Dipole Approximation(偶极近似)

Dipole Approximation(偶极近似)
Dipole Approximation(偶极近似)

Dipole Approximation

Consider an electrical field in the form of a linearly polarised, monochromatic plain wave with

wave vector ,

(114)

Describe the interaction of the atom with the electrical field in dipole approximation: the energy of

a dipole in a field is given by . Treating the field classically, we obtain the time-dependent dipole Hamiltonian

(115)

where we used in the overlap integral (wave length dimension of atom, `dipole approximation'), and introduced

(116)

and the Rabi frequency

(117) which in general is a complex number. The total system Hamiltonian therefore is

(118)

One usually assumes real , in this case we can formally write

with

(119)

补充:Expanded as a series, the exponential factor describing the x-ray radiation field at the

absorbing atom or molecule has the form

1 + O(k) + O(k2) + ...,

where k is the x-ray wave vector (2π/λ) and O(k n) comprises terms proportional to the nth power

of k. The dipole (or electric dipole) approximation refers to keeping only the 1, so it is also the

zeroth-order approximation.

MORE TROUBLE FOR THE DIPOLE APPROXIMATION

A multi-institutional collaboration comprising both theorists and experimentalists working at the ALS has made

measurements of second-order nondipole effects in the angular dependence of the cross section for neon valen The finding potentially applies to a wide variety of x-ray photoemission studies, including gas-phase, surface-s materials-science work, where researchers may now need to account for the influence of higher-order nondipole standard dipole approximation conventionally applied to the interaction of x rays with matter.

Expanded as a series, the exponential factor describing the

Finding the Devil x-ray radiation field at the absorbing atom or molecule has

the form

1 + O(k) + O(k 2) + ...,

where k is the x-ray wave vector (2π/λ) and O(k n ) comprises terms proportional to the nth power of k. The dipole (or electric dipole) approximation refers to keeping only the 1, so it is also the zeroth-order approximation.

Within the dipole approximation, the differential cross section (cross section per unit solid angle) for angle-resolved photoemission with linearly polarized x rays is described by three quantities: the partial cross section, σ(h ν), the angular-distribution parameter, β(h ν), and the angle (θ) of the photoelectron trajectory relative to the polarization vector. When extracted from angular distribution

measurements, σ(h ν) and β(h ν) provide information about the electronic structure of the atom and the molecule and the dynamics of the photoionization process. For example, at the "magic angle" θ = 54.7o, the angular term disappears and σ(h ν) is obtained.

In the dipole approximation, a single term

describes

electron

angular

distributions as a function of the angle θ relative to the polarization, E, of the radiation.

Higher-order

photon

interactions lead to nondipole effects, which in the experiments reported here can

be

described

by two

new

parameters and a second angle, φ, relative to the propagation direction, k, of the radiation.

in the Details

Scientists studying atoms and molecules use x rays to determine the "electronic structure" comprising the electron orbitals and their characteristics. Photoemission is a good example. From the spectrum of kinetic energies and directions of travel of photoelectrons emitted from the atom or molecule after absorbing x rays, investigators can work backwards to reconstruct the electronic structure. However, this process requires theoretical models that not only accurately describe the interaction of the x ray with the atom or molecule but that are also solvable in a practical way. For this reason, scientists use as much as possible a simplification of the x-ray interaction called the dipole approximation. However, in the last few years, scientists

conducting very careful measurements at the ALS and elsewhere have found that in surprising circumstances the dipole approximation is not sufficiently accurate. A more accurate approximation with extra "first-order" corrections helped but did not eliminate the discrepancies between theory and experiment in every case. Now a collaboration of theorists and experimentalists working at the ALS has both calculated the

effects of even more

sophisticated "second-order"

corrections and experimentally

verified their importance at

unexpectedly low energies.

Researchers in several fields

may now need to take these

nondipole effects into account.

It has long been known that this approximation is not valid for high photon energies (e.g., above 5 keV), where the photon wavelength is smaller than the size of the atom or molecule. In the last few years, groups working at the ALS and elsewhere have shown that additional first-order nondipole (specifically, electric quadrupole) terms are needed in the rare gases at lower photon energies and close to an ionization threshold. These terms involve two first-order energy-dependent parameters, δ(hν) and γ(hν), and a new angle variable (φ).

At this level of approximation, the recent rare-gas experiments showed significant modifications of the photoelectron angular distributions compared to those expected within the dipole approximation, modifications that were in generally good agreement with the first-order calculations. However, when conducting the analysis for neon in terms of the γ(hν) for 2s photoemission and ζ(hν) (where ζ = 3δ + γ) for 2p photoemission, experimenters at the ALS noticed that some discrepancy remained, particularly for neon 2p photoemission.

Theorists among the group calculated a general expression for the angle-resolved photoemission cross section including second-order contributions, which introduced four new energy-dependent nondipole factors dominated by electric-octupole and pure electric-quadrupole effects. Since no new angles were involved, the second-order corrections could then be recast in terms of effective values of γ(hν) and ζ(hν) for comparison with their measurements on neon.

The group made this comparison for four geometries, two with θ at the magic angle where only nondipole terms are important, and two on a "nondipole cone" at an angle of 35.3oaround the direction of the x-ray beam. Comparison of experiment with first-order theory yielded good agreement for both neon 2s and 2p photoemission for detectors on the nondipole cone, but in the magic-angle geometry, second-order corrections were needed, especially for neon 2p.

Experimental and theoretical values of the first-order

correction terms γ2s and ζ2p for neon 2s and 2p

photoemission determined in "magic-angle" and

"nondipole-cone" geometries.

The complex angular dependence of the differential cross section means that which corrections to the dipole approximation are needed depends on the experimental geometry, but the new results demonstrate that researchers need to be ready to include nondipole effects through at least the second order in analyzing their results.

Research conducted by A. Derevianko and W.R. Johnson (University of Notre Dame); O. Hemmers, S. Oblad, and D.W. Lindle (University of Nevada, Las Vegas); P. Glans (Stockholm University); H. Wang (Uppsala University); S.B. Whitfield (University of Wisconsin); R. Wehlitz (University of Wisconsin); and I.A. Sellin (University of Tennessee, Knoxville).

Research funding: National Science Foundation, EPSCoR Program of the U.S. Department of Energy, and University of Nevada, Las Vegas. Operation of the ALS is supported by the Office of Basic Energy Sciences, U.S. Department of Energy.

Publication about this experiment: A. Derevianko, O. Hemmers, S. Oblad, P. Glans, H. Wang, S.B.Whitfield, R. Wehlitz, I.A. Sellin, W.R. Johnson, and D.W. Lindle,

"Electric-Octupole and Pure-Electric-Quadrupole Effects in Soft-X-Ray Photoemission,"

Phys. Rev. Lett. 84, 2116 (2000).

ALSNews Vol. 170, February 14, 2001

The electric dipole approximation

In general, the wave-length of the type of electromagnetic radiation which induces, or is emitted during, transitions between different atomic energy levels is much larger than the typical size of a light atom. Thus,

(845)

can be approximated by its first term, unity (remember that ). This approximation is known as the electric dipole approximation. It follows that

(846) It is readily demonstrated that

(847) so

(848) Using Eq. (844), we obtain

(849)

where is the fine structure constant. It is clear that if the absorption cross-section is regarded as a function of the applied frequency, , then it exhibits a sharp maximum at

.

Suppose that the radiation is polarized in the -direction, so that . We have already seen, from Sect. 6.4, that

unless the initial and final states satisfy

(850)

(851)

Here, is the quantum number describing the total orbital angular

momentum of the electron, and is the quantum number describing the projection of the orbital angular momentum along the -axis. It is easily

demonstrated that and are only non-zero if

(852)

(853)

Thus, for generally directed radiation is only non-zero if

(854)

(855)

These are termed the selection rules for electric dipole transitions. It is clear, for instance, that the electric dipole approximation allows a transition from a

state to a state, but disallows a transition from a to a state. The

latter transition is called a forbidden transition.

Forbidden transitions are not strictly forbidden. Instead, they take place at a far lower rate than transitions which are allowed according to the electric dipole approximation. After electric dipole transitions, the next most likely type of transition is a magnetic dipole transition, which is due to the interaction between the electron spin and the oscillating magnetic field of the incident electromagnetic radiation. Magnetic dipole transitions are typically about times more

unlikely than similar electric dipole transitions. The first-order term in Eq. (845) yields so-called electric quadrupole transitions. These are typically about times more unlikely

than electric dipole transitions. Magnetic dipole and electric quadrupole transitions satisfy different selection rules than electric dipole transitions: for instance, the selection rules for

electric quadrupole transitions are . Thus, transitions which are forbidden as electric dipole transitions may well be allowed as magnetic dipole or electric quadrupole transitions.

Integrating Eq. (849) over all possible frequencies of the incident radiation yields

(856)

Suppose, for the sake of definiteness, that the incident radiation is polarized in the -direction. It is easily demonstrated that

(857) Thus,

(858) giving

(859) It follows that

(860) This is known as the Thomas-Reiche-Kuhn sum rule. According to this rule, Eq. (856) reduces to

(861)

Note that has dropped out of the final result. In fact, the above formula is

exactly the same as that obtained classically by treating the electron as an oscillator.

Electric Dipole Approximation and Selection Rules

We can now expand the term to allow us to

compute matrix elements more easily. Since and the matrix element is

squared, our expansion will be in powers of which is a small number. The dominant decays will be those from the zeroth order approximation which is

This is called the Electric dipole approximation.

In this Electric Dipole approximation, we can make general progress on computation of the matrix

element. If the Hamiltonian is of the form and

, then

and we can write in terms of the commutator.

This equation indicates the origin of the name Electric Dipole: the matrix element is of the vector which is a dipole.

We can proceed further, with the angular part of the (matrix element) integral.

At this point, lets bring all the terms in the formula back together so we know what we are doing.

We will attempt to clearly separate the terms due to for the sake of modularity of the calculation.

The integral with three spherical harmonics in each term looks a bit difficult, but, we can use a Clebsch-Gordan series like the one in addition of angular momentum to help us solve the problem. We will write the product of two spherical harmonics in terms of a sum of spherical

harmonics. Its very similar to adding the angular momentum from the two s. Its the same series as we had for addition of angular momentum (up to a constant). (Note that things

will be very simple if either the initial or the final state have , a case we will work out below for transitions to s states.) The general formula for rewriting the product of two spherical harmonics (which are functions of the same coordinates) is

The square root and can be thought of as a normalization constant in an

otherwise normal Clebsch-Gordan series. (Note that the normal addition of the orbital angular momenta of two particles would have product states of two spherical harmonics in different coordinates, the coordinates of particle one and of particle two.) (The derivation of the above equation involves a somewhat detailed study of the properties of rotation matrices and would take us pretty far off the current track (See Merzbacher page 396).)

First add the angular momentum from the initial state and the photon

using the Clebsch-Gordan series, with the usual notation for the Clebsch-Gordan

coefficients.

I remind you that the Clebsch-Gordan coefficients in these equations are just numbers which are less than one. They can often be shown to be zero if the angular momentum doesn't add up. The equation we derive can be used to give us a great deal of information.

We know, from the addition of angular momentum, that adding angular momentum 1 to

can only give answers in the range so the

change in in between the initial and final state can only be . For other values, all the Clebsch-Gordan coefficients above will be zero.

We also know that the are odd under parity so the other two spherical harmonics must

have opposite parity to each other implying that , therefore

We also know from the addition of angular momentum that the z components just add like integers, so the three Clebsch-Gordan coefficients allow

We can also easily note that we have no operators which can change the spin here. So certainly

We actually haven't yet included the interaction between the spin and the field in our calculation, but, it is a small effect compared to the Electric Dipole term.

The above selection rules apply only for the Electric Dipole (E1) approximation. Higher order terms in the expansion, like the Electric Quadrupole (E2) or the Magnetic Dipole (M1), allow other decays

but the rates are down by a factor of or more. There is one absolute selection rule coming

from angular momentum conservation, since the photon is spin 1. No to

transitions in any order of approximation.

As a summary of our calculations in the Electric Dipole approximation, lets write out the decay rate formula.

偶极矩,介电常数

溶液法测定极性分子的偶极矩 一、实验目的 了解电介质极化与分子极化的概念,以及偶极矩与分子极化性质的关系。掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术,用溶液法测定乙酸乙酯的偶极矩。 二、实验原理 德拜(Peter Joseph William Debye )指出,所谓极性物质的分子尽管是电中性的,但仍然拥有未曾消失的电偶极矩,即使在没有外加电磁场时也是如此。分子偶极矩的大小可以从介电常数的数据中获得,而对分子偶极矩的测量和研究一直是表征分子特性重要步骤。 1、偶极矩、极化强度、电极化率和相对电容率(相对介电常数) 首先定义一个电介质的偶极矩(dipole moment )。考虑一簇聚集在一起的电荷,总的净电荷为零,这样一堆电荷的偶极矩p 是一个矢量,其各个分量可以定义为 i i i z i i i y i i i x z q p y q p x q p 式中电荷i q 的坐标为),,(i i i z y x 。偶极矩的SI 制单位是:m C 。 将物质置于电场之中通常会产生两种效应:导电和极化。导电是在一个相对较长的(与分子尺度相比)距离上输运带电粒子。极化是指在一个相对较短的(小于等于分子直径)距离上使电荷发生相对位移,这些电荷被束缚在一个基本稳定的、非刚性的带电粒子集合体中(比如一个中性的分子)。 一个物质的极化状态可以用矢量P 表示,称为极化强度(polarization )。矢量P 的大小 定义为电介质内的电偶极矩密度,也就是单位体积的平均电偶极矩,又称为电极化密度,或电极化矢量。这定义所指的电偶极矩包括永久电偶极矩和感应电偶极矩。P 的国际单位制度量单位是2 m C 。为P 取平均的单位体积当然很小,但一定包含有足够多的分子。在一个微小的区域内,P 的值依赖于该区域内的电场强度E 。 在这里,有必要澄清一下物质内部的电场强度的概念。在真空中任意一点的电场强度E 的定义为:在该点放置一个电荷为dq 的无限微小的“试验电荷”,则该“试验电荷”所受

分子偶极矩的测定

分子偶极矩的测定 一、实验目的 1、电桥法测定极性物质在非极性溶剂中的介电常数和分子偶极矩。 2、了解溶液法测定偶极矩的原理、方法和计算,并了解偶极矩与分子电性 质的关系。 二、实验原理 1)偶极矩和极化度 分子的表象为电中性,但是由于空间构型的不同,分子的正负中心有可能不重合,于是表现出极性来,极性的大小用偶极矩μ来衡量 μ=qd 式中q为正(负)电荷中心所带的电荷量,d为正、负电荷间的距离。偶极矩的方向规定从正指向负。 极性分子拥有偶极矩,在没有外电场的作用下时,由于分子热运动,偶极矩指向各方向的机会均等,所以统计偶极矩等于0。将分子置于外电场中时,分子会沿外电场方向做定向的转动,同时,分子中的电子云相对分子骨架发生位移,分子骨架本身也发生一定的变形,成为分子极化,可用摩尔极化度来衡量分子极化程度。因转向而极化成为摩尔转向极化度,由变形所致的为摩尔变形极化度,包括电子极化和原子极化。即 P=P 转向+P 变形 =P 转向 +(P 电子 +P 原子 ) 已知P 转向 与永久偶极矩μ的平方成正比,与热力学温度成反比,即 P 转向= 1 4 πN A μ2 b = N Aμ2 0b 式中k b为玻尔兹曼常数,N A为阿伏伽德罗常数。 对于非极性分子,μ=0,即P 转向=0,所以P=P 电子 +P 原子 。 对于极性分子,分子的极化程度与外电场的频率有关。在低频电场(ν﹤1010s-1)下,摩尔极化度等于摩尔转向极化度与摩尔变形极化度之和;在中频电场(ν=1012~1014s-1)下,电场交变周期小于偶极矩的松弛时间,分子转向运动跟 不上电场变化,P 转向=0,于是P=P 电子 +P 原子 ;在高频电场(ν﹥1015s-1)下,

溶液法测定极性分子的偶极矩(上课用)

溶液法测定极性分子的偶极矩 I. 目的与要求 一、 用溶液法测定乙酸乙酯的偶极矩 二、 了解偶极矩与分子电性质的关系 三、 掌握溶液法测定偶极矩的实验技术 I I. 基本原理 一、偶极矩与极化度 分子结构可以近似地被石成是由电子。和对于骨架(原子核及内层电子)所构成的。由于分子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子,后者称为极性分子。 图1 电偶极矩示意图 1912年,德拜(Debye )提出―偶极矩‖μ的概念来度量分子极性的大小,如图1所示,其定义是 d q ?=μ (1) 式中 q 是正、负电荷中心所带的电荷量,d 为正、负电荷中心之间的距离,μ是一个向量,其方向规定从正到负。因分子中原子间距离的数量级为1010 -m ,电荷的数量级为2010-C ,所以偶极矩的数量级是3010-C·m 。 通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用来判别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向的机会相同,所以偶极矩的统计值等于零。若将极性分子置于均匀的电场中,则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化了,极化的程度可用摩尔转向极化度转向P 来衡量。 转向P 与永久偶极矩平方成正比,与热力学温度T 成反比

kT L kT L P 2294334μπμπ=?=转向 (2) 式中k 为玻耳兹曼常数,L 为阿伏加德罗常数。 在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度诱导P 来衡量。显然,诱导P 可分为二项,即电子极化度电子P ,和原子极化度原子P ,因此诱导P = 电子P + 原子P 。诱导P 与外电场强度成正比,与温度无关。 如果外电场是交变电场,极性分子的极化情况则与交变电场的频率有关。当处于频率小于1010-s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和 P = 转向P + 电子P + 原子P (3) 当频率增加到1210-~1410-s -1的中频(红外频率)时,电场的交变周期小于分子偶极矩的弛豫时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场定向,故转向P = 0。此时极性分子的摩尔极化度等于摩尔诱导极化度诱导P 。当交变电场的频率进一步增加到大于1510-s -1的高频(可见光和紫外频率)时,极性分子的转向运动和分子骨架变形都跟不上电场的变化,此时极性分子的摩尔极化度等于电子极化度电子P 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子的摩尔转向极化度转向P ,然后代人(2)式就可算出极性分子的永久偶极矩μ来。 二、极化度的测定 克劳修斯、莫索蒂和德拜(Clausius -Mosotti -Debye )从电磁理论得到了摩尔极化度P 与介电常数ε之间的关系式 ρ εεM P ?+-=21 (4) 式中,M 为被测物质的摩尔质量,ρ是该物质的密度,ε可以通过实验测定。 但(4)式是假定分子与分子间无相互作用而推导得到的,所以它只适用于温度不太低的气相体系。然而测定气相的介电常数和密度,在实验上困难较大,某些物质甚至根本无法使其处于稳定的气相状态。因此后来提出了一种溶液法来解决这一困难。溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞ 2P 就可以看作为(4)式中的P 。 海德斯特兰(Hedestran )首先利用稀溶液的近似公式 ()211x αεε+=溶 (5) ()211x βρρ+=溶 (6) 再根据溶液的加和性,推导出无限稀释时溶质摩尔极化度的公式

物理化学实验报告_偶极矩

华南师范大学实验报告 课程名称:结构实验 实验项目:稀溶液法测定偶极矩 实验类型:□验证□设计□综合 实验时间:2009年11月20日 一、实验名称:稀溶液法测定偶极矩 二、实验目的 (1) 掌握溶液法测定偶极矩的主要实验技术。 (2) 了解偶极矩与分子电性质的关系。 (3) 用溶液法测定乙酸乙酯的偶极矩。 三、实验原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不重合。前者称为非极性分子,后者称为极性分子。 图1电偶极矩示意图 图2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ 的概念来度量分子极性的大小,如图1所示,其定义是 (1) 式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ 是一个向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 与永久偶极矩 的值成正比,与绝对温度T 成反比。 KT N P 3432μπ ?=转向 d q ?=μ 转向P 2μ

偶极矩概念

偶极矩 正、负电荷中心间的距离r和电荷中心所带电量q的乘积,叫做偶极矩μ=r×q。它是一个矢量,方向规定为从正电中心指向负电中心。偶极矩的单位是D(德拜)。根据讨论的对象不同,偶极矩可以指键偶极矩,也可以是分子偶极矩。分子偶极矩可由键偶极矩经矢量加法后得到。实验测得的偶极矩可以用来判断分子的空间构型。 基本介绍 同属于AB2型分子,CO2的μ=0,可以判断它是直线型的;H2S的μ≠0,可判断它是折线型的。可以用偶极矩表示极性大小。键偶极矩越大,表示键的极性越大;分子的偶极矩越大,表示分子的极性越大。 2分析说明 两个电荷中,一个电荷的电量与这两个电荷间的距离的乘积。可用以表示一个分子中极性的大小。如果一个分子中的正电荷与负电荷排列不对称,就会引起电性不对称,因而分子的一部分有较显著的阳性,另一部分有较显著的阴性。这些分子能互相吸引而成较大的分子。例如缔合分子的形成,大部分是由于氢键,小部分就是由于偶极矩。偶极矩用μ表示:μ=q*d。单位为D(Debye.德拜) 3偶极矩测定 偶极矩与极化度 分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子,分子极性大小用偶极矩μ来度量,偶极矩定义为:μ=q·d .......① 式中,q为正、负电荷中心所带的电荷量;d是正、负电荷中心间的距离。偶极矩的SI单位是库(仑)米(C·m)。 若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。极化的程度用摩尔极化度P来度量。P 是转向极化度(P转向);电子极化度(P电子)和原子极化度(P原子)之和:P= P转向+ P电子+ P原子 .....② 由于P原子在P中所占的比例很小,所以在不很精确的测量中可以忽略P原子,则②式可写成:P= P转向+ P电子 .只要在低频电场(ν)或静电场中测得P;在ν的高频电场(紫外可见光)中,由于极性分子的转向和分子骨架变形跟不上电场的变化,故P转向=0。 P原子=0,所以测得的是P电子。这样可求得P转向,再计算μ。

测定极性分子的偶极矩

aa 溶液法测定极性分子的偶极矩 一、实验目的 1.掌握溶液法测定偶极矩的原理和方法,并掌握仪器的使用方法; 2.测定乙酸乙酯在非极性溶剂(环己烷)中的介电常数和分子偶极矩; 3.初步培养学生数据处理能力。 二、预习要求 1. 了解偶极矩,极化度的概念; 2. 熟练操作阿贝折光仪和介电常数测试仪; 3. 掌握介电常数测试仪得到的是不是实际电容值; 4. 密度的测定方法。 三、基本原理 1. 偶极矩与极化度 分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不 重 合,前者为非极性分子,后者称为极性分子。 图1 电偶极矩示意图 1912年,德拜(Debye )提出“偶极矩μ”的概念来度量分子极性的大小,如 图1所示,其定义是 d q ?=μ (1) 式中q 是正、负电荷中心所带的电荷量,d 为正、负电荷中心之间的距离, μ是一个向量,其方向规定从正到负。因分子中原子间距离的数量级为1010 - m ,电荷的数量级为2010- C ,所以偶极矩的数量级是3010- C·m 。 通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称 性等情况,还可以用来判断几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向 的机会相同,所以偶极矩的统计值等于零。若将极性分子置于均匀的电场中, 则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化

了,极化的程度可用摩尔转向极化度转向P 来衡量。 转向P 与永久偶极矩平方成正比,与热力学温度T 成反比 kT L kT L P 2294334μπμπ=?=转向 (2)式中k 为玻耳兹曼常数,L 为阿伏加德罗常数。 在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架 的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化, 用摩尔诱导极化度诱导P 来衡量。显然,诱导P 可分为二项,即电子极化度电子P , 和原子极化度原子P ,因此诱导P =电子P + 原子P 。诱导P 与外电场强度成正比,与 温度无关。 如果外电场是交变电场,极性分子的极化情况则与交变电场的频率有关。 当处于频率小于1010- s -1的低频电场或静电场中,极性分子所产生的摩尔极化 度P 是转向极化、电子极化和原子极化的总和 P = 转向P + 电子P + 原子P (3) 当频率增加到1210-~1410- s -1的中频(红外频率)时,电场的交变周期小于 分子偶极矩的弛豫时间,极性分子的转向运动跟不上电场的变化,即极性分 子来不及沿电场定向,故转向P = 0。此时极性分子的摩尔极化度等于摩尔诱导 极化度诱导P 。当交变电场的频率进一步增加到大于1510- s -1的高频(可见光和 紫外频率)时,极性分子的转向运动和分子骨架变形都跟不上电场的变化, 此时极性分子的摩尔极化度等于电子极化度电子P 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外

分子偶极矩的测定

分子偶极矩的测定 周韬 摘要:本实验通过测定物质的密度、折光率和介电常数,根据理论推导的公式,计算出了乙酸乙酯的分子偶极矩。 关键词:密度,折光率,介电常数,分子偶极矩。 引言 王成瑞在“溶液中测定分子偶极矩的几种计算方程[1]”中对分子偶极矩实验数据处理用到的方程进行了一遍推导,并用Hedestrand法和Halverstadt-Kumler 法两种方法对进行了求解。 但是,无论是上述文献的计算方法,还是很多其他文献上相同方法以及直接用德拜公式讲解原理时都将分子偶极矩中一项省略,致使很多实验者在数据处理时出现难以理解的地方,甚至是计算结果与文献值存在几个数量级上的差距。本文主要在原理上进行了补充,并以实验数据和文献值的比较证明了原理的正确性。 张见周在“偶极矩的测定及其应用[2]”中对折射法测定偶极矩的原理进行了解释,并简单介绍了分子偶极矩用于判断化学键的极性等方面的应用。 考虑到折射法对样品的消耗较多,而电桥法需要的样品则相对要少很多,并且实验得到的结果依然较为准确,所以,本次实验使用电桥法测定介电常数。 1实验部分 原理 偶极矩和极化度 分子的表象为电中性,但是由于空间构型的不同,分子的正负中心有可能不重合,于是表现出极性来,极性的大小用偶极矩来衡量 式中为正(负)电荷中心所带的电荷量,为正、负电荷间的距离。偶极矩的方向规定从正指向负。 极性分子拥有偶极矩,在没有外电场的作用下时,由于分子热运动,偶极矩

指向各方向的机会均等,所以统计偶极矩等于0。将分子置于外电场中时,分子会沿外电场方向做定向的转动,同时,分子中的电子云相对分子骨架发生位移,分子骨架本身也发生一定的变形,成为分子极化,可用摩尔极化度来衡量分子极化程度。因转向而极化成为摩尔转向极化度,由变形所致的为摩尔变形极化度,包括电子极化和原子极化。即 已知与永久偶极矩的平方成正比,与热力学温度成反比,即 式中为玻尔兹曼常数,为阿伏伽德罗常数。 对于非极性分子,,即,所以。 对于极性分子,分子的极化程度与外电场的频率有关。在低频电场(ν﹤1010s-1)下,摩尔极化度等于摩尔转向极化度与摩尔变形极化度之和;在中频电场(ν=1012~1014s-1)下,电场交变周期小于偶极矩的松弛时间,分子转向运动跟不上电场变化,,于是;在高频电场(ν﹥1015s-1)下,分子骨架变形运动也跟不上电场变化,所以。所以,如果分别在低频和中频电场下测定分子的摩尔极化度,两者相减即可得到分子的摩尔转向极化度,进一步可以求得极性分子的永久偶极矩。 在实验中,一般不使用中频电场,所以用高频电场代替中频电场。因为,分子骨架变形引起的变形极化度只占变形极化度的10%~15%,所以,实验中,一般将其忽略。在计算过程中,可以将其考虑进去。 极化度和偶极矩的测定 对于分子间相互作用很小(可以忽略)的系统,摩尔极化度和介电常数ε的关系为 式中为相对分子质量,为密度。 由于条件的限制,上式只适用于温度不太低的气相系统。然而,测定气态介

溶液法测定极性分子的偶极矩

溶液法测定极性分子的偶极矩 I. 目的与要求 用溶液法测定乙酸乙酯的偶极矩 了解偶极矩与分子电性质的关系 掌握溶液法测定偶极矩的实验技术 I I. 基本原理 一、偶极矩与极化度 分子结构可以近似地被石成是由电子。和对于骨架(原子核及内层电子)所构成的。由于分 子空间构型的不同,其正、负电荷中心可能是重合的,也可能不重合,前者称为非极性分子, 后者称为极性分子。 图1 电偶极矩示意图 1912年,德拜(Debye)提出“偶极矩”μ的概念来度量分子极性的大小,如图1所示,其 定义是 EMBED Equation.3 (1) 式中 q 是正、负电荷中心所带的电荷量,d为正、负电荷中心之间的距离,μ是一个向量,其方向规定从正到负。因分子中原子间距离的数量级为 EMBED Equation.3 m,电荷的 数量级为 EMBED Equation.3 C,所以偶极矩的数量级是 EMBED Equation.3 C·m。 通过偶极矩的测定可以了解分子结构中有关电子云的分布和分子的对称性等情况,还可以用 来判别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向各个方向的机会相同,所以偶 极矩的统计值等于零。若将极性分子置于均匀的电场中,则偶极矩在电场的作用下会趋向电 场方向排列。这时我们称这些分子被极化了,极化的程度可用摩尔转向极化度 EMBED Equation.3 来衡量。 EMBED Equation.3 与永久偶极矩平方成正比,与热力学温度T成反比 EMBED Equation.3 (2) 式中k为玻耳兹曼常数,L为阿伏加德罗常数。 在外电场作用下,不论极性分子或非极性分子都会发生电子云对分子骨架的相对移动,分子 骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度 EMBED Equation.3 来衡量。显然, EMBED Equation.3 可分为二项,即电子极化度 EMBED Equation.3 ,和原子极化度 EMBED Equation.3 ,因此 EMBED Equation.3 = EMBED Equation.3 + EMBED Equation.3 。 EMBED Equation.3 与外电场 强度成正比,与温度无关。

实验十五偶极矩的测定Guggenheim简化法

实验十五 偶极矩的测定:Guggenheim 简化法 一、目的 测量极性液体B(如乙酸乙酯)在非极性溶剂A(如环己烷)中的稀溶液的介电常数和折光率,根据Guggenheim 简化公式,计算溶质分子的偶极矩。 二、设计任务 设计选用适合溶液法测量分子的偶极矩的溶质和溶剂;拟定溶液的配制(建议浓度w B :0.01~0.04 )。 三、原理 1912年,Debye 提出偶极矩p 的概念来量度分子极性的大小,其定义为: p =qd (2.15.1) 式中:q 为分子的正或负电荷中心所带的电量;d 为正负电荷中心之间的距离。因为q 的数量级为10-20 C ,d 的数量级为10-10 m ,所以p 的数量级为10-30 C .m 。在CGS 制中,偶极距用D(德拜)表示,1 D =3.334?l0-30 C .m 。 采用溶液法,在极性溶质B 的非极性溶剂A 的稀溶液中,测定溶质分子偶极矩有很多种方法。1955年,Guggenheim 把Debye 方程和Lorenz -Lorentz 方程经两步简化为: B A B 2A A 92B )2)(2(3 104→???? ???++?= w w M n L kT p ρεπ (2.15.2) 式中:?=(εL -n L 2)-(εA -n A 2); εL 为溶液的介电常数;n L 为溶液的折光率;εA 为溶剂的介电常数;n A 为溶剂的折光率;M B 为溶质的摩尔质量;ρA 为溶剂的密度;w B 为溶质的质量分数;T 为溶液的温度;k 为玻耳兹曼常数(1.381?l0-23J .K -1);L 为阿伏加德罗常数(6.022?1023 mol -1)。 配制几种不同浓度的溶液,在同一温度下测量各溶液的介电常数εL 及折光率n L ,计算各溶液的△/w B ,以△/w B 对w B 作图并外推至w B =0,得到()0 B B /→?w w ,将有关数据代 Guggenheim 简化式(2.15.2),就可算出极性溶质分子B 的偶极矩p 。 溶液的介电常数εL 是通过测量电容再经计算而求得的。极性物质作为电介质填充在电容器极板间时,由于各分子在电场中发生电极化,结果微观的偶极矩表现为宏观的极化电荷,部分抵消了电容器极板的电荷,使电容器容量大于真空时的值。填充电介质时的电容量C L 与真空时电容量C 0之比,称为该电介质的相对介电常数εL =C L /C 0, εL 是量纲为一的量。 Halverstadt 和Kumler 在分析了许多实例之后得出,当w B <0.01时存在线性关系: εL = εA +βw B (2.15.3) 式中:β为比例常数。实验测定不同w B 时的εL ,作εL 对w B 图;外推w B →0,可求得计算值 εA 。也可以直接测得溶剂的介电常数εA 。 在稀溶液中有近似线性公式: n L =n A +a w B (2.15.4) 式中:a 为比例常数。实验测定不同w B 时的n L ,作n L 对w B 的图,外推w B →0,可求得计

偶极矩的测定

偶极矩的测定 一、实验目的: 1.用溶液法测定CHCl 3的偶极矩 2.了解介电常数法测定偶极矩的原理 3.掌握测定液体介电常数的实验技术 二、基本原理: 1. 偶极矩与极化度 分子结构可近似地被看成是由电子云和分子骨架(原子核及内层电子)所构成的,分子本身呈电中性,但由于空间构型的不同,正、负电荷中心可重合也可不重合,前者称为非极性分子,后者称为极性分子。分子极性大小常用偶极矩来度量,其定义为: qd =μ (1) 其中q 是正负电荷中心所带的电荷,d 为正、负电荷中心间距离,μ 为向量,其方向规定为从正到负。因分子中原子间距离的数量级为10-10m ,电荷数量级为10-20C ,所以偶极矩的数量级为10-30C ·m 。 极性分子具有永久偶极矩。若将极性分子置于均匀的外电场中,则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔定向极化度P u 来衡量。P u 与永久偶极矩平方成正比,与热力学温度T 成反比 kT N kT L P A 2 294334μπμπμ==(A N kTP πμμ49=) (2) 式中k 为玻尔兹曼常数,N A 为阿伏加德罗常数。 在外电场作用下,不论是极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,为电子极化和原子极化之和,分别记为P e 和P a ,则摩尔极化度为: P m = Pe + Pa + P μ (3) 对于非极性分子,因μ=0,所以P= Pe + Pa 外电场若是交变电场,则极性分子的极化与交变电场的频率有关。当电场的频率小于1010s -1 的低频电场或静电场下,极性分子产生的摩尔极化度P m 是定向极化、电子极化和原子极化的总和,即P m = Pe + Pa + P μ。而在电场频率为1012s -1~1014 s -1的中频电场下(红外光区),因为电场的交变周期小,使得极性分子的定向运动跟不上电场变化,即极性分子无法沿电场方向定向,则P μ= 0。此时分子的摩尔极化度P m = P e + P a 。当交变电场的频率大于1015s -1(即可见光和紫外光区),极性分子的定向运动和分子骨架变形都跟不上电场的变化,此时Pm = Pe 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P m ,在红外频率下测得极性分子的摩尔诱导极化度P 诱导,两者相减得到极性分子的摩尔定向极化度P u ,带入(2)式,即可算出其永久偶极矩μ。 因为Pa 只占P 诱导中5%~15%,而实验时由于条件的限制,一般总是用高频电场来代替中频电场。所以通常近似的把高频电场下测得的摩尔极化度当作摩尔诱导偶极矩。 2.极化度和偶极矩的测定 对于分子间相互作用很小的体系,Clausius-Mosotti-Debye 从电磁理论推得摩尔极化度P 于介电常数ε之间的关系为 d M P ?+-= 21εε (4) 式中:M 为摩尔质量,d 为密度。 上式是假定分子间无相互作用而推导出的,只适用于温度不太低的气相体系。但测定气相介电常数和密度在实验上困难较大,所以提出溶液法来解决这一问题。溶液法的基本思想是:在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞ 2P 就可看作为上式中的P ,即:

相关文档
最新文档