初中二次函数的解题方法

初中二次函数的解题方法
初中二次函数的解题方法

11.1班沈阳 14号

初中二次函数的解题方法

首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点

坐标为(-b/2a,4ac-b2/4a) ;

顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点

坐标为(h,k),对称轴为x=h,顶点的位置特征和图像的开

口方向与函数y=ax2的图像相同,有时题目会指出让你

用配方法把一般式化成顶点式。

交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴

即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即

b^2-4ac≥0] :由一般式变为交点式的步骤:∵

X1+x2=-b/a x1·x2=c/a∴

y=ax2+bx+c=a(x2+b/ax+c/a)=a[﹙x2;-(x1+x2)x+x1

x2]=a(x-x1)(x-x2)

重要概念:。

1.二次函数图像是轴对称图形。对称轴为直线x = h

或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次

函数图像的顶点P。特别地,当h=0时,二次函数图像的

对称轴是y轴(即直线x=0);a,b同号,对称轴在y轴左

b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧

2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当

h=0时,P在y轴上;当k=0时,P在x轴上。h=-b/2a

k=(4ac-b2)/4a

3.二次项系数a决定二次函数图像的开口方向和大

小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。

有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。

常见问题

1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。

解决策略是:应用平面几何的有关定理,如等腰三角形的三线合一、直角三角形的勾股定理、射影定理、斜边中线定理等结合两点间的距离公式及二次方程的求根公式、判别式定理、韦达定理等知识求解。用到的数学思想方法有数形结合、分类讨论、转化等。

2、二次函数的定点和动点问题:求动点运动所形成的直线或曲线一般采用消去参数法,即消去参数以后的方程即为动点需满足的函数解析式。

解决定点问题有两个解决办法:(1)特殊值法,即令参数

取两个符合条件的特殊值,通过解方程组求解,解即为顶点

坐标。(2)转化为参数为主元的方程问题,即方程有无穷

多解,得到系数为零的条件再讨论解决。

3、求抛物线的顶点、两坐标轴的交点以及抛物线与其它图象的交点等点所构成的面积,关键是用含系数a、b、c的代数式表示出点的坐标或线段长,使面积问题与系数a、b、c建立联系.

4、二次函数与整数问题

二次函数与整数问题的联姻主要表现在系数a、b、c为整数、整点以及某范围内的参数的整数值等.解题时往往要用到一些整数的分析方法.

5、二次函数的最值问题

定义域是闭区间时,二次函数存在两个最值(最大值和最小值).如果顶点横坐标在区间内,则在顶点处与距顶点较远的端点处各取一个最值;如果顶点横坐标不在区间内,则在区间两端点处各取一个最值.定义域是开区间时,二次函数只有其顶点横坐标在区间内的才在顶点处取得一个最值,否则不存在最值.在初中数学竞赛中,二次函数是解决一些实际问题的有

效工具,二次函数本身也蕴含着丰富的内涵,因此,在近几

年的全国数学竞赛中,有关二次函数试题频频出现,并有不断拓展和加深的趋势。

例1 抛物线y=ax 2+bx+c 的顶点为(4,-11),且与x 轴的两个交点的横坐标为一正一负.则a 、b 、c 中为正数的( )

A 、只有a

B 、只有b

C 、只有c

D 、有a 和b 解:由顶点为(4,-11),抛物线交x 轴于两点,知a >0.设抛物线与x 轴的两个交点的横坐标分别为x 1,x 2,即x 1、x 2为方程ax 2+bx +c =0的两个根,由题设x 1x 2<0知a c <0,所以c <0,又对称轴为x =4知-a b 2>0,故b <0.故选(A).

例2 已知二次函数f (x )=ax 2+bx+c 的系数a 、b 、c 都是整数,

并且f (19)=f (99)=1999,|c |<1000,则c = .

解:由已知f (x )=ax 2

+bx+c ,且f (19)=f (99)=1999,因此可设f (x )=a (x -19)(x -99)+1999,

所以ax 2+bx+c =a (x -19)(x -99)+1999

=ax 2-(19+99)x +19×99a +1999,故c =1999+1881a .

因为|c |<1000,a 是整数,a ≠0,经检验,只有a =-1满足,此时c =1999-1881=118.

例3 已知a ,b ,c 是正整数,且抛物线y=ax 2+bx+c 与x 轴有两个不同的交点A ,B ,若A 、B 到原点的距离都小于1,求a+b+c 的最小值.

解:设A 、B 的坐标分别为A(x 1,0),B(x 2,0),且x 1

x 1,x 2是方程ax 2+bx+c =0的两个根. ∴???

????>=<-=+,0,02121a c x x a b x x ∴x 1<0,x 2<0 又由题设可知△=b 2-4ac >0,∴b >2ac ①

∵|OA|=|x 1|<1,|OB|=|x 2|<1,即-1

∵抛物线y =ax 2+bx+c 开口向上,且当x =-1时y >0,

∴a (-1)2+b (-1)+c >0,即a+c>b .

∵b ,a +c 都是整数,∴a+c ≥b +1 ③

由①,③得a+c >2

ac +1,∴(c a -)2>1,又由②知, c a ->1,c a >+1,即a >(c +1)2≥(1+1)2=4

∴a ≥5,又b >2ac ≥215?>4,∴b ≥5

取a =5,b =5,c =1时,抛物线y =5x 2+5x +1满足题意.

故a+b+c 的最小值为5+5+1=11.

例4 如果y =x 2

-(k -1)x -k -1与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值是( )

A 、1

B 、2

C 、3

D 、4

解:由于△=(k -1)2+4(k +1)=(k +1)2+4>0,所以对于任意实数k ,抛物线与x 轴总有两个交点,设两交点的横坐标分别为x 1,x 2,则: |AB|=524)()(221221221++=-+=-k k x x x x x x

又抛物线的顶点c

坐标是(452,212++--k k k ), 因此S △ABC =52212++k k ·3

22)52(8

1452++=++-k k k k 因为k 2+2k +5=(k +1)2+4≥4,当k =-1时等于成立,

所以,S △ABC ≥

14813=,故选A .

例5

已知二次函数y=x 2-x -2及实数

(1)函数在-2

(2)函数在a ≤x ≤a +2的最小值.

解:函数y=x 2-x -2的图象如图1(1)若-2

若a ≥21,当x =21时,y 最小值=-49.

(2)若-2

最小值=(a +2)2-(a +2)-2=a 2+3a ,若a <21≤a +2,即-23≤a <21,当x =

21时,y 最小值=-4

9.

若a ≥21,当x =a 时,y 最小值=a 2-a -2.

例6 当|x +1|≤6时,函数y =x |x |-2x +1的最大值是 .

解:由|x +1|≤6,得-7≤x ≤5,当0≤x ≤5时,y=x 2

-2x +1=(x 42图1

-1)2,此时y最大值=(5-1)2=16.

当-7≤x<0,y=-x2-2x+1=2-(x+1)2,此时y最大值=2.

因此,当-7≤x≤5时,y的最大值是-16.

说明:对于含有绝对值的二次函数,通常是先分区间讨论,去掉绝对值符号,求出各区间的最值,然后通过比较得出整个区间函数的最值.

例7、已知二次函数y=x^2+(k+2)x+k+5与x轴的两个不同交点的横坐标都是正的,那么,k的值应为( )

A.k>4或k<-5

B.-5<k<-4

C.k≥-4或k≤-5

D.-5≤k≤-4

因为与X轴有2个交点

所以b^2-4ac=(k+2)^2-4(k+5)>0 —— (1)

设与x轴交点分别为x1,x2

则x1+x2=-(k+2)>0 ——(2)

x1*x2=k+5>0 ——(3)

解得-5

选B

例8.已知二次函数y=x2+bx+c的图像经过点(-1,0),(1,

-2),当y随x的增大而增大时,x的取值范围是__[3/4,+

∝)__.

解析:把点(-1,0),(1,-2)代入二次函数数,可解得

b=-3/2 函数的对称轴为 x=-(-3/2)/2=3/4

a=1>0,函数开口向上,单调递增区间是[3/4,+∝)

.例9.

二次函数y=ax^2+bx+c,当x取整数时,y值也是整数,这样的二次函数叫作整点二次函数,请问是否存在a的绝对值小于0.5的整点二次函数,若存在请写出一个,若不存在请说明理由。

解答:(方法1)(反证法)假设存在二次项系数a的绝对值小于0.5的整点二次函数,(a≠ 0)

则当x=0时,y=c,即c为整数,

同理,当x=1时,y=a+b+c=m,x=-1时,y=a-b+c=n,其中m、n 都应为整数,

两式相加,2a+2c=m+n,推知2a也应为整数,而|a|<0.5,即

|2a|<1,矛盾。

所以不存在a的绝对值小于0.5的整点二次函数。

(方法2)

x=0时,y=c是整数

x=1时,y=a+b+c是整数

x=-1时,y=a-b+c是整数

∴(a+b+c)+(a-b+c)=2a+2c是整数

而2c是整数

例10.

已知y=x2-│x┃-12的图象与x轴交于相异两点A,B另一抛物线y=ax2+bx+c过A,B,顶点为P,且△APB是等腰直角三角形,求a,b,c

解答:显然A,B坐标为(-4,0),(4,0).

y=ax2+bx+c过A,B,所以b=0,c/a=-16,P点坐标为:(0,-16a)

由于APB是等腰直角三角形,所以AB^2=AP^2+BP^2,

求出a=±1/4.

所以a=1/4,b=0,c=-4或者a=-1/4,b=0,c=4.

例11.

已知y=x2-│x┃-12的图象与x轴交于相异两点A,B另一抛物线y=ax2+bx+c过A,B,顶点为P,且△APB是等腰直角三角形,求a,b,c

解答:显然A,B坐标为(-4,0),(4,0).

y=ax2+bx+c过A,B,所以b=0,c/a=-16,P点坐标为:(0,-16a)

由于APB是等腰直角三角形,所以AB^2=AP^2+BP^2,

求出a=±1/4.

所以a=1/4,b=0,c=-4或者a=-1/4,b=0,c=4.

例12 已知a <0,b ≤0,c >0,且ac b 42-=b -2ac ,求b 2-4ac 的最小值.

解:令y =ax 2+bx+c ,由于a <0,b ≤0,c >0,则△=b 2-4ac >0, 所以,此二次函数的图像是如图2所示的一条开口向下的抛物线,且

与x 轴有两个不同的交点A(x 1,0),

B(x 2,0). 因为x 1x 2=a c <0,不妨设x 1

|x 1|=c a

ac b b a ac b b =--=-+-242422, 故a

b a

c 442-≥c =a ac b b 242--≥-a ac b 242- ∴b 2-4ac ≥4,当a =-1,b =0,c =1时,等号成立. 因此,b 2-4ac 的最小值为4.

x 图3

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

二次函数综合题解题方法与技巧

. . C x x y y A O B E D A C B C D G 图1 图2 A P O B E C x y 压轴题解题技巧练习 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、 动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、 x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由. 二、圆 2. 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l. (1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 .

二次函数基础训练题

二次函数基础训练题 一、仔细填一填:(每小题2分,共40分) 1、在下列函数关系式中,哪些是二次函数(是二次函数的在括号内打上“√”,不是的打“x ”). (l )y=-2x 2 ( ) (2)y=2(x-1)2+3 ( ) (3)y=-3x 2-3 ( ) (4) s=a(8-a) ( ) 2、说出下列二次函数的二次项系数a ,一次项系数b 和常数项c . (1)y=x 2中a= ,b= ,c= ; (2)y=5x 2+2x 中a= ,b= ,c= ; (3)y=(2x-1)2中a= ,b= ,c= ; 3、 已知函数y=(m-1)x 2+2x+m,当m= 时,图象是一条直线;当m 时,图象是抛 物线;当m 时,抛物线过坐标原点. 4、函数212y x =-的对称轴是 ,顶点坐标是 ,对称轴的右侧y 随x 的增大而 ,当x= 时,函数y 有最 值,是 . 5、函数y=3(x-2)2的对称轴是 ,顶点坐标是 ,图像开口向 ,当x 时,y 随x 的增大而减小,当x 时,函数y 有最 值,是 . 6、.函数y=-(x+5)2+7的对称轴是 ,顶点坐标是 ,图象开口向 ,当x 时, y 随x 的增大而减小,当 时,函数y 有最 值,是 . 7、 函数y=x 2-3x-4的图象开口 ,对称轴是 ,顶点坐标是 ,在对称轴的 左侧,y 随x 的增大而 ,当x 时,函数y 有最 值,是 . 8、.函数y=-3(x-1)2+1是由y=3x 2向 平移 单位,再向 平移 单位 得到的. 9、已知抛物线y=x 2-kx-8经过点P (2, -8), 则k= ,这条抛物线的顶点坐标是 . 10、 已知二次函数y=ax 2-4x-13a 有最小值-17,则a= . 11、二次函数y=ax 2+bx+c 的图象如图所示,则a 的符号是 ,b 的符号 是 ,c 的符号是 .当x 时, y >0,当x 时,y=0, 当x 时,y < 0 . 12. 抛物线y=2x 2+4x 与x 轴的交点坐标分别是A( ),B( ). 13. 已知二次函数y=-x 2+mx+2的对称轴为直线X= 94,则m= . 14、已知二次函数y=x 2+bx-c,当x=-1时,y=0;当x=3时,y=0,则b= ;c= . 15、抛物线y=ax 2+bx ,当a>0,b<0时,它的图象经过第 象限. 16、把40表示成两个正数的和,使这两个正数的乘积最大,则这两个数分别是 . 17、已知正方形边长为3,若边长增加x ,那么面积增加y ,则y 与x 的函数关系式是 18、若一抛物线y=ax 2与四条直线x=1,x=2, y =1, y =2 围成的正方形有公共点,则a 的取值 范围是 ( ) 19、写出一个二次函数的解析式,使它的顶点恰好在直线y=x+2上,且开口向下,则这个二次函数解析式可写为 . 20、抛物线y=(1-k)x 2-2x-1与x 轴有两个交点,则k 的取值范围是 . 二、认真选一选:(每题2分,共26分) 1. 二次函数y=(x-1)2-2的顶点坐标是( ) A.(-1,-2) B.(-1,2) C.(1,-2) D.(1,2) 2. 二次函数y=(x-3)(x+2)的图象的对称轴是 ( ) A.x=3 B.x=-2 C.x=- 12 D.x=12 3. 把y= -x 2-4x+2化成y= a (x+m)2 +n 的形式是( )

初中数学二次函数知识点汇总(最新最全)

1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

二次函数专题讲解

二次函数专题讲解 一、知识综述: 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数c bx ax y ++=2 用配方法可化成:() k h x a y +-=2 的形式,其中a b a c k a b h 4422 -=-=,。 3.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+? ?? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直 线h x =. 4.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2 ;③()2 h x a y -=;④()k h x a y +-=2 ; ⑤c bx ax y ++=2 . 它们的图像特征如下: 函数解析式 开口方向 对称轴 顶点坐标 2ax y = 当0>a 时 开口向上 当0

初中二次函数的解题方法

初中二次函数的解题方 法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

11.1班沈阳 14号 初中二次函数的解题方法 首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点坐 标为(-b/2a,4ac-b2/4a) ; 顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标 为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方 向与函数y=ax2的图像相同,有时题目会指出让你用配 方法把一般式化成顶点式。 交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0 有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0] :由 一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a ∴ y=ax2+bx+c=a(x2+b/ax+c/a)=a[﹙x2;-(x1+x2)x+x1x2]=a(x- x1)(x-x2) 重要概念:。 1.二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次 函数图像的顶点P。特别地,当h=0时,二次函数图像 的对称轴是y轴(即直线x=0);a,b同号,对称轴在y轴左 b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧

2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当 h=0时,P在y轴上;当k=0时,P在x轴上。h=-b/2a k=(4ac-b2)/4a 3.二次项系数a决定二次函数图像的开口方向和大 小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。 有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。 常见问题 1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。 解决策略是:应用平面几何的有关定理,如等腰三角形的三线合一、直角三角形的勾股定理、射影定理、斜边中线定理等结合两点间的距离公式及二次方程的求根公式、判别式定理、韦达定理等知识求解。用到的数学思想方法有数形结合、分类讨论、转化等。 2、二次函数的定点和动点问题:求动点运动所形成的直线或曲线一般采用消去参数法,即消去参数以后的方程即为动点需满足的函数解析式。

二次函数综合题解题方法与技巧

图1 图 2 压轴题解题技巧练习 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、 动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、 x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由. 二、圆 2. 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l. (1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 . 2

二次函数基础训练题

二次函数基础训练题 一、填空 1、说出下列二次函数的二次项系数a,一次项系数b和常数项c. (1)y=x2中a= ,b= ,c= ; (2)y=5x2+2x a= ,b= ,c= ; (3)y=(2x-1)2 a= ,b= ,c= ; 2 、已知函数y=(m-1)x2+2x+m,当m= 时,图象是一条直线;当m 时, 图象是抛物线;当m 时,抛物线过坐标原点. 3、函数y=x2+2x+3的对称轴是,顶点坐标是,对称轴的右侧y 随x的增大而,当x= 时,函数y有最值,是 . 4、函数y=3(x-2)2的对称轴是,顶点坐标是,图像开口 向,当x 时,y随x的增大而减小,当x 时,函数y有最值,是. 5、.函数y=-(x+5)2+7的对称轴是,顶点坐标是,图象开口向,当x 时,y随x 的增大而减小,当时,函数y有最值,是. 6、函数y=x2-3x-4的图象开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,当x 时,函数y有最值,是. 7、.函数y=–3(x-1)2+1是由y=–3x2向平移单位,再向平移单位得到的. 8、已知抛物线y=x2-kx-8经过点P (2, -8), 则k= ,这条抛物线的顶点坐标是 . 9、已知二次函数y=ax2-4x-13a有最小值-17,则a= . 11. 抛物线y=2x2+4x与x轴的交点坐标分别是A( ),B( ). 12. 已知二次函数y=-x2+mx+2的对称轴为直线X= 1 ,则m= . 13、已知二次函数y=x2+bx-c,当x=-1时,y=0;当x=3时,y=0,则b= ; c= . 14、抛物线y=ax2+bx,当a>0,b<0时,它的图象经过第象限. 15、抛物线y=(1-k)x2-2x-1与x轴有两个交点,则k的取值范围是 . 二、选择 1. 二次函数y=(x-1)2-2的顶点坐标是() A.(-1,-2) B.(-1,2) C.(1,-2) D.(1,2) 2. 二次函数y=(x-3)(x+2)的图象的对称轴是( ) A.x=3 B.x=-2 C.x=-0.5 D.x=0.5 3. 把y= -x2-4x+2化成y= a (x+m)2 +n的形式是() A.y= - (x-2 )2 -2 B.y= - (x-2 )2 +6 C. y = - (x+2 )2 -2 D. y= - (x+2 )2 +6 4 把二次函数B.y= - (x-2 )2 +6的图象向右平移2个单位,再向上平移3个单位, 所得到图象的函数解析式是() A. y= - (x-4 )2 +9 B. y= - x2 +9 C y= - (x-5)2 +8. D y= - x2 +8 5 抛物线y=2x2-5x+3与坐标轴的交点共有() A . 1个 B. 2个 C. 3个 D. 4个 6. 图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是()

初中数学二次函数复习求函数解析式优质课教案优质课教案教学设计

二次函数专题(一)——求二次函数表达式教学目标 会通过待定系数法求二次函数的关系式; 教学过程 二次函数是初中数学的一个严重内容,也是高中数学的一个严重基础。熟练地求出二次函数的解析式是解决二次函数问题的严重保证。 二次函数的解析式有三种基本形式: 1、大凡式:y=ax2 +bx+c (a≠0)。 2、顶点式:y=a(x-m)2 +k (a≠0),其中点(h,k)为顶点,对称轴为x=h。 3、交点式:y=a(x-x 1)(x-x 2) (a≠0),其中x 1,x 2是抛物线与x轴的交点的横坐标。 求二次函数的解析式大凡用待定系数法,但要根据例外条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设大凡式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。 探究问题,典例指津:

例1、已知二次函数的图象经过(0,1),(2,4),(3,10)三点,请你用待定系数法求这个函数的解析式。 例2、已知二次函数的图象经过(0,1),它的顶点坐标是(8,9),求这个函数的解析式。 练习、已知抛物线的顶点在原点,且过(2,8),求这个函数的解析式。 例3、已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 练习1:根据下列已知条件,求二次函数的解析式: (1)抛物线过点(0,2),(1,1),(3,5) (2)抛物线顶点为M(-1,2)且过点N(2,1) (3)抛物线过原点,且过点(3,-27),(-1,1) (4)已知二次函数的图象经过点(1,0),(3,0),(0,6)求二次函数的解析式。 例4、已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式. 练习2:根据下列已知条件,求二次函数的解析式: (1)抛物线y=ax2+bx+c经过(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。 (2)已知当x=2是,函数有最小值为3,且过点(1,5) (3)二次函数的图像经过点(3,-8)对称轴为直线x=2,抛物线与X轴两个交点之间的距离为6课堂小结 本节课是用待定系数法求函数解析式,应注意根据例外的条件选择适合的解析式形式

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数基础训练基础训练(精编)

【抛物线对称轴的求法】 1、抛物线y = 2x2开口______ ,对称轴是________________ 2、抛物线y = -2x - 3 开口___________ ,对称轴是_______________ 3、求抛物线y=2x2-4x+3的对称轴。 4、抛物线y= x2-3x + 2与x轴相交于A(2,0)、B(1,0)则抛物线的对称轴是 ___________ 。 5、请将二次函数y =2x2-5x+3配成y=a(x-h)2+ k的形式,然后判断顶点坐标和对称轴。 二次函数y = 1(x-3)(x+2) 的对称轴是 6、

【抛物线的解析式求法——顶点式】 1、二次函数y = ax2+bx+c(a0)的顶点坐标为(-2,-4),且过点(5,2)求其解析式。 2、二次函数y = ax2+bx+c(a0)过点(2,4),且当x=1 时,y有最值6,求解析式。 3、已知抛物线y =ax2+ bx + c顶点坐标为(4,-1) ,与y轴交于点(0,3) ,求这条抛物线的解 析式. 4、如图所示,求二次函数的解析式。 5、二次函数y =ax2+bx+c(a0)的对称轴为直线x=3,最小值为-2,,且过(0,1),求此函数的解析式。

【抛物线的解析式求法——交点式】 1、已知二次函数的图象与x轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式。 2、已知一抛物线与x 轴的交点是A(-2,0)、B(1,0),且经过点C(2,8),那么这个二 次函数的解析式是_______________ 。 3、已知二次函数的图象如图,求此函数的解析式。 4、已知二次函数的图像过点A(-1,0)、B(3,0),与y 轴交于点C,且BC=2 3 ,求二次函数关系式。 5、如图所示,已知抛物线的对称轴是直线x=3,它与x 轴交于A、B 两点,与y 轴交于C 点,点A、C 的坐标分别是(8,0)(0,4),求这个抛物线的解析式。

初中教育二次函数地解题方法

11.1班沈阳14号 初中二次函数的解题方法 首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点 坐标为(-b/2a,4ac-b2/4a) ; 顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐 标为(h,k),对称轴为x=h,顶点的位置特征和图像的开口 方向与函数y=ax2的图像相同,有时题目会指出让你用 配方法把一般式化成顶点式。 交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即 y=0有交点A(x1,0)和B(x2,0)的抛物线,即b^2-4ac ≥0] :由一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a ∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[﹙x 2;-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 重要概念:。 1.二次函数图像是轴对称图形。对称轴为直线x = h 或者x=-b/2a 对称轴与二次函数图像唯一的交点为二 次函数图像的顶点P。特别地,当h=0时,二次函数图 像的对称轴是y轴(即直线x=0);a,b同号,对称轴在y 轴左b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧

2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当 h=0时,P在y轴上;当k=0时,P在x轴上。h=-b/2a k=(4ac-b2)/4a 3.二次项系数a决定二次函数图像的开口方向和大 小。当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。|a|越大,则二次函数图像的开口越小。 有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。 常见问题 1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。 解决策略是:应用平面几何的有关定理,如等腰三角形的三线合一、直角三角形的勾股定理、射影定理、斜边中线定理等结合两点间的距离公式及二次方程的求根公式、判别式定理、韦达定理等知识求解。用到的数学思想方法有数形结合、分类讨论、转化等。 2、二次函数的定点和动点问题:求动点运动所形成的直线或曲线一般采用消去参数法,即消去参数以后的方程即为动点需满足的函数解析式。

二次函数压轴题解题技巧

二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与 x 轴交于 (1,0)、(2,0)两点,且1>2,与 y轴交于点 (0,4), A x B x x x C 其中 x1、 x2是方程 x2-2x-8=0的两个根. (1)求这条抛物线的解析式; (2)点 P是线段 AB上的动点,过点 P 作 PE∥AC,交 BC于点 E,连接 CP,当△ CPE的面积最大时,求点 P 的坐标; (3) 探究:若点 Q 是抛物线对称轴上的点,是否存在这样的点,使△成为等腰三角 Q QBC 形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由. y C E B A 二、圆 OP 2.如图1,在平面直角坐标系xOy,二次函数 y= ax2+bx+ c( a>0)的图象顶点为D,与 轴交于点,与 x 轴交于点、,点在原点的左侧,点 B 的坐标为 (3 , 0) ,=, C A BA OB OC 1 tan ∠ACO=3.x y (1)求这个二次函数的解析式; (2)若平行于 x 轴的直线与该抛物线交于点 M、N,且以 MN为直径的圆与 x 轴相切,求该圆的半径长度; (3)如图 2,若点G(2 ,y) 是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点 P 运动到什么位置时,△AGP的面积最大?求此时点P 的坐标和△ AGP的最大面积. y y A B E O x AC B x C C G D D 图 1图 2

2020年初三数学二次函数经典练习全集

1.一跳水运动员从米高台上跳下,他的高度h(单位:米)与所用的时间t(单位:秒)的关系为h=-5(t-2)(t+1),你能帮助该运动员计算一下他跳起来后多长时间达到最大高度?最大高度是多 少米? 2.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2 )与长x 之间的函数关系式,并指出自变量的取值范围. 3.已知二次函数y=ax 2 +bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式. 4.求经过A(0,-1)、B(-1,2),C(1,-2)三点且对称轴平行于y 轴的抛物线的解析式. 5.已知二次函数为x =4时有最小值-3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式. 6. 已知抛物线经过点(-1,1)和点(2,1)且与x 轴相切. (1)求二次函数的解析式; (2)当x 在什么范围时,y 随x 的增大而增大; (3)当x 在什么范围时,y 随x 的增大而减小. 7.已知122 12 ++-=x x y (1)把它配方成y =a(x-h)2 +k 形式; (2)写出它的开口方向、顶点M 的坐标、对称轴方程和最值; (3)求出图象与y 轴、x 轴的交点坐标; (4)作出函数图象; (5)x 取什么值时y >0,y <0; (6)设图象交x 轴于A ,B 两点,求△AMB 面积. 8.在长20cm ,宽15cm 的矩形木板的四角上各锯掉一个边长为xcm 的正方形,写出余下木 板的面积y(cm 2 )与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围. 9.已知二次函数y=4x 2 +5x +1,求当y=0时的x 的值. 10.已知二次函数y=x 2 -kx-15,当x=5时,y=0,求k . 12.已知二次函数y=ax 2+bx +c 中,当x=0时,y=2;当x=1时,y=1;当x=2时,y=-4,试求a 、b 、c 的值. 13.有一个半径为R 的圆的内接等腰梯形,其下底是圆的直径. (1)写出周长y 与腰长x 的函数关系及自变量x 的范围; (2)腰长为何值时周长最大,最大值是多少? 14.二次函数的图象经过()()()4,2,4,0,0,4--C B A 三点: ① 求这个函数的解析式 ② 求函数图顶点的坐标 ③ 求抛物线与坐标轴的交点围成的三角形的面积。 15.如图,抛物线y=x 2 +bx+c 与x 轴的负半轴相交于A 、B 两点,与y 轴的正半轴相交于C 点,与双曲线y= x 6 的一个交点是(1,m),且OA=OC.求抛物线的解析式. 16.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以l 厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以l 厘米,秒的速度移动.如果P 、Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么 (1)设△POQ 的面积为y ,求y 关于t 的函数解析式; (2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ,试判断点C 是否落在直线AB 上,并说明理由; (3)当t 为何值时,△POQ 与△AOB 相似. 17、水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.

二次函数压轴题解题技巧

C x x y y A O B E D A C B C D G 图1 图 2 A P O B E C x y 二次函数压轴题解题技巧 引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。 一、动态:动点、动线 1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4), 其中x 1、x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式; (2)点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标; (3)探究:若点Q 是抛物线对称轴上的点,是否存在这样的点Q ,使△QBC 成为等腰三角形?若存在,请直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由. 二、圆 2.如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC , tan ∠ACO = 1 3 . (1)求这个二次函数的解析式; (2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度; (3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.

二次函数基础练习题

二次函数基础练习题 一、填空题 1、在下列函数关系式中,哪些是二次函数(是二次函数的在括号内打上“√”,不是的打“x ”). (l )y=-2x 2 ( ) (2)y=2(x-1)2+3 ( ) (3)y=-3x 2-3 ( ) (4) s=a(8-a) ( ) 2、说出下列二次函数的二次项系数a ,一次项系数b 和常数项c . (1)y=x 2中a= ,b= ,c= ; (2)y=5x 2+2x 中a= ,b= ,c= ; (3)y=(2x-1)2中a= ,b= ,c= ; 3、 已知函数y=(m-1)x 2+2x+m,当m= 时,图象是一条直线;当m 时,图 象是抛 物线;当m 时,抛物线过坐标原点. 4、函数212 y x =-的对称轴是 ,顶点坐标是 ,对称轴的右侧y 随x 的增大而 ,当x= 时,函数y 有最 值,是 . 5、函数y=3(x-2)2的对称轴是 ,顶点坐标是 ,图像开口向 ,当x 时,y 随x 的增大而减小,当x 时,函数y 有最 值,是 . 6、.函数y=-(x+5)2+7的对称轴是 ,顶点坐标是 ,图象开口向 ,当x 时, y 随x 的增大而减小,当 时,函数y 有最 值,是 . 7、 函数y=x 2-3x-4的图象开口 ,对称轴是 ,顶点坐标是 ,在对称轴的 左侧,y 随x 的增大而 ,当x 时,函数y 有最 值,是 . 8、.函数y=-3(x-1)2+1是由y=3x 2向 平移 单位,再向 平移 单位 得到的. 9、已知抛物线y=x 2-kx-8经过点P (2, -8), 则k= ,这条抛物线的顶点坐标是 . 10、 已知二次函数y=ax 2-4x-13a 有最小值-17,则a= .

二次函数讲解(比较详细)

初中二次函数讲解(比较详细) 定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 x是自变量,y是x的函数 二次函数的三种表达式 ①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) ②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k ③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2) 以上3种形式可进行如下转化: ①一般式和顶点式的关系 对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2)/4a ②一般式和交点式的关系 x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式) 二次函数的图像 在平面直角坐标系中作出二次函数y=x^2的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。 抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a ) 当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。 _______ Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a) 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0) 7.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷) 奇偶性:偶函数 周期性:无 解析式: ①y=ax^2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下; ⑶极值点:(-b/2a,(4ac-b^2)/4a); ⑷Δ=b^2-4ac, Δ>0,图象与x轴交于两点: ([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0);

二次函数典型题解题技巧

二次函数典型题解题技巧

————————————————————————————————作者:————————————————————————————————日期:

二次函数典型题解题技巧 (一)有关角 1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴 交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点. (1) 求此抛物线的解析式; (2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由. 思路点拨:对于第(1)问,需要注意的是CD 和x 轴平行(过点C 作x 轴的平行线与抛物线交于点D ) 对于第(2)问,比较角的大小 a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了 b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了 c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小 d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等 e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C、A、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条 解:(1)∵CD ∥x 轴且点C(0,3), ∴设点D 的坐标为(x ,3) . ∵直线y = x+5经过D 点, ∴3= x+5.∴x=-2. 即点D(-2,3) . 根据抛物线的对称性,设顶点的坐标为M (-1,y ), 又∵直线y= x+5经过M 点, ∴y =-1+5,y =4.即M(-1,4). ∴设抛物线的解析式为 2(1)4y a x =++. ∵点C (0,3)在抛物线上,∴a=-1. 即抛物线的解析式为 223y x x =--+.…………3分 (2)作BP ⊥AC 于点P,MN⊥AB 于点N. 由(1)中抛物线 223y x x =--+可得 点A(-3,0),B(1,0), ∴AB=4,AO =C O=3,A C=32. ∴∠PAB =45°. ∵∠ABP=45°,∴P A=PB=22. ∴P C=A C-PA =2. 在Rt△BPC 中,tan ∠BCP=PB PC =2.

相关文档
最新文档