±√b2-4ac)/2a 三、二次函数的图像 在平面直角坐标系中作出二次函数y=x2的图像, 可以看出,二次函数的图像是一条抛物线。 四、抛物线的性质 1.抛物线是轴对称图形。 对称轴为直线:x=-b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P[-b/2a,(4ac-b2;)/4a]。 当-b/2a=0时,P在y轴上; 当Δ=b2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c)。 6.抛物线与x轴交点个数 Δ=b2-4ac>0时,抛物线与x轴有2个交点。 Δ=b2-4ac=0时,抛物线与x轴有1个交点。 Δ=b2-4ac<0时,抛物线与x轴没有交点。

(完整版)二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.

方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

二次函数知识点梳理

二次函数de 基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数de 概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)de 函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数de 定义域是全体实数. 2. 二次函数2 y ax bx c =++de 结构特征: ⑴ 等号左边是函数,右边是关于自变量x de 二次式,x de 最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数de 基本形式 1. 二次函数基本形式:2 y ax =de 性质: a de 绝对值越大,抛物线de 开口越小。 2. 2 y ax c =+de 性质:上加下减。 3. ()2 y a x h =-de 性质:左加右减。

4. ()2 y a x h k =-+de 性质: 三、二次函数图象de 平移 在原有函数de 基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++de 比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同de 表达形式,后者通过配方可以 得到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象de 画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取de 五点为:顶点、 与y 轴de 交点()0c , 、以及()0c ,关于对称轴对称de 点()2h c ,、与x 轴de 交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称de 点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴de 交点,与y 轴de 交点. 六、二次函数2 y ax bx c =++de 性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x de 增大而减小;当2b x a >-时,y 随x de 增大而增大;当2b x a =-时,y

二次函数基本知识点梳理及训练(最新)

① 二次函数 考点一 一般地,如果y =ax 2+bx +c(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 1.结构特征:①等号左边是函数,右边是关于自变量x 的二次式;②x 的最高次数是2;③二次项系数a ≠0. 2.二次函数的三种基本形式 一般形式:y =ax 2+bx +c(a 、b 、c 是常数,且a ≠0); 顶点式:y =a(x -h)2+k(a ≠0),它直接显示二次函数的顶点坐标是(h ,k); 交点式:y =a(x -x 1)(x -x 2)(a ≠0),其中x 1 、x 2 是图象与x 轴交点的横坐标. 考 点二 二次函数的图象和性质

考点三 二次函数y=ax2+bx+c的图象特征与a、b、c及b2-4ac的符号之间的关系 考点四 任意抛物线y=a(x-h)2+k可以由抛物线y=ax2经过平移得到,具体平移方法如下: 考点五 1.设一般式:y=ax2+bx+c(a≠0). 若已知条件是图象上三个点的坐标.则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a、b、c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0). 若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将解析式化为一般式. 3.设顶点式:y=a(x-h)2+k(a≠0). 若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h)2+k(a≠0),将已知条件代入,求出待定系数化为一般式 考点六 二次函数的应用包括两个方法 ①用二次函数表示实际问题变量之间关系. ②用二次函数解决最大化问题(即最值问题),用二次函数的性质求解,同时注意自变量的取值范围. (1)二次函数y=-3x2-6x+5的图象的顶点坐标是() A.(-1,8) B.(1,8) C.(-1,2)D.(1,-4) (2)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为() A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2 (3)函数y=x2-2x-2的图象如下图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是() ②

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

二次函数知识点归纳

二次函数知识点归纳 一.二次函数的一般形式:y=ax2+bx+c(a≠0)。强调a≠0. 二.性质 1. 2.y=ax2+c 3.y=a(x-h)2+k 4. 注:顶点在y轴上无一次项(或顶点的横坐标为0):顶点在x轴上函数是一个完全平方式(或顶点的纵坐标为0) 三.二次函数的三种形式:1.当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。2.当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。3.当已知抛物线与x轴的交点或交点横坐标时,通常设为

交点式y =a(x -x 1)(x -x 2) 四.平移 五.如何将实际问题转化为二次函数问题,从而利用二次函数的性质解决最大利润问题,最大面积问题。 练习 1.已知函数4m m 2 x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值; (2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小? 2.抛物线y =x 2+bx +c 的图象向左平移2个单位。再向上平移3个单位,得抛物线y =x 2-2x +1,求:b 与c 的值。 3.通过配方,求抛物线y =12 x 2-4x +5的开口方向、对称轴及顶点坐标,再画出图象。 4.根据下列条件,求出二次函数的解析式。 (1)抛物线y =ax 2+bx +c 经过点(0,1),(1,3),(-1,1)三点。 (2)抛物线顶点P(-1,-8),且过点A(0,-6)。 (3)已知二次函数y =ax 2+bx +c 的图象过(3,0),(2,-3)两点,并且以x =1为对称轴。 (4)已知二次函数y =ax 2+bx +c 的图象经过一次函数y =- 2 3x +3的图象与x 轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y =a(x -h)2+k 的形式。 5.如图,已知直线AB 经过x 轴上的点A(2,0),且与抛物线y =ax 2相交于B 、C 两点,已知B 点坐标为(1,1)。 (1)求直线和抛物线的解析式; (2)如果D 为抛物线上一点,使得△AOD 与△OBC 的面积相等,求D 点坐标。

二次函数知识点梳理

初三年级数学—二次函数的基础 一、考点、热点回顾 二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴ c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵ c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2 y ax bx c =++是两种不同的表达形式,后者通过配方可以得 到前者,即2 2424b ac b y a x a a -??=++ ?? ?,其中2424b ac b h k a a -=-=,. 五、二次函数2 y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2 y ax bx c =++化为顶点式2 ()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、 与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -.

相关文档
最新文档