费马猜想初等数学一般性证明

费马猜想初等数学一般性证明
费马猜想初等数学一般性证明

费马猜想初等数学一般性证明

(2013年4-7月)

王 德 忱 著

(黑龙江省农业科学院 黑河分院)

前言 笔者多年研究费马猜想,在已发布的几篇证明基础之上再修此作,为论述更确切精炼,步骤更直接简要。本稿正文篇幅不过3页、字数少于2千。证明关键依据一个为人们早就普遍所熟知而基本的“方根存在唯一性定理”,也就是方根性质定理。

费马猜想:也称费马大定理,一个高于二次的幂分为两个同次的幂是不可能的,即n >2是一个正整数时不定方程z n = x n + y n 为正整数等式不成立,也就是没有zxy≠ 0 的正整数解。

1. 求证z n = x n + y n 的解

如果z n = x n + y n 有正整数解,则(kz)n = (kx)n +(ky)n (k 为正整数)也有正整数解,各倍数组解中必有一组为最小的;那么,假设z n = x n + y n 有正整数解且z 、x 、y 为各倍数组解中最小的一组,即正整数 ( x ,y ) = 1使

z n = x n + y n (1)

正整数等式成立。

将(1)式变形 (z y )n - (x y )n = 1分解因式:

(z y - x y )[(z y )n-1 + x y (z y )n-2 +...+ (x y )n-2(z y )+(x y )n-1] = 1 (2)

因为正整数z > x ,所以(2)式分解的两个因式均为正数,只存在两种可能:

一是两个因式均为正1约数,二则两个因式是互为正倒数约数。仅由 z y - x y =1及n

≥ 2推出 (x + y)n > x n + y n = z n ,两个因式均不能为正1约数,同时也可知z y - x y > 1

取值不能成立,所以设正整数a > b ≥1且(a ,b )= 1,依据约数分析法○

1,将(2)式转化为两个互为倒数分数方程组:

z y - x y = b a (3)

(z y )n-1 + x y (z y ) n-2 +...+ (x y )n-2(z y )+ (x y )n-1 = a b (4)

因为(3)式两边分母y→ a 对应,由分数基本性质必有y 含a 因子,令y = ay 1,使z = x +by 1 代入(1)式化简得:

1n C x n-1+2n C by 1x n-2+ ... + n-1n C b n-2y 1n-2x + b n-1y 1n-1 = a n y 1n-1b (5)

必使(5)式 y 1n-1b 为整数。当 y 1n-1b =1时至少有两项不含与其它各项相同因子,等式

存在成立的条件。如果 y 1n-1b > 1余y 1n-1整数因子即余y 1的因子,而(5)式左边除C 1n x n-1项外其它各项均含y 1因子,并与x n-1互质;因而余y 1的因子只能与C 1n = n 相

约。又(4)式两边分母y n-1 → b 对应,y n-1含b 因子,(5)式a n y 1n-1b 项中(a ,b )

= 1,b 必整除y 1n-1即y 1n-1含b 因子。设y 1含n 的因子为N i ,令 y 1n-1=N i n-1y 2 n-1, 各项约去所含n 的公因子设为N i pi ,使(5)式确定为:

pi 1i

N (1n C x n-1+2n C by 1x n-2+ … + n-1n C b n-2y 1n-2x + b n-1y 1n-1) = a n 112b n pi n i N y ---…………(6) 所以(5)式 y 1n-1b =1时,令正整数c = y 1,则b= c n-1及y = ac 代入(3)式、

(4)式得:

z - (x + c n ) = 0 ……………………………………………(,7)

z n-1+ xz n-2 + ... + x n-2z + (x n-1- a n ) = 0 (8)

进而(6)式约去所有项含n的公因子,使等式中至少两项不含与其它各项相同的因

子,等式存在成立的条件。这时即定

11

2

b

n pi n

i

N y

---

=1,令正整数c =y2则b = c n-1N i n-pi-1

及y=acN i代入(3)式、(4)式得:

z - (x + c n N i n-pi) = 0 (9)

z n-1 + xz n-2 + x2z n-3 +...+(x n-1 -a n N i pi) = 0 (10)

于是,得到a、b值的存在情形和y = ac不含n因子、y = acN i含n因子两种确定的条件,并推证出(7)式、(8)式和(9)式、(10)式两组使(1)式有正整数解的方程组。

2.方程z n = x n + y n的性质

由(7)式z = x + c n及y = ac代入(1)式:

z n = x n + (ac)n = (x + c n)n

这时被限定的任何正整数x、c使a是唯一的正整数方根

a = n (x + c n)n– x n

c n

z = x + c n≡ n x n + (ac)n

等式F(z:x,c)≡ Q(z:x,c,?a),所以(1)式正数方根成立,存在z = x + c n 唯一的正整数方根,约去一个方根的余约数式:

z n-1 - (x + c n)n-1= 0 (11)

根据方根存在唯一性定理○2

,(8)式f(z)≡(11)式g(z)。

同理,由(9)式及y =(acN i)有

z = x + c n N i n-pi≡

等式F(z:x,c)≡ Q(z:x,c,?a)使(1)式正数方根成立,存在z = x + c n N i n-pi 唯一的正整数方根,约去一个方根的余约数式:

z n-1 - (x + c n N i n-pi) n-1= 0 (12)

所以,(10)式f(z)≡ (12)式g(z)。

3.验证z n = x n + y n的解

因为(8)式≡(11)式,由多项式恒等定理○3

,关于z的非首项系数(首项对

应系数均等于1)及常数项对应关系为:

x = 0,x2 = 0,…,x n-2 = 0,x n-1- a n = - (x + c n)n-1当n = 2时,只存在常数项x - a2= -(x + c2)有:

x = a2– c2

2

由(7)式得:

z = x + c2 = a2– c2

2+ c

2 = a

2 + c2

2

这时y不含n = 2因子,a、c为奇数,得出勾股弦数公式:

y = ac x = a2– c2

2z =

a2 + c2

2

当n>2时,x = 0,常数项a n =(c n)n-1,又b = c n-1,则有:

a = c n-1 = b

所以(3)式、(4)式x = 0、z = y,设为互为倒数分数方程组不成立。那么(1)式正整数等式不成立,即没有zxy≠0的正整数解。

同理(10)式≡(12)式,关于z的非首项系数及常数项对应关系为:x = 0,x2 = 0,…,x n-2 = 0,x n-1 - a n N i Pi = -(x+c n N i n-pi)n-1

当n = 2时,只存在常数项x n-1 - a n N i Pi = -(x+c n N i n-pi)n-1,确定n因子N i Pi = 2、N i n-pi = 2,x- 2a2 = - x - 2c2,则有:

x = a2– c2

由(9)式得:

z = x + 2c2 = a 2- c2 + 2c2 = a2 + c2

这时y含n = 2因子,得出勾股弦数公式:

y = 2ac x = a 2 - c2z = a2 + c2

当n>2时,与(8)式、(11)式同理,x = 0,常数项a n N i Pi =(c n N i n-pi)n-1,

a n =(c n-1)n(N i n– pi -1)n ,又

b =

c n-1N i n-pi-1,则有

a=c n-1N i n– pi -1 = b

同样(3)式、(4)式x = 0、z = y,设为互为倒数分数方程组也不成立。那么(1)

式正整数等式也不成立,即也没有zxy≠0的正整数解。

结论:当n>2是一个正整数时不定方程z n = x n + y n为正整数等式不成立,也就是没有zxy≠ 0 的正整数解,即“一个高于二次的幂分为两个同次的幂是不可能的”,费马猜想(大定理)成立。

————————————————

○1约数分析法:引理,将原不定方程进行因式分解,特别当uv = 1或素数p时,通过对应因数具体分析转化为一些不定方程组,从而求出原不定方程的解。1983年天津市数学会编的《中学数学中的整数问题》等资料都论述了这种解不定方程的方法,也叫因数分析法,或因子分析法,不同资料语句有所不同但论点是一致的。

○2方根存在唯一性定理:对于任何非实数a,存在唯一的非负实数x,它的n(n为正整数)次幂等于a,即x n = a。也就是方根性质定理。1981年湖北人民出版社出版的《中学代数教学法》证明了方根存在定理及唯一性,数学经典著作及教科书等资料都有这一定理(方根性质)的介绍。推论:方根余约数是唯一性定的,对于任何非负实数幂x n = a,只有唯一的非负

实数x ,它的n-1次幂等于 a

x ,即x n-1= a

x

○3多项式恒等定理:两个多项式f(x)= a m x m+a m-1x m-1+……+a1x+a0、g(x)= b n x n +b n-1x n-1+……+b1x+b0,它们恒等的充要条件是次数相同且同次项系数对应相等,即m = n

且a m=b n、a m-1= b n-1、……、+a1= b1、a0= b0。《多项式》一文证明了这一定理,《数学小辞典》“多项式”条有这一定理注释,有关一些资料也有其阐述。

附:n=3、4释例

曾经要证明费马猜想的人无数,稿件也就越来越多。为此数学家们建议,自己认为费马猜想证明是正确的,那么就以最简单的n = 3、4时先检验一下。既然就对这个一般性证明的主要步骤予以具体实例诠释。

当n = 3时

1、求证z3 = x3 + y3的解

z 3 = x 3 + y 3 (1)

(z

y-x

y)[(

z

y)

2 + x

y

z

y+ (

x

y)

2] = 1 (2)

z y–x

y=

b

a (3)

( z

y)

2 + x

y

z

y+ (

x

y)

2 = a

b (4)

(3)式y含a因子,设y = ay1,使z = x+by1代入(1)得:

3x2+ 3by1x+ b2y12 = a3 y12

b (5)

(4)式y2含b因子,(5)式b整除y12,y12含b因子,余整数因子必为质数3,即y1必含3因子,设y12=32y2 2,各项约去所含的公因子3,使(5)式确定为:

x2+ 3by2x+ 3b2y22 = a3 3y22 b (6)

(5)式y12

b=1,至少两项不含其它各项相同因子,等式存在成立的条件,令

正整数c =y1则b=c2及y=ac代入(3)式、(4)式得:

z - ( x + c3) = 0 (7)

z2+ xz+(x2– a3) = 0 (8)

进而,(6)式约去所有项3的公因子使等式中至少两项不含其它各项相同因子

等式存在成立的条件,这时即定3y22

b=1,令正整数c =y2则b = 3c

2及y=3ac代入(3)

式、(4)式得:

z -(x + 32c3) = 0 (9)

z2 + xz +(x2 -3a3) = 0 (10)

于是,得到a、b值存在的情形和y = ac不含3因子、y = 3ac含3因子两种确定的条件,并推证出(7)式、(8)式和(9)式、(10)式两组使(1)式有正整数解的方程组。

2、方程z3 = x3 + y3的性质

由(7)式,z = x + c3及y = ac使(1)式为:

z3 = (x + c3 )3 = x3 + (ac)3

这时x、c取任何正整数便确定a的唯一正整数方根

a = 3(x + c3)3– x3

c3

均使

z = x + c3≡3x3 + (ac)3

等式F(z:x,c)≡ Q(z:x,c, a),所以(1)式正整数等式成立,存在z = x + c3唯一的正整数方根,约去一个方根的余约数式:

z2 - (x + c3) 2= 0 (11)

根据方根存在唯一性定理,(8)式f(z)≡(11)式g(z)。

同理,由(9)式使(1)式正整数等式成立,存在z = x + 32c3唯一的正整数方根,约去一个方根的余约数式:

z2- (x + 3c3) 2 = 0 (12)

所以,(10)式f(z)≡ (12)式g(z)。

3、验证z3 = x3 + y3的解

根据多项式恒等定理,(8)式、(11)式关于z的非首项系数(首项系数均等于1)及常数项对应关系为:

x = 0,x2 - a3= - (x + c3)2

因x = 0,常数项a3 = (c3)2即a= c2,又因为b = c2,这时却有:

a = c2 = b

所以(3)式、(4)式x = 0、z = y,设互为倒数分数方程组不成立,那么(1)式正整数等式不成立,即没有zxy≠0的正整数解。

由(10)式与(12)式关于z的非首项系数及常数项对应关系为:

x = 0,x2 - 3a3= - (x + 32c3)2

x = 0,常数项3a3 = (32c3)2即a= 3c2, b =3c2:

a = 3c2 = b

所以(3)式、(4)式x = 0、z = y,设互为倒数分数方程组也不成立,那么(1)式正整数等式也不成立,即也没有zxy≠0的正整数解。

当n = 4时

当n = 4 时与n = 3时的证明方法步骤基本是类似的。但4是合数,n 为任意正整数包括各种合数,以4为例只明确n 为合数时相关步骤的分析方法。

z 4 = x 4 + y 4 (1)

(z y - x y )[(z y )3 ++ x y (z y )2 + (x y )2 z y + (x y )3] = 1 (2)

z y - x y = b a (3)

(z y )3 + x y (z y )2 + (x y )2 z y + (x y )3 = a b (4)

对y 因子的分析是求得a 、b 和n 如何形态存在的重要问题,因而生成(5)式及(6)式:

4x 3 + 6bx 2y 1 + 4b 2xy 12 + b 3y 13 = a 4

y 13b ………………………(5) 4x 3 + 6bx 2y 1 + 4b 2xy 12 + b 3y 13 = a 443

2b pi i N y (6)

如果(5)式 y 13b = 1 时等式至少有两项不含相同因子使等式成立,令c = y 1,则b = c 3及y = ac ,代入(3)式、4)式得:

z - ( x + c 4 ) = 0

z 3 + xz 2 + x 2z + ( x 3 - a 4) = 0

当(5)式 y 13b

>1即(6)式,但可能存在多种取值条件: y 1含4因子设y 1 = 4y 2代入(5)式并约去4得:

x 3 + 6bx 2y 2 + 42b 2xy 22 + 42b 3y 23 = a 4 42y 23b

……………………(6) 这个(6)式只有 42y 23b

= 1使等式成立,令c = y 2,则y 1 = 4c ,b = 42c 3,y= 4ac ,代入(3)式、(4)式得:

z - ( x + 43c 4 ) = 0

z 3 + xz 2 + x 2z + (x 3- 4a 4) = 0

又y 1 含4的质数因子2时,设y 1 = 2y 2代入(5)式并约去22得:

x3 + 3bx2y2 + 4 b2xy22 + 2 b3y23 = a42y23

b (6)

此(6)式如果2y23

b= 1,令c = y2,则y1 = 2c,b = 2c

3,y = 2ac,代入(3)式、(4)

式得:

z - ( x + 22c4 ) = 0

z3 + xz2 + x2z + (x3- 22a4) = 0

此(6)式如果y23

b= 1,令c = y2,则y1 = 2c,b = c

3,y = 2ac,代入(3)式、(4)

式得:

z - ( x + 2c4 ) = 0

z3 + xz2 + x2z + ( x3 – 23a4 ) = 0

这就得到了多组解,n为较大合数时还要得出更多组解,但亦同理。

费马猜想之证明.

费马猜想之证明 景光庭 引言:20世纪60年代初,笔者首次接触“费马猜想”。在以后的岁月中,笔者断断续续地研究它。直至1992年,才有机会在《潜科学》上相继发表过三篇论文,这次是最终的证明。 虽然美国数学家怀尔斯因发表论证“费马猜想”的文章,并于1997年荣膺国际上的沃尔夫斯克尔数学大奖,但并没有推开蒙在世界数学家心头上的阴云。笔者曾通过《美国教育交流中心》向怀尔斯寄去了总长仅一页的论文复印件,并明确指出,他在证明中将“费马方程”转化为椭圆曲线,而笔者转化为抛物线,这是不能共存的。何况笔者的转化过程,浅显得连中学生都能读懂,无懈可击,百分之百的正确。怀尔斯巨著难道不是沙滩上的一座摩天大厦?我也向德国马克斯普朗克研究所的学者法尔廷斯寄去了论文复印件,亦表述了上述观点,因为他是少数几个通读怀尔斯论文,并唯一肯定和帮助怀尔斯将论文从二百多页化减到一百三十页的学者 。遗憾的是至今未复。 如果怀尔斯不屑回答一个业余数学爱好者提出的疑问,对他就是一个绝妙的讽刺,因为他以毕生精力研究攻克和使他一举成名的“费马猜想”提出者费马是律师,而不是法兰西学院的院士。恰恰相反,数学只是他的业余爱好。他与人交流数学心得,往往是在通信中进行的,并不象今天这样只有在学术界认可的刊物上发表的文章才能被专家认可。如果当年的学术界也对费马这样苛求,那么今天根本不存在什么“费马猜想”这个问题了。 定理:2>p P P P Z Y X =+ (1) 中,p 为奇素数,X ,Y ,Z 无正整数解。 证:假设X ,Y ,Z 均有正整数解。 令 X=x ,Z = x +a (a 为正整数), Y = y 0+a (y 0为正整数),约定(x ,y 0,a )=1 ,则有: p p p a x a y x )()0+=++( (2) 即: 0 (1) 12221101120221010=----++++--------x a c x a c ax c y a c y a c ay c y p p p p p p p p p p p p p p p (3) 不失一般性,可设1),(0≥=d y x 1),(,,11101===y x dy y dx x ,以d 除 (3)式, 并令:10-=p d b ,,2 1 1-=p p ad c b ……,1 11---=p p p p a c b , 于是:0 (11212111111) 1 110=----+++-----x b x b x b y b y b y b p p p p p p 11 1 123122111 1 211110............s y b x b x b x b x b y b y b p p p p p p p =++++= +++------- 11221111011.......----=----p p p p b y b y b y b x s 11231221111.......----=----p p p p b x b x b x b y s

世界数学难题——费马大定理

世界数学难题——费马大定理 费马大定理简介: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 [编辑本段] 理论发展 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

“费马点”说明及例举

费马点 费马(Pierre de Fermat,1601--1665)法国业余数学家,拥有业余数学之王的称号,生于博蒙德罗曼。其父曾任法国图卢兹地方法院的法律顾问。本人身为律师,曾任图卢兹议会的顾问30多年。他的一系列重要科学研究成果,都是利用业余时间完成的。 他是解析几何的发明者之一.在数学方面作出了卓越的贡献,早年主要研究概率论,对于数论和解析几何都有深入研究。他对微分思想的运用比牛顿和莱布尼兹还要早,在他所著《求最大值和最小值的方法》一书中,已对微分理论进行了比较系统的探讨。他把直线平面坐标应用于几何学也早于笛卡儿,在其所著〈平面及空间位置理论的导言〉中,最早提出了一次方程代表直线,二次方程代表截线,对一次与二次方程的一般形式,也进行了研究。费 马还研究了对方程 2 21y ax= +整数解的问题。得出了求导数所有约数的系统方法。 所谓的“费马点”就是法国著名数学家费马在给数学朋友的一封信中提出关于三角形的一个有趣问题:“在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.”让人家想,并自称已经证明了。这是费马通信的一贯作风。当时欧洲所有数学家对他都十分头疼的。人们称这个点为“费马点”。还有象著名的费马大定理也是这样,给欧拉的信中提出的,自称已经“有了非常巧妙的证明”。可到死也没告诉人家这个所谓证明。结果困扰世界数学界一百多年。直到去年才解决。 著名的费马大定理是费马提出的至今尚未解决的问题。1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不 可能把任一个次数大于2的方幂表示成两个同方幂的和。” 即: )3 (,2≥ = +n z y x n n 无整 数解。1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。 费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。 几何光学已有悠久的发展历史,由于费马原理的确立,几何光学发展到了较为完善的程度。。1621年斯涅尔总结出了光的折射定律。费马则是用数学方法证明了折射定律的主要学者之一。 费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理

费马最后定理的故事

●今年6月间,德国哥庭根大学的大会堂里,500名数学家齐聚,观看普林斯顿大学数学家魏尔斯(Andrew Wiles)领取沃夫斯柯奖。沃夫斯柯是一位德国工业家的名字,他在20世纪初遗赠10万马克设立此一奖项,给予世界上头一个能解决费马最后定理之人。当时10万马克是不小的一笔数目,约等于200万美金,而几个月前由魏尔斯领到时,不过相当5万美金左右,但是这确是近世数学界的盛事,魏尔斯不只是证明了费马最后定理,也替未来的数学带来革命性新发展。费马最后定理的发明者自然是一个叫费马的人。费马(Pierre deFermat)1601年出生在法国西南方小镇。费马并不是一个数学家,他的职业是一名法官。当时为了保持法官立场的公正,通常不鼓励他们出外社交,因此每天晚上费马便钻研在他嗜好的数学之中,悠然自得。在1637年的某一天,费马正在阅读古希腊大数学家戴奥芬多斯的数学译本,忽然灵光乍现,就在书页空白处,写下有名的费马定理。费马定理的内容其实很简单,它只是基于一个方程式(X+Y=Z)。这个方程式当n等于2时,就是人们熟知的毕氏定理,中国数学上所称的勾股弦定理,其内容即直角三角形两边平方和等于其斜边的平方。如32.+42.=52.(9+16=25)。费马当时提出的难题是,当这个方程式(X+Y=Z)的n大于2时,就找不到任何整数来符合这个方程式。例如33.+43.(27+64)=91,但是91却不是任何整体的3次方。费马不仅写下了这个问题,他同时也写道,自己已经发现了证明这个问题的妙法,只是书页的空白处不够大,无法写下证明。结果他至死都没有提出他的证明,却弄得300多年来数学界群贤束手,也使他的难题得到一个费马最后定理的称号。19世纪时,法国的法兰西科学院,曾经分别两度提供金质奖章和300法郎之赏,给予任何可以解决此一难题之人,不过并没有多大进展。20世纪初捐出10万马克奖金的沃夫斯柯,事实上也是一个对费马最后定理着迷的“数痴”,据一些历史学家研究,沃夫斯柯原本一度已打算自杀,但由于对解决费马定理着迷,而放弃求死之心,因此他后来便在遗嘱中捐出巨款,原因是他认为正是费马定理救了他一命。重赏之下必有勇夫,但是解决数学难题却非人人可为。20世纪公认的德国天才数学家希伯特(D. Hilbert)就不愿去碰费马定理,他的理由是自己没那么多时间,而且到头来还可能落得失败的下场。虽然费马定理还是让许多数学家萦怀于心,但是他们看这个难题就有如化学家看炼金术一样,只是一个古老的浪漫梦。秘密钻研7年突破难题最后解决这个世纪难题的魏尔斯,早在1936年他10岁之时,便有着挑战费马定理的浪漫梦想,他在英国桥剑地方的图书馆中读到这个问题,便决心一定要找出证明方法。他学校的老师并不鼓励他浪费时间于这个不可能之事,大学老师也试图劝阻他,最后他进了英国剑桥大学数学研究所,他的指导教授指引他转入数学中比较主流的领域做椭圆曲线。魏尔斯自己也没有料到,这个由古希腊起始的数学研究训练,最后会导致他再回到费马定理之上。1927年,日本数学家谷山丰提出一个讨论椭圆曲线的数学结构,后来在美国普林斯顿大学的日本数学家志村五郎,再将这个结构发展得更为完备。这个被称为“志村—谷山猜想”的数学结构,居然成为化繁为简,通向解决费马定理的绝妙佳径。1984年德国萨兰大学的数学家佛列发展出一种很奇特也很简单的关联,将“志村—谷山猜想”和费马定理扯在一块,佛列提出的关联经过好几位数学家的努力,最后终于证明了如果要证明费马最后定理,可以经由证明“志村—谷山猜想”来完成。魏尔斯是1993年在英国剑桥大学,正式宣布他已解决费马最后定理,在此之前他已秘密的工作达7年之久,原因不只是怕受到公众压力,也害怕其他数学家抄袭他的想法,在这段期间,魏尔斯连和太太去度蜜月中都未能从“附魔”脱身。最后的结果是魏尔斯并不需要证明整个的“志村—谷山猜想”,他只要证明一些特定的椭圆形曲线是具备某种特性。但是这些特定的椭圆曲线还是有无穷多个,因此证明技巧上依然十分困难。魏尔斯基本上利用了数学上常用的归纳法,他的办法有点像推倒骨牌的游戏,如果要推倒无限多张的骨牌,你必须确知的乃是一张骨牌倒下时,一定会碰到的下张骨牌。魏尔斯在1993年6月23日觉得他的证明已十分完整,于是便在剑桥大学牛顿数学研究所的研讨会上正式宣布。300年悬案终有解300多年数学悬案终于解决,不只数学界哗然震惊,数学门墙之外的社会大众亦感

费马点问题(含答案)

费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵AH=BH=AB=12. ∴∠AGH=120°, ∠HGP=60°. ∴A、G、P三点一线。 再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ∴∠PHD=30°,.

在△HGB和△HPD中 ∵HG=HP ∠GHB=∠PHD; HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. ∴G、P、D三点一线。 ∴AG=GP=PD,且同在一条直线上。 ∵GA+GH+GB=GA+GP+PD=AD. ∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。 例2:已知:△ABC是等腰三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°。 求证:GA+GB+GC最小

安德鲁怀尔斯的证明比我复杂一百倍

安德鲁怀尔斯的证明比我复杂一百倍 安德鲁怀尔斯的证明用了130页,并利用了连费马都没接触的理论来证明,充分说明他的证明并没有揭开费马所说的美妙证明的历史真相。真正理解费马原始思想的人是我。我只用了一页的版面通俗地透彻地严格地证明了这一结论。是真金还是铜大家可以验证。 揭开费马大定理真相 当整数n大于2时X n +Y n=Z n 没有正整数解。显然X、Y、Z都不会是零。 证明方法: 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。又由于当n=ab时X1 +X2n+X3n =0可写成(X1a)b+(X2a)b+(X3a)b=0; 因此只要证明当整数n为大于2的质数X1n+X2n+X3n =0没有非零的整数解,可类推X n +Y n=Z n 没有正整数解,而n=4没有整数解早已被人证明。现在我们需要证明当当n为大于2质数时X1n+X2n+X3n =0没有非零的整数解。 假设存在有整数解,会不会出现冲突呢,会的。 如果X1n+X2n+X3n =0存在有整数解,而n为大于2质数,因此必存: X1X2+X2X3+X3X1=d (d为整数更是有理数);X1X2X3=c(c为整数更是有理数)也就是说必存在这样的方程组; X1n+X2n+X3n =0 (1) X1X2+X2X3+X3X1=d (d为整数更是有理数) (2) X1X2X3=c(c为整数更是有理数) (3) 由方程组必可合成关于X的一元n次方程,又由于若X1=X2或X1=X3或X2=X3均不存在整数解,原因是2X1n+X3n=0没有非零整数解,因此倘若有非零整数解也只能是X1、X2、X3 互不相等。由于作为底的仅有X1、X2、X3且均要同时有理地合成为【f(X)】n 的形式现在的问其题在于,关于X的一元n次方程(n为质数)既要把未知数都配方成n次方内,又要表示出三个解的不相等。而d、b均为有理数,能做得到吗?做不到的,我们知道,当n 为质数时若将方程有理化成【f(X)】n =P;只能反映有一个实数解,其他是虚数解。说明X1、X2、X3取有理数解是不相容的。更谈不上整数解。也就是说要符合费马所规定条件的方程是不存在,因此我的假设是不成立的。 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。 当n为合数时,n可分解成质因素,可将一个质因数写成括号外的方次来证明,如果n 只含质因素2,n必可写成4m的形式,可当成4次方程来证明。而n=4时,费马本人已证明。至此费马定理证明完毕。

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

WILES证明费马大定理的成功时间为何其说不一

WILES证明费马大定理的成功时间为何其说不一? WILES证明费马大定理的成功时间为何其说不一? 他的证明是否又被发现“漏洞”? 在《征服费马定理的最后竞赛》中真正夺冠的应该是哪国人? 1993年,国内新闻媒体说:350多年的数学难题被美国普林斯顿大学数学教授wiles证明。《黑龙江日报》在《科技世界》版头条发表了哈工大青年数学家曹珍富的文章《英国数学家证明了费尔马大定理》(副题:困扰人类350多年的数学难题今朝有解)。但是。几年后(1997)这位青年数学家又在《生活报》发文说:wiles是1995年证明成功的。 1994年,《中国青年报》发文说:wiles迫于社会舆论压力不得不透漏真情,说他遇到了料想不到的困难,还需要做很多工作。 1995年,《参考消息》(4月5日)载文《征服费马定理的最后竞赛》中说:wiles的证明被发现“漏洞”,他自己“堵不上”,想找合作者……。 2000年,哈工大理学院院长说:wiles最后成功的时间是1996年1月。 2002年,中科院一位院士在《教育台》的《学术报告厅》中宣讲时说wiles是1994年证明成功。 Wiles证明费尔马大定理成功的时间为何其说不一? 还有更加令人不解的: 一、2003年,远方出版社出版的《数理化之谜》中说:千古之谜费马大定理,至今尚无人完全证明。 二、2007年,哈尔滨出版社出版的《数学的故事》中说:30年前,美国数学家大卫·曼福特证明了“如果不定方程有整数解,那么这种解是非常少的”。这是目前关于“费尔马问题”最好的研究成果。 为什么这两本书中,对wiles的证明成功却“只字皆无”?莫非wiles的证明又被发现了“漏洞”? 大千世界无奇不有。1993年8月1日,《松花江报》发表了一篇该报记者写的报道《谷立煌宣称证明了费尔马大定

费马大定理公式

储备公式 1.费马大定理(Fermat Last Theore m ): 当2n >时,n n n x y z +=无0xyz ≠的整数解; 当3n =时,3 3 3 x y z +=无0xyz ≠的整数解; 当4n =时,4 4 4 x y z +=无0xyz ≠的整数解; 当5n =时,5 5 5 x y z +=无0xyz ≠的整数解; 当7n =时,7 7 7 x y z +=无0xyz ≠的整数解; (2)n n n x y z n +=> 2.商高方程2 2 2 x y z +=满足(,)(,)(,)1x y y z z x ===,,x y 奇偶性不同的全体本原解为: 22222;;x pq y p q z p q ==-=+其中,p q 满足下面的条件: 0;(,)1;,p q p q p q >>=奇偶性不同 3.Fermat 无穷递降法 4.4n =时,Fermat 大定理证明过程 当4n =时,444 x y z +=无0xyz ≠的整数解; 原理:无穷递降法和毕达哥拉斯三元数组 证明:用反证法。若有正整数解,那么在所有正整数解中,必有一组解 假如存在,,x y z 满足444 x y z +=,且满足(,)(,)(,)1x y y z z x === 初等数论(P99) 定理4:不定方程:442 x y z +=无0xyz ≠的解。 证:用反证法。假若方程有正整数解,那么在全体正整数解中,必有一组解000,,x y z ,使得0z 取得最小值。我们要找出一组正整数解111,,x y z ,满足10z z <,得出矛盾。 (1)必有00(,)1x y =。若不然,就有素数00|,|p x p y 。由此及式442 x y z +=推出 42200|,|p z p z 。因此,2 000000,,x p y p z p 也是方程的正整数解,这和0z 的最小性矛盾。因此,22 000,,x y z 是方程的本原解,00,x y 必为一奇一偶,不妨设02|y ,以及00(,)1z y =

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

关于费马点知识总结

费马点 一、研究目的 费马点是17世纪法国著名的数学家费马发现的。所指的是在三角形所在的平面上,有一个点到三角形三个顶点距离之和最小。而费马点有许多有意义的性质,即为此,本人以费马点的性质为因来进行一系列的调查与研究。 二、研究结果 (一)费马点的发现者 费马点的发现者是费马[Fermat, Pierre de, 1601-1665],17世纪的法国数学家。1601年8月17日在法国南部图卢兹附近波蒙--德洛马涅出生。早年于家乡受教育,后入图卢兹大学供读法律,毕业后任职律师。自1631年起任图卢兹议会议员。任职期间,他利用工余时间钻研数学,并经常以书信与笛卡儿、梅森、惠更斯等著名学者交往,讨论数学问题。他饱览群书,精通数国文字,掌握多门自然科学的知识。虽年近三十才认真注意数学,但成就累累。最后于1665年1月12日在卡斯特尔逝世。 他生前由于性情淡泊,为人谦逊,因此较少发表论着,大多成果只留在手稿、通信或书页之空白处。他的儿子于1679年把这些遗作整理汇集成书[共两卷],在图卢兹出版。 由于他在数论、解析几何、概率论等方面贡献良多,被后世誉为「业余数学家之王」。 (二)费马点的求法 △ABC需是三个内角皆小于120°三角形,分别以AB、BC、CA为边,向三角形外侧做正三角形△ABD、△ACE,然后连接DC、BE,则二线交于一点,记作点P,则点P就是所求的费马点。 (三)费马点的验证 1.△ABC是等边三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①AP=BP=CP;②∠APB=∠BPC=∠APC=120°;③点P 是内心,是在三角形三个内角的角平分线的交点;④ 点P是垂心,是△ABC各边的高线的交点;⑤△ABP、 △ACP、△BCP全等。⑥点P是△ABC各边的中线的交 点;⑦△ABC的三顶点的距离之和为AP+BP+CP,且点 P为费马点时和最小。 2.△ABC是等腰三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①△ABC的三顶点的距离之和为AP+BP+CP,且点P为 费马点时和最小;②∠APB=∠BPC=∠APC=120°;③ △ABP与△ACP全等;④△BCP为等腰三角形。 3.△ABC是直角三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为

《费马大定理》读后感800字

《费马大定理》读后感800字 费马大定理是17世纪法国数学家费马留给后世的一个不解之谜。即:当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n.无正整数解。 为证明这个命题,无数的大数学家们都在不懈努力,孜孜不倦的力求攻克。该问题的提出还在于毕达哥拉斯定理(在一个直角三角形中,斜边的平方等于两直角边的平方之和)的存在。而后欧拉用他的方式证明了x^3+y^3=z^3无正整数解。同理3的倍数也无解。费马也证明了n为4时成立。这样使得待证明的个数大大减少。终于在“谷山——志村猜想” 之后,被安德鲁·怀尔斯完全证明。 看过该书以后,一方面是对于费马大定理的证明过程的惊叹。这是一个如此艰辛的过程。阿瑟·爱丁顿爵士曾说,证明是一个偶像,数学家在这个偶像面前折磨自己。值得解决的问题会以反击来证明他的价

值。费马大定理的成功证明的实现在是它被提出后的300多年。经典数学的证明办法是从一系列公理、陈述出发,然后通过逻辑论证,一步接着一步,最后就可能得到某个结论。数学证明依靠这个逻辑过程,一经证明就永远是对的。数学证明是绝对的。也是一环扣一环的,没有索菲·热尔曼,柯西,欧拉等人在之前的研究,该定理并非能在个人的一次研究中就能得到证明。对于数学的研究是永无止境的。另一方面,我也认识到寻找一个数学证明就是寻找一种认识,这种认识比别的训练所积累的认识都更不容置疑。最近两千五百年以来,驱使着数学家们的正是这种以证明的方法发现最终真理的欲望。数学家有着不安分的想象与极具耐心的执拗。虽说当今计算机已经发展到一定地步了,它的计算速度再快,但是无法改变数学证明的需要。数学证明不仅回答了问题,还使得人们对为什么答案应该如此有所了解。 学数学能干什么?曾经也有学生这样问过欧拉,欧拉给他一些钱以后就让学生走了。培根也说过,数学使人周密。数学的证明最能培养严谨的态度。

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

三角形的费马点

三角形的费马点 有甲乙丙三个村庄,要在中间建一供水站向三地送水,现要确定供水站的位置以使所需管道总长最小,请同学们想一想,这个供水站应该建在哪里? 事实上,这是法国著名数学家费马提出的一个关于三角形的有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小,人们称这个点为“费马点”. 当三角形有一个内角大于或等于120°的时候,费马点就是这个内角的顶点;当三角形三个内角都在120°以内,那么费马点就是三角形内与三角形三顶点的连线两两夹角 为120°的点.显然在第一种情况下,费马点的位置就是那个大于或等于120°的内角的顶点.在第二种情况下,如图所示:我们只需要以△ABC三边AB、AC、BC为边在三角形外作三个等边△ABC1、△ACB1和△BCA1,连接AA1、BB1和CC1,三线交点P就是费马点. 同学们肯定会想为什么?等同学们学习了三角形全等 的知识后就可以去探索这其中的道理了. 再看一个数学问题:将军从甲地出发到河边饮马,然后再到乙地军营视察,显然有许多走法,那走什么样的路线最短呢?这个问题被古希腊亚历山大里亚城的一位久负盛名 的学者海伦解决了,后来被人们称作“将军饮马”问题.费马

思考了这个问题,他觉得不仅是将军有这样的烦恼,运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.人们总希望寻求最佳的路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短路线问题.费马就把这样的问题联想到某一个图形中,他大胆提出在任意三角形中有且仅有一点到三个顶点的距离最短,并对此进行了充分的证明.现在研究表明不止是三角形,其它多边形也存在这样的点. 平面四边形的费马点:在凸边形中,对角线交点即费马点;在凹四边形中,凹顶点即为费马点. 那费马点在我们的生活中有没有应用价值呢?文章开头的供水站建在费马点肯定是最节约成本的;再譬如打篮球、踢足球时,你时刻注意的是怎样进攻,但要与自己的队友保持最好的距离和方位,前后左右都要顾及,这其实就是在找多边形中的“费马点”. 数学为科学之母,现在已经有很多方面应用到费马点的性质,在医学上、建筑上、军事上…… 像类似费马点这样的问题还有很多,同学们只要你们积极思考,遇到问题多问几个为什么,多一些打破砂锅问到底的精神,你们也会像费马一样发现更多更有趣的数学问题.

费马点问题(含答案)

> 费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 【 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 ) 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ^ ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵ AH=BH=AB=12. ! ∴∠AGH=120°, ∠HGP=60°. ∴ A、G、P三点一线。

再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ! ∴∠PHD=30°,. 在△HGB和△HPD中 ∵ HG=HP ∠GHB=∠PHD; : HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. @ ∴ G、P、D三点一线。 ∴ AG=GP=PD,且同在一条直线上。 ∵ GA+GH+GB=GA+GP+PD=AD. ∴ G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。, 、

相关文档
最新文档