multisim仿真教程__正弦波脉宽调制(SPWM)逆变电路

multisim仿真教程__正弦波脉宽调制(SPWM)逆变电路
multisim仿真教程__正弦波脉宽调制(SPWM)逆变电路

multisim仿真教程

Multisim软件简介 二极管电路 基本功放 差分放大器电路 负反馈放大器 集成运算放大器信号运算处理电路互补对称(OCL)功率放大器 信号产生与转换电路 可调三端集成直流稳压电源电路13.1 Multisim用户界面和基本操作在此处插入图片说明 13.1.1 Multisim用户界面

在许多EDA仿真软件中,Multisim软件具有友好的界面,强大的功能,易于学习和使用,受到电气设计和开发人员的青睐。Multisim是一种虚拟仿真软件,用于通过软件方法对电子元器件进行虚拟设计和电路测试。 Multisim来自交互式图像技术(IIT)的基于Windows的仿真工具,以前称为EWB。 1988年,IIT公司推出了用于电子电路仿真和设计的EDA工具软件,电子工作台(EWB),它以其直观的界面,便捷的操作,强大的分析功能以及易于学习和使用而迅速普及和使用。 IIT在1996年推出了EWB5.0版本。ewb5之后。在X版本和EWB6.0版本中,IIT 将EWB更改为Multisim(多功能模拟软件)。 IIT被美国国家仪器公司Ni收购后,其软件更名为Ni Multisim。第9版之后,Multisim 经历了多个版本的升级,包括Multisim2001,Multisim7,Multisim8,Multisim9,Multisim10等。增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作。图13.1-1显示了Multisim10的用户界面,包括菜单栏,标准工具栏,主工具栏,虚拟仪器工具栏,组件工具栏,仿真按钮,状态栏,电路图编辑区域等。 图13.1-1 Multisim10用户界面 菜单栏类似于Windows应用程序,如图13.1-2所示。 图13.1-2 Multisim菜单栏 其中,选项菜单下的全局首选项和工作表属性可用于个性化界面设置。Multisim10提供了两组电气元件符号标准: ANSI:美国国家标准协会,美国标准,默认为标准,本章采用默认设置; 丁:德国国家标准协会,欧洲标准,与中国符号标准一致。 工具栏是标准的Windows应用程序样式。 标准工具栏: 查看工具栏:

最详细最好的Multisim仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。 目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

单相单极性SPWM逆变电路matlab仿真

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。

输出电压波形 四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

最新模拟电子电路multisim仿真(很全 很好)资料

仿真 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。 由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。 1.1.2共集电极基本放大电路(射极输出器)

pwm逆变电路仿真

题目如下: 使用IGBT完成逆变电路仿真,直流电压300V。阻感负载,电阻值1Ω,电感值3mH。调制深度m=0.5。输出基波频率50Hz,载波频率为基频15倍,即750Hz。分别按下列要求仿真输入输出波形,进行谐波傅里叶分析。绘制主要器件的工作波形。 1,单极性SPWM方式下的单相全桥逆变电路仿真,及双极性SPWM方式下的单相全桥逆变电路仿真。对比两种调制方式的不同。 题目中需要做单极性与双极型SPWM的单相全桥逆变电路仿真,那么首先了解一下SPWM的原理。 SPWM控制的基本原理 PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1所示,三个窄脉冲形状不同,但是它们的面积都等于1, 图1.1 SPWM控制如下:

如图1-2是单相PWM逆变电路VT1~VT4是四个IGBT管,VD1~ VD4是四个二极管,调制电路作为控制电路控制IGBT导通与关断来得到所需要的波形。 图1-2 计算法和调制法: SPWM逆变电路主要有两种控制方法:计算法和调制法。计算法是将PWM脉冲宽度的波形计算出来,显然这种方法是很繁琐的,不采用。调制法是用一个三角波作为载波,将一正弦波作为调制信号进行调制。我们采用调制法。因为等腰三角波上下宽度与高度呈线性关系且左右对称,当它与一个平缓变化的正弦调制信号波相交时,在交点时刻就可以得到宽度正比于正弦信号波幅度的脉冲 单极性与双极型的控制方法如下: 1单极性PWM控制方式: 如图1-3所示,在u r和u c的交点时刻控制IGBT的通断 u r正半周,VT1保持通,VT2保持断 . 当u r>u c时使VT4通,VT3断,u o=u d当u r

实验八multisim电路仿真

电子线路设计软件课程设计报告 实验内容:实验八multisim电路仿真 一、验目的 1、进一步熟悉multisim的操作和使用方法 2、掌握multisim做电路仿真的方法 3、能对multisim仿真出的结果做分析 二、仿真分析方法介绍 Multisim10为仿真电路提供了两种分析方法,即利用虚拟仪表观测电路的某项参数和利用Multisim10 提供的十几种分析工具,进行分析。常用的分析工具有:直流工作点分析、交流分析、瞬态分析、傅立叶分析、失真分析、噪声分析和直流扫描分析。利用这些分析工具,可以了解电路的基本状况、测量和分析电路的各种响应,且比用实际仪器测量的分析精度高、测量范围宽。下面将详细介绍常用基本分析方法的作用、分析过程的建立、分析对话框的使用以及测试结果的分析等内容 1、直流工作点分析 直流工作点分析也称静态工作点分析,电路的直流分析是在电路中电容开路、电感短路时,计算电路的直流工作点,即在恒定激励条件下求电路的稳态值。在电路工作时,无论是大信号还是小信号,都必须给半导体器件以正确的偏置,以便使其工作在所需的区域,这就是直流分析要解决的问题。了解电路的直流工作点,才能进一步分析电路在交流信号作用下电路能否正常工作。求解电路的直流工作点在电路分析过程中是至关重要的。 执行菜单命令Simulate/Analyses,在列出的可操作分析类型中选择DC Operating Point,则出现直流工作点分析对话框,如图所示。直流工作点分析对话框包括3页。

Output 页用于选定需要分析的节点。 左边Variables in circuit 栏内列出电路中各节点电压变量和流过电源的电流变量。右边Selected variables for 栏用于存放需要分析的节点。 具体做法是先在左边Variables in circuit 栏内中选中需要分析的变量(可以通过鼠标拖拉进行全选),再点击Plot during simulation 按钮,相应变量则会出现在Selected variables for 栏中。如果Selected variables for 栏中的某个变量不需要分析,则先选中它,然后点击Remove按钮,该变量将会回到左边Variables in circuit 栏中。Analysis Options页 点击Analysis Options按钮进入Analysis Options页,其中排列了与该分析有关的其它分析选项设置,通常应该采用默认的 Summary页

Multisim数字电路仿真快速上手教程

Multisim快速上手教程 每一次数电实验都要疯了有木有!!!全是线!!!全是线!!!还都长得要命!!!完全没地方收拾啊!!!现在数电实验还要求做开放实验,还要求最好先仿真!!!从来没听说过仿真是个什么玩意儿的怎么破!!! 以下内容为本人使用仿真软件的一些心路历程,可供参考。 所谓仿真,以我的理解,就是利用计算机强大的计算能力,结合相应的电路原理(姑且理解为KVL+KCL)来对电路各时刻的状态求解然后输出的过程。相较于模拟电路,数字电路的仿真轻松许多,因为基本上都转化为逻辑关系的组合了。有人用minecraft来做数字电路,都到了做出8bitCPU的水平(https://www.360docs.net/doc/8a558856.html,/v_show/id_XMjgwNzU5MDUy.html、https://www.360docs.net/doc/8a558856.html,/v_show/id_XNjEwNTExODI4.html)。这个很神奇。 以下进入正文 首先,下载Multisim安装程序。具体链接就不再这里给出了(毕竟是和$蟹$版的软件),可以到BT站里搜索,有一个Multisim 12是我发的,里面有详细的安装说明,照着弄就没问题了。 好,现在已经安装上Multisim 12了。 然后运行,在Circuit Design Suite12.0里,有一个multisim,单击运行。 进去之后就是这样的。 那一大块白的地方就是可以放置元件的地方。 现在来以一个简单的数字逻辑电路为例:

菜单栏下一排是这些东西,划线的是数字电路仿真主要用得上的元件。 来个7400吧 点击TTL那个图标(就是圈里左边那个)。出来这样一个东西: 红圈里输入7400就出来了,也可以一个一个看,注意右边“函数”栏目下写的“QUAD 2-INPUT NAND”即是“四个双输入与非门”的意思。 点击确认,放置元件。 A、B、C、D在这里指一块7400里的四个双输入与非门,点击即可放置。 看起来很和谐,那就做个RS触发器吧。 这里输出用的是一种虚拟器件PROBE,在Indicators组,图标就是个数码管的那个。功能相当于实验箱上那些LED,也是高电平就点亮。元件旋转方向的方法是选中元件然后按Ctrl+R(otate)。还可以选中元件后点击右键,选择“水平翻转”等。

单相单极性SPWM逆变电路matlab仿真

单相单极性SPWM逆变电路matlab仿真

————————————————————————————————作者:————————————————————————————————日期:

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。 输出电压波形

四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

H桥逆变器SPWMMATLAB仿真

H桥逆变器 S P W M M A T L A B仿真文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

MATLAB仿真技术大作业 题目:H桥逆变器SPWM仿真 单相逆变器(H桥)。直流电压500V,使用直流电压源模块;逆变器用Universal Bridge模块,器件选IGBT。负载用阻感串联负载,电阻1,电感15mH。 使用三角波作为载波,载波频率750Hz,调制度,基波频率50Hz。仿真时间秒,使用ode23tb求解器。 本次仿真关注稳态时的情况。分析谐波成分时,取秒之后的2个工频周期的波形进行分析,基波频率50Hz,最大频率3500Hz。 1、双极性SPWM仿真 采用双极性SPWM,完成以下内容:

(1)在同一副图中,画出载波与调制波的波形 ; (2)记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析, (3) (a)分析基波电压是否与理论公式相符; 基本相符,理论值为500*=400,实际值,相对误差% (b) 分析电压谐波成分,并给出结论; 谐波集中在载波频率(750hz)及其整数倍附近

(3)记录负载电流的波形,并进行谐波分析。 谐波分析 负载电流谐波成分与电压基本一致。 2、单极性SPWM仿真 采用单极性SPWM,重复上述仿真,即,完成以下内容: (1)在同一副图中,画出载波与调制波的波形; (2) 记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析, 谐波分析 (a) 分析基波电压是否与理论公式相符; 基本相符 (b) 分析电压谐波成分,并给出结论; 谐波分别很散,与理论不符 (3)记录负载电流的波形,并进行谐波分析。 (4)对比分析单极性SPWM,双极性SPWM输出电压谐波成分的特点,在相同LC 滤波器参数时,其负载电流THD的情况。 单极性谐波应该少,实际仿真结果反而多 3、级联H桥逆变器仿真 两个H桥级联,每个桥的逆变器参数都与前面的相同。负载为阻感串联负载,电阻1,电感15mH。

multisim 电路仿真 课程设计

4.1 仿真设计 1、用网孔法和节点法求解电路。 如图4.1-1所示电路: 3Ω (a)用网孔电流法计算电压u的理论值。 (b)利用multisim进行电路仿真,用虚拟仪表验证计算结果。(c)用节点电位法计算电流i的理论值。 (d)用虚拟仪表验证计算结果。 解: 电路图: (a) i1=2 解得 i1=2 5i2-31-i3=2 i2=1 i3=-3 i3=-3 u=2 v (b)如图所示: (c)列出方程 4/3 U1- U2=2 解得 U1=3 v U2=2 v 2A1Ω _ + 1Ω 2V - 3A 图4.1-1 i

2U 1- U 2=2 i=1 A 结果:计算结果与电路仿真结果一致。 结论分析:理论值与仿真软件的结果一致。 2、叠加定理和齐次定理的验证。 如图4.1-2所示电路: (a)使用叠加定理求解电压u 的理论值; (b)利用multisim 进行电路仿真,验证叠加定理。 (c)如果电路中的电压源扩大为原来的3倍,电流源扩大为原来的2倍,使用齐次定理,计算此时的电压u ; (d)利用multisim 对(c )进行电路仿真,验证齐次定理。 电路图: (a ) I 1=2 7 I 2-2 I 1- I 3=0 3 I 3- I 2-2 I 4=0 解得 U 1=7(V ) I 4=-3 U 1 U 1=2(I 1- I 2) 如图所示电压源单独作用时根据网孔法列方程得: 3 I 1-2 I 2- I 3= 4 I 2=-3 U 2 7 I 3 - I 1=0 解得 U 2=9(V ) U 2=4-2 I 3 所以 U= U 1+ U 2=16(V ) (b )如图所示。 2Ω 1Ω 2Ω 4Ω 2A 3u + 4V - + u - 图4.1-2

multisim仿真教程

Multisim电子电路仿真教程: Multisim电子电路仿真教程作者朱彩莲,介绍了一种电子电路仿真软件——Multisim 2001。通过对该软件的学习和使用,读者可以轻松地拥有一个元件设备非常完善的虚拟电子实验室,进而可以完成电子电路的各种实验和设计。 本书介绍了一种电子电路仿真软件——Multisim 2001。通过对该软件的学习和使用,读者可以轻松地拥有一个元件设备非常完善的虚拟电子实验室,进而可以完成电子电路的各种实验和设计。 全书共9章。第l~4章主要介绍Multisim 2001软件的基本功能和操作,主要有Multisim 200l中电路的创建、元件库和元件的使用、虚拟仪器的使用和Multisim基本分析方法;第5~9章主要介绍Mulfisim 200l软件的应用,其中第5~8章分别从电路基础、模拟电子技术、数字电子技术、高频电子技术中选取了若干个典型实验进行:Multisim仿真分析,每个实验给出了实验目的、实验电路、仿真操作步骤和实验结果,第9章是Multisim2001在电子综合设计中的应用实例。 本书可作为高等院校电子技术类课程的软件实验教材,也可作为从事电子电路设计的工程技术人员的参考书。 计算机高效率绿色电源 高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领

域。 计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。 通信用高频开关电源 通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V 的直流电源;目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。 因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可

单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。 本文选用双极性SPWM 调制。 1双极性单相SPWM 原理 SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 是幅值为cm U ,频率为c f 的三角波。载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。通常采用调制信号与载波信号相比较的方法生成SPWM 信号.当Us>Uc 时,输出电压Uo 等于Ud,当Us

Multisim电路仿真

Multisim电路仿真 示例1.直流电路分析 步骤一:文件保存 打开Multisim 软件,自动产生一个名为Design1的新文件。 打开菜单File>>Save as…,将文件另存为“CS01”(自动加后缀) 步骤二:放置元件 打开菜单Place>>Component… 1.选择Sources(电源)Group (组),选择POWER_SOURCES(功率源)Family(小组),在元件栏中用鼠标双击DC_POWER,将直流电源放置到电路工作区。 说明:所有元件按Database -> Group -> Family 分类存放

2.继续放置元件: Sources Group –>POWER_SOURCES Family->ROUND(接地点 Basic Group->RESISTOR Family(选择5个电阻) 3.设定元件参数。采用下面两种方式之一 1)在放置元件时(在一系列标准值中)选择; 2)在工作区,鼠标右键点击元件,在Properties (属性)子菜单中设定。 步骤三.根据电路图连线 用鼠标拖动元件到合适位置,如果有必要,鼠标右键点击元件,可对 其翻转(Flip)或旋转(Rotate)。连线时先用鼠移至一个元件的接线端, 鼠标符号变成叉形,然后拖动到另一结点,点击右键确认连线。 若需显示全部节点编号,在菜单 Option>>Sheet Properties>>Sheet visibility 的Net names 选板中选中show all。

步骤四.电路仿真 选择菜单Simulate>>Analyses>>DC operating point…(直流工作点分析) 在DC operating point analysis窗口中,选择需要分析的变量(节点电压、元件电流或功率等)。

(完整版)三相SPWM逆变器仿真

三相SPWM逆变器仿真 一、原理分析 1、基本原理 按照输出交流电压半周期内的脉冲数,脉宽调制(PWM)可分为单脉冲调制和多脉冲调制;按照输出电压脉冲宽度变化规律,PWM可分为等脉宽调制和正弦脉 宽调制(SPWM)。 等脉宽调制产生的电压波形中谐波含量仍然很高,为了使输出电压波形中基波含量增大,应选用正弦波作为调制信号u R。这是因为等腰三角形的载波u T上、下 宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于 该函数值的矩形脉冲。而且在三角载波u T不变条件下,改变正弦调制波u R的周期 就可以改变输出脉冲宽度变化的周期;改变正弦调制波u R的幅值,就可改变输出脉 冲的宽度,进而改变u D中基波u D1的大小。这就是正弦脉宽调制(sine pulse width modulated,SPWM)。 2、正弦脉宽调制方法(此处仅介绍了采样法) SPWM是以获得正弦电压输出为目标的一种脉宽调制方式。这里就以应用最普遍的三相电压源型逆变电路来讨论SPWM具体实现方法。 下图就是三相电压源型PWM逆变器主电路结构图: 图—1 上图为一三相电压源型PWM逆变器,VT1~VT6为高频自关断器件,VD1~VD6为与之 反并联的快速恢复二极管,为负载感性无功电流提供通路。两个直流滤波电容C串 联接地,中点O’可以认为与三相Y接负载中点O等电位。逆变器输出A、B、C三 相PWM电压波形取决于开关器件VT1~VT6上的驱动信号波行,即PWM的调制方式。 假设逆变电路采用双极性SPWM控制,三相公用一个三角形载波u T,三相正弦调制信号u RA、u RB、u RC互差120o,可用A相来说明功率开关器件的控制规律,正如 下图中所示。当u RA>u T时,在两电压的交点处,给A相上桥臂元件VT1导通信号、下桥臂元件VT4关断信号,则A相与电源中点O’间的电压u AO’=E/2。当u RA

基于Multisim的电路仿真

模拟电子技术实验《信号放大器的设计》 班级: 姓名: 指导老师: 2013年12月10日至12日

1.实验目的 (1)掌握分立或集成运算放大器的工作原理及其应用。 (2)掌握低频小信号放大电路和功放电路的设计方法。 (4)通过实验培养学生的市场素质,工艺素质,自主学习的能力,分析问题解决问题的能力 以及团队精神。 (5)通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路 和功放电路的设计方法 2.实验任务和要求 2.1实验任务 1)已知条件: 信号放大电路由“输入电路”、“差分放大电路”、“两级负反馈放大电路”、“功率放大器”、“扬声器”几部分构成。 图2-1 信号放大器的系统框图 2)性能指标: a)输入信号直接利用RC 正弦波振荡电路产生。 b) 前置放大器: 输入信号:Uid ≤ 10 mV 输入阻抗:Ri ≥ 100 k c) 功率放大器: 最大不失真输出功率:Pomax ≥1W 负载阻抗:RL= 8; 电源电压:+ 5 V ,+ 12V ,- 12V d) 输出功率连续可调 直流输出电压 ≤ 50 mV 信号产生 差分放大 共射级放大 功率放大 负反馈 输出信号

静态电源电流≤100 mA 2.2实验要求 1)选取单元电路及元件 根据设计要求和已知条件,确定信号产生电路、前置放大电路、功率放大电路的方案, 计算和选取单元电路的原件参数。 2)前置放大电路的组装与调试测量前置放大电路的差模电压增益AU、共模电压增益AUc、共模抑制比KCMR、带宽BW、输入电压Ri等各项技术指标,并与设计要求值进行比较。 3)有源带通滤波器电路的组装与调试 测量有缘带通滤波器电路的差模电压增益AUd、带通BW,并与设计要求进行比较。 4)功率放大电路的组装与调试 功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出效率η、直流输 出电压、静态电源电流等技术指标。 5)整体电路的联调 6)应用Multisim软件对电路进行仿真分析。 2.3选用元器件 电容电阻若干、双踪示波器1个、信号发生器一个、交流毫伏表1个、数字万用表等仪器、晶体三极管 2N3906 1个,2N2222A 5个,2N2222 2个,2N3904 2个,1N3064 1个。 3、实验内容 1、总电路图 (一)实验总体电路图

最详细最好的multisim仿真教程

最详细最好的multisim仿真教程第13章 Multisim模拟电路仿真 本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、 Multisim7、 Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。 图13.1-1 Multisim10用户界面 菜单栏与Windows应用程序相似,如图13.1-2所示。

SPWM波控制单相逆变器双闭环PID调节器的Simulink建模与仿真

SPWM波控制单相逆变器双闭环PID调节器的Simulink 建模与仿真 随着电力行业的快速发展,逆变器的应用越来越广泛,逆变器的好坏 会直接影响整个系统的逆变性能和带载能力。逆变器的控制目标是提高逆变器 输出电压的稳态和动态性能,稳态性能主要是指输出电压的稳态精度和提高带 不平衡负载的能力;动态性能主要是指输出电压的THD(Total Hannonic Distortion)和负载突变时的动态响应水平。在这些指标中对输出电压的THD 要 求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%.这些指标与逆变器的控制策略息息相关。文中主要介绍如何建立电压双环SPWM 逆变器的数学模型,并采用电压有效值外 环和电压瞬时值内环进行控制。针对UPS 单模块10 kVA 单相电压型SPWM 逆变器进行建模仿真。通过仿真,验证了控制思路的正确性以及存该控制策略 下的逆变器所具有的鲁棒性强,动态响应快,THD 低等优点。并以仿真为先导,将其思想移植到具体开发中,达到预期效果。 1 三电平逆变器单相控制模型的建立 带LC 滤波器的单相逆变器的主电路结构如图1 所示。图1 中L 为输出 滤波电感,C 为滤波电容,T1,T2,T3,T4 分别是用来驱动IGBT 的三电平的SPWM 波,U0 为输出负载两端的电压。在建立控制系统的仿真模型时,需要 采集负载两端的电压与实际要求的电乐值做比较,然后通过调节器可以得到所 需要调节的值。在此仿真模型中,驱动波形采用的是三电平的SPWM 波形, 具体的产生原理在这不做详细描述。在Matlah 的Simlink 库中SPWM 波的产 生如图2 所示,这里调制比设为0.8.

Multisim仿真混沌电路

Multisim仿真—混沌电路 1104620125

Multisim仿真—混沌电路 一、实验目的 1、了解非线性电阻电路伏安特性,以及其非线性电阻特征的测量方法; 2、使用示波器观察混沌电路的混沌现象,通过实验感性地认识混沌现象,理解非线性科学中“混沌”一词的含义;; 3、研究混沌电路敏感参数对混沌现象的影响 二、实验原理 1、蔡氏电路 本实验采用的电路图如图9-16 所示,即蔡氏电路。蔡氏电路是由美国贝克莱大 学的蔡少棠教授设计的能产生混沌行为的最简单的一种自制电路。R 是非线性电 阻元件,这是该电路中唯一的非线性元件,是一个有源负阻元件。电容C2 与电 感L 组成一个损耗很小的振荡回路。可变电阻1/G 和电容C1 构成移相电路。最 简单的非线性元件R 可以看作由三个分段线性的元件组成。由于加在此元件上的 电压增加时,故称为非线性负阻元件。 三、实验内容 为了实现有源非线性负阻元件实,可以使以下电路,采用两个运算放大器(1 个双运放TL082)和六个配置电阻来实现,其电路如图1,这主要是一个正反馈电路,能输出电流以维持振荡器不断震荡,而非线性负阻元件能使振荡周期产生分岔和混沌等一系列非线性现象。 1、实验电路如下图,电路参数:1、电容:100nf 一个,10nf 一个; 2、线性电阻6 个:

200Ω二个,22kΩ二个,2.2kΩ一个,3.3kΩ一个;3、电感:18mH 一个;4、运算放大器:五端运放TL083 二个;5、可变电阻:可变电阻一个;6、稳压电源:9V 的VCC 二个,-9V 的VEE 二个; 图1 选好元器件进行连接,然后对每个元器件进行参数设置,完成之后就可以对 蔡氏电路进行仿真了。双击示波器,可以看到示波器的控制面板和显示界面,在 控制面板上可以通过相关按键对显示波形进行调节。 下面是搭建完电路的截图: 2、将电压表并联进电路,电流表串联进电路可以直接测出加在非线性负阻的电压、电流, U/V I/mA U/V I/mA 12 0.1579 -1 -0.76917 11 2.138 -2 -1.44352 10 4.601 -3 -1.84752

H桥逆变器SPWMMATLAB仿真

MATLAB仿真技术大作业 题目:H桥逆变器SPWM仿真 单相逆变器(H桥)。直流电压500V,使用直流电压源模块;逆变器用Universal Bridge模块,器件选IGBT。负载用阻感串联负载,电阻1 ,电感15mH。 使用三角波作为载波,载波频率750Hz,调制度0.8,基波频率50Hz。仿真时间0.2秒,使用ode23tb求解器。 本次仿真关注稳态时的情况。分析谐波成分时,取0.1秒之后的2个工频周期的波形进行分析,基波频率50Hz,最大频率3500Hz。 1、双极性SPWM仿真 采用双极性SPWM,完成以下内容: (1)在同一副图中,画出载波与调制波的波形

; (2)记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui 模块中FFT Analysis子模块进行谐波分析, (3) (a)分析基波电压是否与理论公式相符; 基本相符,理论值为500*0.8=400,实际值400.3,相对误差0.75% (b) 分析电压谐波成分,并给出结论; 谐波集中在载波频率(750hz)及其整数倍附近 (3)记录负载电流的波形,并进行谐波分析。 谐波分析 负载电流谐波成分与电压基本一致。 2、单极性SPWM仿真 采用单极性SPWM,重复上述仿真,即,完成以下内容: (1)在同一副图中,画出载波与调制波的波形;

(2) 记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui 模块中FFT Analysis子模块进行谐波分析, 谐波分析 (a) 分析基波电压是否与理论公式相符; 基本相符 (b) 分析电压谐波成分,并给出结论; 谐波分别很散,与理论不符 (3)记录负载电流的波形,并进行谐波分析。 (4)对比分析单极性SPWM,双极性SPWM输出电压谐波成分的特点,在相同LC滤波器参数时,其负载电流THD的情况。 单极性谐波应该少,实际仿真结果反而多? 3、级联H桥逆变器仿真 两个H桥级联,每个桥的逆变器参数都与前面的相同。负载为阻感串联负载,电阻1 ,电感15mH。 两个H桥采用如下图所示调制方法,其中Vcr1,Vcr1-为上部H桥的载波,Vcr2,Vcr2-为下部H桥的载波,载波频率为750Hz;Vm为调制波,调制度0.8,基波频率为50Hz。 上部H桥脉冲产生条件为: Vm>Vcr1时,Vg1=1,Vg2=0;VmVcr2时,Vg1=1,Vg2=0;Vm

最全面的Multisim14仿真设计流程指南

1 第2章 Multisim 仿真流程 本节我们用一个案例(模拟小信号放大及数字计数电路)来演示Multisim 仿真大体流程,这个案例来自Multisim 软件自带Samples ,Multsim 也有对应的入门文档(Getting Started ),只要用户安装了Multsim 软件,就会有这样的一个工程在软件里,这样就不需要再四处搜索案例来学习。 执行菜单【File 】→【Open samples…】即可弹出“打开文件”对话框,从中找到“Getting Started ”下的“Getting Started Final ”(Final 为最终完成的仿真文件)打开即可 此案例的难度与复杂度都不高,因为过于复杂的电路会让Multisim 仿真初学者精力过于分散,难以从宏观上把握Multisim 电路仿真设计流程。在这个案例中,我们对于Multisim 软件的使用操作(如调用元器件、连接元器件、编辑参数、运行仿真)都会做尽量详细的描述,以期达到尽快让新手熟悉Multisim 目的,这也是为更简要阐述后续案例打基础。 本书在行文时描述的Multisim 步骤操作,均使用菜单方式,事实上,大多数操作可以直接使用工具栏上的快捷按钮,读者可自行熟悉,执行的结果与菜单操作都是一致的 2.1 电路原理 我们将要完成的仿真电路如下图所示:

2 一切不以原理为基础的仿真都是耍流氓,所以这里我们简要阐述一下原理:以U4-741运算放大器 为核心构成的同相比例放大器,对来自V1的交流信号进行放大(其中,R4为可调电阻,可对放大倍数 进行调整)。放大后的信号,一路送入示波器进行观测,另一路作为时钟脉冲信号送入U2-74LS190N(可 预置同步BCD十进制加减法计数器)进行计数,计数结果输出为十进制,经U3-74LS47N(BCD-七段 数码管译码器)译码后驱动七段数码管进行数字显示。另外U2-74LS190N配置为加法器,同时将行波时 钟输出第13脚(RCO)驱动发光二极管。 左下区域有两个单刀双掷开关进行计数控制,S1接到U2的第4脚(CTEN)计数使能控制引脚, 低有效,当S1切换到接地(GND)时,计数才开始,否则计数停止;S2接到U2的第11脚(LOAD),也是低有效,当S2切换到接地(GND)时,就把预置数(ABCD)赋给(Q A Q B Q C Q D),这里电路配置 的(ABCD)都是接地(GND),因此相当于S2开关为清零功能。 右上区域还有三个旁路电路,左侧的插座与仿真没有关系。 2.1.1 新建仿真文件 1、首先我们打开Multsim软件,如下图所示,默认有一个名为Design1的空白文件已经打开在工作 台(WorkSpace)中。