实验八 线性系统的状态空间分析

实验八 线性系统的状态空间分析
实验八 线性系统的状态空间分析

实验八 线性系统的状态空间分析

§8.1 用MATLAB 分析状态空间模型

1、状态空间模型的输入

线性定常系统状态空间模型

x Ax Bu y Cx Du

=+=+& 将各系数矩阵按常规矩阵形式描述。

[][][]11

121120

10

1;;;n n n nn n n A a a a a a a B b b b C c c c D d ====?L L L ?L ?L ?

在MA TLAB 里,用函数SS()来建立状态空间模型

(,,,)sys ss A B C D =?

例8.1 已知某系统微分方程

22d d 375d d y y y u t t

++= 求该系统的状态空间模型。

解:将上述微分方程写成状态空间形式

0173A ??=??--??,01B ??=????

[]50C =,0D =

调用MATLAB 函数SS(),执行如下程序

% MATLAB Program example 6.1.m

A=[0 1;-7 -3];

B=[0;1];

C=[5 0];

D=0;

sys=ss(A,B,C,D)

运行后得到如下结果

a =

x1 x2

x1 0 1

x2 -7 -3

b =

u1

x1 0

x2 1

c =

x1 x2

y1 5 0

d =

u1

y1 0

Continuous-time model.

2、状态空间模型与传递函数模型转换

状态空间模型用sys 表示,传递函数模型用G 表示。

G=tf(sys)

sys=ss(G)

状态空间表达式向传递函数形式的转换

G=tf(sys)

Or [num,den]=ss2tf(A,B,C,D) 多项式模型参数

[num,den]=ss2tf(A,B,C,D,iu)

[z,p,k]=ss2zp(A,B,C,D,iu) 零、极点模型参数

iu 用于指定变换所需的输入量,iu 默认为单输入情况。

传递函数向状态空间表达式形式的转换

sys=ss(G)

or [A,B,C,D]=tf2ss(num,den)

[A,B,C,D]=zp2ss(z,p,k)

例 8.2

11122211220.560.050.03 1.140.2500.1101001x x u x x u y x y x -??????????=+??????????-????????????????=???????

?????&& 试用矩阵组[a ,b ,c ,d]表示系统,并求出传递函数。

.

% MATLAB Program example 6.2.m

a=[-0.56 0.05;-0.25 0];

b=[0.03 1.14;0.11 0];

c=[1 0;0 1];

d=zeros(2,2);

sys=ss(a,b,c,d)

G1=tf(sys)

G2=zpk(sys)

运行后得到如下结果

a =

x1 x2

x1 -0.56 0.05

x2 -0.25 0

b =

u1 u2

x1 0.03 1.14

x2 0.11 0

c =

x1 x2

y1 1 0

y2 0 1

d =

u1 u2

y1 0 0

y2 0 0

Continuous-time model.

Transfer function from input 1 to output...

0.03 s + 0.0055

#1: ---------------------

s^2 + 0.56 s + 0.0125

0.11 s + 0.0541

#2: ---------------------

s^2 + 0.56 s + 0.0125

Transfer function from input 2 to output...

1.14 s

#1: ---------------------

s^2 + 0.56 s + 0.0125

-0.285

#2: ---------------------

s^2 + 0.56 s + 0.0125

Zero/pole/gain from input 1 to output...

0.03 (s+0.1833)

#1: ----------------------

(s+0.5367) (s+0.02329)

0.11 (s+0.4918)

#2: ----------------------

(s+0.5367) (s+0.02329)

Zero/pole/gain from input 2 to output...

1.14 s

#1: ----------------------

(s+0.5367) (s+0.02329)

-0.285

#2: ----------------------

(s+0.5367) (s+0.02329)

例8.3 考虑下面给定的单变量系统传递函数

3243272424()10355024

s s s G s s s s s +++=++++ 由下面的MATLAB 语句直接获得状态空间模型。

>> num=[1 7 24 24];

>> den=[1 10 35 50 24];

>> G=tf(num,den);

>> sys=ss(G)

运行后得到如下结果:

a =

x1 x2 x3 x4

x1 -10 -4.375 -3.125 -1.5

x2 8 0 0 0

x3 0 2 0 0

x4 0 0 1 0

b =

u1

x1 2

x2 0

x3 0

x4 0

c =

x1 x2 x3 x4

y1 0.5 0.4375 0.75 0.75

d =

u1

y1 0

Continuous-time model.

3. 线性系统的非奇异变换与标准型状态空间表达式

syst=ss2ss(sys,T)

sys, syst 分别为变换前、后系统的状态空间模型,T 为非奇异变换阵。

[At,Bt,Ct,Dt]=ss2ss(A,B,C,D,T)

(A,B,C,D)、(At,Bt,Ct,Dt )分别为变换前、后系统的状态空间模型的系数矩阵。

§8.2 利用MATLAB 求解系统的状态方程

线性定常连续系统状态方程

x Ax Bu =+&,0(0)x x =,0t ≥

状态响应

00()()()()d t

x t t x t Bu φφτττ=+-?, 0t ≥ 式中状态转移矩阵()At t e φ=,则有

()0()(0)()d t

At A t x t e x e Bu τττ-=+?, 0t ≥ 1. 用MATLAB 中expm(A)函数计算状态转移矩阵At

e 例8.4 022130x x u -????=+????-????&,1(0)1x ??=????

,0u = ①求当0.2t =时,状态转移矩阵即0.2At

t e =;

>> A=[0 -2;1 -3];

>> dt=0.2;

>> phi=expm(A*dt)

得到如下结果

phi =

0.9671 -0.2968

0.1484 0.5219

②计算0.2t =时系统的状态响应

110.2220.2(0)0.96710.29680.6703(0)(0)0.14840.52190.6703At t t x x e x x x ==-????????=?==????????????

????

2. 用step(),impulse() 求阶跃输入,脉冲输入响应

例8.5 连续二阶系统

[]111222120.75240.7268110.72680022.87768.9463x x u x x u x y x ---??????????=+??????????????????????=????

&& 求系统的单位阶跃响应

% MATLAB Program of example 4.5.m

A=[-0.7524 -0.7268;0.7268 0];

B=[1 -1;0 2];

C=[2.8776 8.9463];

D=0;

step(A,B,C,D);

figure(1)

grid on ;

title('单位阶跃响应')

xlabel('时间')

ylabel('振幅')

运行结果

控制系统的状态空间分析与综合

第8章控制系统的状态空间分析与综合 第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。 随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。 (1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。 (2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。 本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。 8.1 控制系统的状态空间描述 8.1.1 系统数学描述的两种基本方法 统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。一个反映系统内部变量x和输入变量u间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y与内部变量及输入变量间的关系,具有代数方程的形式。外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。

线性系统状态空间分析报告与运动解

【实验地点】课外(宿舍) 【实验目的】 1、学会利用MATLAB 实现离散系统传递函数模型的生成 2、学会利用MATLAB 将连续系统离散化 【实验设备与软件】 1、MATLAB/Simulink 数值分析软件 2、计算机一台 【实验原理】 1、求矩阵特征值和特征向量命令格式[V J]=eig (A ) Cv=eig(A) 说明:V 特征向量,J 是Jordan 型,cv 是特征值列向量 2、求运动的方法 (1)利用Laplace 逆变换----适合于连续/离散线性系统 采用ilaplace/iztrans 对传递函数求逆,这种方法一般是零输入情况下求响应。 (2)用连续(离散)状态转移矩阵表示系统解析解----适合于线性定常系统 对连续定常系统有: 假设初始时刻为零,LTI 系统的解析解为dt Bu e e x e t x t At At At ??+=0 )()0()(τ。若u (t )是单 位阶跃输入,则上述解可写成dtBu e e x e t x t At At At ? ?+=0 )()0()(τ。进一步简化为: Bu A Bu A x e t x At 11))0(()(---+= 对离散线性定常系统有: ∑---+ =1 1 )()0()(k i k k i Hu G x G k x

(3)状态方程的数值分析方法----适合于连续线性系统和非线性系统 采用直接数值积分很容易的处理各种定常/时变和线性/非线性系统。有很多数值积分方法,其中有一类预测-修正数值积分方法+自适应步长调整的算法比较有效。在MATLAB/Simulink 中包含的多种有效的、适用于不同类型的ODE 求解算法,典型的是Runge-Ktuta 算法,其通常使用如下的函数格式: [t,x]=ode45(odefun,[ti,tf],x0,options)----采用四阶、五阶Runge-Ktuta 算法 [t,x]=ode23(odefun,[ti,tf],x0,options)----采用二阶、三阶Runge-Ktuta 算法 说明:a.这两个函数是求解非刚性常微分方程的函数。 b.参数options 为积分的误差设置,取值为相对误差‘reltol ’和绝对误差‘abstol ’;[ti,tf]求解的时间围;x0是初值是初值向量;[t,x]是解。 (4)利用CotrolToolBox 的离散化求解函数----适合于TLI 系统 用step ()/impulse()函数求取阶跃输入/冲激输入时系统的状态响应: 当系统G 是连续的情况下: 调用[y,t,x]=step/impulse(G )会自动对连续系统G 选取采样时间围和周期; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)由用户自己定义对连续系统G 的样时间围和周期; 当系统G 是离散的情况下: 调用[y,t,x]=step/impulse(G )会按离散系统G 给出的采样周期计算; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)是Ts 必须与离散系统G 的采样时间围和周期一致。 另外lsim()函数调用格式:[y,x,t]=lsim(G,u,ti,TS,tf,x0) 零输入响应调用函数initial (),格式:[y,x,t]=(G,x0) (5)利用simulink 环境求取响应----适用于所有系统求取响应 使用simulink 求取线性或非线性系统的响应,调用格式如下: [t,x,y]=sim(‘XX.mdl ’,ti:Ts:tf,options,u) 【实验容】 已知线性系统:]) (201)() (2 10)(404040202119201921)(t x t y t u t x t x +-----? 已知线性系统 1、利用Matlab 求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

答案 控制系统的状态空间描述 习题解答

第2章 “控制系统的状态空间描述”习题解答 系统的结构如图所示。以图中所标记的1x 、2x 、3x 作为状态变量,推导其状态空间表达式。其中,u 、y 分别为系统的输入、输出,1α、2α、3α均为标量。 3 x 2 x 图系统结构图 解 图给出了由积分器、放大器及加法器所描述的系统结构图,且图中每个积分器的输出即为状态变量,这种图形称为系统状态变量图。状态变量图即描述了系统状态变量之间的关系,又说明了状态变量的物理意义。由状态变量图可直接求得系统的状态空间表达式。 着眼于求和点①、②、③,则有 ①:2111x x x +=α& ②: 3222x x x +=α&③:u x x +=333α& 输出y 为1y x du =+,得 1112223331000100 1x a x x a x u x a x ?? ?????? ????????=+???????????????????????? &&& []123100x y x du x ?? ??=+?? ???? 已知系统的微分方程 (1) u y y y y 354=+++&&&&&& ;(2) u u y y -=+&&&&&&32; (3) u u y y y y 75532+=+++&&&&&&&&& 。试列写出它们的状态空间表达式。 (1) 解 选择状态变量1y x =,2y x =&,3y x =&&,则有:

1223 31231 543x x x x x x x x u y x =??=?? =---+??=?&&& 状态空间表达式为:[]112233123010000105413100x x x x u x x x y x x ????????????????=+????????????????---???????? ????=?????? &&& (2) 解 采用拉氏变换法求取状态空间表达式。对微分方程(2)在零初试条件 下取拉氏变换得: 3222332()3()()() 11()12 23()232 s Y s sY s s U s U s s Y s s U s s s s s +=---==++ 由公式、可直接求得系统状态空间表达式为 1122330100001031002x x x x u x x ?? ????????????????=+? ?????????????????????-?? ?? &&& 123110 2 2x y x x ?????? =- ?????????? (3) 解 采用拉氏变换法求取状态空间表达式。对微分方程(3)在零初试条件 下取拉氏变换得: 323()2()3()5()5()7()s Y s s Y s sY s Y s s U s U s +++=+

实验25线性系统状态空间分析和运动解

广西大学实验报告纸 【实验时间】2014年06月15日 【实验地点】(课外) 【实验目的】 1、掌握线性系统状态空间的标准型、解及其模型转换。 【实验设备与软件】 1、MATLAB数值分析软件 【实验原理】 Matlab提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有 ①、阶跃响应函数step()可用于计算在单位阶跃输入和零初始状态(条件)下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为 step(sys,t) [y,t] = step(sys,t) [y,t,x] = step(sys,t) ②、脉冲激励下的仿真函数impulse()可用于计算在脉冲刺激输入下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为 impulse(sys,t) [y,t] = impulse(sys,t) [y,t,x] = impulse(sys,t) ③、任意输入激励下的仿真函数lsim()可用于计算在给定的输入信号序列(输入信号函数的采样值)下传递函数模型的输出响应,其主要调用格式为 lsim(sys,u,t,x0) [y,t,x] = lsim(sys,u,t,x0) 【实验内容、方法、过程与分析】 已知线性系统 1、利用Matlab求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。 状态响应曲线: A=[-21 19 -20;19 -21 20;40 -40 -40]; B=[0;1;2]; C=[1 0 2]; D=[0]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵 X0=[0;0;0]; % 输入初始状态 sys=ss(A,B,C,D); %构造传递函数 [y,x,t]=step(sys); % 绘以时间为横坐标的状态响应曲线图 plot(t,x); grid;

(整理)控制系统的状态空间模型

第一章控制系统的状态空间模型 1.1 引言 工程系统正朝着更加复杂的方向发展,这主要是由于复杂的任务和高精度的要求所引起的。一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合,可能是时变的。由于需要满足控制系统性能提出的日益严格的要求,系统的复杂程度越来越大,为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算,并且要求能够方便地用大型计算机对系统进行处理。从这个观点来看,状态空间法对于系统分析是最适宜的。大约从1960年升始发展起来。这种新方法是建立在状态概念之上的。状态本身并不是一个新概念,在很长一段时间内,它已经存在于古典动力学和其他一些领域中。 经典控制理论是建立在系统的输入-输出关系或传递函数的基础之上的,而现代控制理论以n个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量-矩阵微分方程。应用向量-矩阵表示方法,可极大地简化系统的数学表达式。状态变量、输入或输出数目的增多并不增加方程的复杂性。事实上,分析复杂的多输入-多输出系统,仅比分析用一阶纯量微分方程描述的系统在方法上稍复杂一些。 本课程将主要涉及控制系统的基于状态空间的描述、分析与设计。本章将首先给出状态空间方法的描述部分。将以单输入单输出系统为例,给出包括适用于多输入多输出或多变量系统在内的状态空间表达式的一般形式、线性多变量系统状态空间表达式的标准形式(相变量、对角线、Jordan、能控与能观测)、传递函数矩阵,以及利用MA TLAB进行各种模型之间的相互转换。第二章将讨论状态反馈控制系统的分析方法。第三章将给出系统的稳定性分析。第四章将给出几种主要的设计方法。 本章1.1节为控制系统状态空间分析的引言。1.2节介绍状态空间描述1.3节讨论动态系统的状态空间表达式。1.4状态空间表达式的标准形式。1.5 介绍系统矩阵的特征值基本性质.1.6讨论用MATLAB进行系统模型的转换问题。 1.2控制系统的状态空间描述 状态空间描述是60年代初,将力学中的相空间法引入到控制系统的研究中而形成的描述系统的方法,它是时域中最详细的描述方法。 特点:1.给出了系统的内部结构信息. 2.形式上简洁,便于用数字计算机计算. 1.2.1 状态的基本概念 在介绍现代控制理论之前,我们需要定义状态、状态变量、状态向量和状态空间。

信息光学习题答案

信息光学习题答案 第一章 线性系统分析 1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dx d x g = (2)()();?=dx x f x g (3)()();x f x g = (4)()()()[];2 ? ∞ ∞ --= αααd x h f x g (5) ()()απξααd j f ?∞ ∞ --2exp 解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。 1.2 证明)()ex p()(2x comb x j x comb x comb +=?? ? ??π 证明:左边=∑∑∑∞ -∞ =∞-∞=∞-∞=-=??? ???-=??? ??-=??? ??n n n n x n x n x x comb )2(2)2(2122δδδ ∑∑∑∑∑∑∞ -∞ =∞ -∞ =∞ -∞=∞ -∞=∞ -∞ =∞ -∞ =--+-= -+-=-+-= +=n n n n n n n n x n x n x jn n x n x x j n x x j x comb x comb ) () 1()() ()exp()() ()exp()()exp()()(δδδπδδπδπ右边 当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞ -∞ =-n n x )2(2δ 所以当n 为偶数时,左右两边相等。 1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式 0)(,) () ()]([1 ≠''-= ∑ =i n i i i x h x h x x x h δδ 式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。于是 )() ()(sin x comb n x x n =-=∑∞ -∞ =π δπ ππδ

控制系统的状态空间分析

第八章 控制系统的状态空间分析 一、状态空间的基本概念 1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。 2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻 这组变量的值())()() (00201t x t x t x n 和0t t ≥时输入的时间函数)(t u , 则系统在0t t ≥任何时刻())()()(21t x t x t x n 的行为就可完全确定。 3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。 4. 状态空间 以状态变量())()() (21t x t x t x n 为坐标的n 维空间。 系统在某时刻的状态,可用状态空间上的点来表示。 5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。 6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。 二、状态空间描述(状态空间表达式) 1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状 态空间描述一般用矩阵形式表示,对于线性定常连续系统有 ? ? ?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1) 对于线性定常离散系统有 ?? ?+=+=+) ()()() ()()1(k Du k Cx k y k Hu k Gx k x (8-2) 2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框 图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。 3. 状态空间描述的线性变换及规范化(标准型) 系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

线性系统的状态空间分析与综合

第九章线性系统的状态空间分析与综合 一、教学目的与要求: 通过本章内容的学习,使学生建立起状态变量和状态空间的概念,掌握线性定常系统状态空间模型的建立方法,状态空间表达式的线性变换,状态完全能控或状态完全能观测的定义,及其多种判据方法,状态转移矩阵的求法,传递函数矩阵与状态空间表达式的关系。 二、授课主要内容: 1.线性系统的状态空间描述 2.线性系统的可控性与可观测性 3.线性定常系统的状态反馈与状态观测器 (详细内容见讲稿) 三、重点、难点及对学生的要求(掌握、熟悉、了解、自学) 1.重点掌握线性定常系统状态空间模型的建立方法与其他数学描述(微分方程、 传递函数矩阵)之间的关系。 2.掌握采用状态空间表述的系统运动分析方法,状态转移矩阵的概念和求解。 3.掌握系统基本性质——能控性和能观测性的定义、有关判据及两种性质之间 的对偶性。 4.理解状态空间表达式在线性变换下的性质,对于完全能控或能观测系统,构 造能控、能观测标准形的线性变换方法,对于不完全能控或不完全能观测系统,基于能控性或能观测性的结构分解方法。 5.掌握单变量系统的状态反馈极点配置和全维状态观测器设计方法,理解分离 定理,带状态观测器的状态反馈控制系统的设计。 重点掌握线性系统的状态空间描述和求解,线性系统的可控性与可观测性及状态反馈与状态观测器。 四、主要外语词汇 线性系统 linear system 状态空间 state space 状态方程 state equation

状态向量 state vector 传递函数矩阵 translation function matrix 状态转换矩阵 state-transition matrix 可观测标准形 observational standard model 可控标准形 manipulative standard model 李亚普诺夫方程Lyaponov equation 状态观测器 state observation machine 对偶原理 principle of duality 五、辅助教学情况(见课件) 六、复习思考题 1.什么是系统的状态空间模型?状态空间模型中的状态变量、输入变量、输出变量各指什么? 2.通过机理分析法建立系统状态空间模型的主要步骤有哪些? 3.何为多变量系统?如何用传递矩阵来描述多变量系统的动态特性? 在多变量系统中,环节串联、并联、反馈连接时,如何求取总的传递矩阵?4.试简述数学模型各种表达式之间的对应关系。 5.用非奇异矩阵P对状态方程式进行线性状态变换后,与原状态方程式之间存在什么关系? 6.试简述系统能控性与能观性两个概念的含义及意义。 7.试述能控性和能观性定义。 8.试述系统能控性和能观性常用判据。 9.何谓对偶系统和对偶原理? 10.什么是状态方程的线性变换? 11.试述系统状态方程规范型变换的条件、特点及变换的基本方法。 12.试述状态能控性与能观性和系统传递函数(阵)的关系。 七、参考教材(资料) 1.《自动控制原理与系统》上、下册清华大学吴麒等国防工业出版社

答案-控制系统的状态空间描述-习题解答

` 第2章 “控制系统的状态空间描述”习题解答 系统的结构如图所示。以图中所标记的1x 、2x 、3x 作为状态变量,推导其状态空间表达式。其中,u 、y 分别为系统的输入、输出,1α、2α、3α均为标量。 图系统结构图 解 图给出了由积分器、放大器及加法器所描述的系统结构图,且图中每个积分器 的输出即为状态变量,这种图形称为系统状态变量图。状态变量图即描述了系统状态变量之间的关系,又说明了状态变量的物理意义。由状态变量图可直接求得系统的状态空间表达式。 着眼于求和点①、②、③,则有 ①:2111x x x +=α ②: 3222x x x +=α ③:u x x +=333α 输出y 为1y x du =+,得 { 11 12223331000100 1x a x x a x u x a x ???????? ????????=+???????????????????????? []123100x y x du x ?? ??=+?? ???? 已知系统的微分方程 (1) u y y y y 354=+++ ;(2) u u y y -=+ 32;

(3) u u y y y y 75532+=+++ 。试列写出它们的状态空间表达式。 (1) 解 选择状态变量1y x =,2y x =,3y x =,则有: 12 23 31231 543x x x x x x x x u y x =??=?? =---+??=? 状态空间表达式为:[]112233123010000105413100x x x x u x x x y x x ????????????????=+????????????????---???????? ????=?????? (2) 解 采用拉氏变换法求取状态空间表达式。对微分方程(2)在零初试条件 下取拉氏变换得: 《 3222332()3()()() 11()1223()232 s Y s sY s s U s U s s Y s s U s s s s s +=---== ++ 由公式、可直接求得系统状态空间表达式为 1122330100001031002x x x x u x x ?? ????????????????=+? ?????????????????????- ???? 123110 2 2x y x x ?????? =- ??????????

线性系统理论多年考题和答案

2008级综合大题 []400102110010112x x u y x ????????=-+????????-????=& 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定;(各种稳定之间的关系和判定方法!) 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵21416124,() 2.000M B AB A B rank M ?? ????==-=???? ???? 系统不完全 可控,不能任意配置极点。 2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1140120001P -????=-??????,求得1203311066 001P ?? ?? ?? ??=-?????? ???? 进行变换[]11 20831112,0,22260001A PAP B PB c cP --? ??????? ????=-====???? ???????? ????

所以系统不可简约实现为[]08112022x x u y x ?????=+?????????? ?=? & 3. 12(1)(1)2(1) ()()(4)(2)(1)(4)(2) s s s G s c sI A B s s s s s --+-=-= =-++-+ 4. det()(4)(2)(1)sI A s s s -=-++,系统有一极点4,位于复平面的右部,故不是渐近稳定。 12(1) ()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11228,12T k k k k A Bk k +???? =+=???????? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程*2 ()(2)(3)56f s s s s s =++=++ 比较上两式求得:728T k -?? =??-?? 6. 可以。设12l L l ??=????,则11222821222l l A LC l l --?? -=? ?--?? 特征方程2 2121()(222)1628f s s l l s l l =+-++-- 期望特征方程*2 ()(4)(5)920f s s s s s =++=++ 比较得:103136L ???? =????????

控制系统状态空间分析的 MATLAB 设计

《控制系统状态空间分析的MATLAB 设计》 摘要 线性系统理论主要研究线性系统状态的运动规律和改变这些规律的可能性与实施方法;它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。本文说明,线性变换不改变系统的传递函数,基于状态空间的极点配置不需要附加矫正装置,是改变系统指标的简单可行的重要技术措施;全维状态观测器与降维观测器不影响系统的输出响应。 关键词:状态反馈、极点配置、全维状态观测器、降维观测器 前言 线性系统理论是现代控制理论的基础,主要研究线性系统状态的运动规律 和改变这些规律的可能性与实施方法;建立和揭示系统结构、参数、行为和性能之间的关系。它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。 该报告结合以线性定常系统作为研究对象,分析控制系统动态方程,系统 可控标准型,线性变换传递函数及其不变性,系统可控性与可观测性。系统状态观测器及降维观测器对系统的阶跃响应的影响,并分别绘制模型,及其系统阶跃响应的仿真。 正文 1. 已知系统动态方程: x?=[?0.40?0.01100?1.49.8?0.02]x +[6.309.8]u y =[0 1]x 2. 设计内容及要求:

验证线性变换传递函数不变性,适当配置闭环适当配置系统闭环极点,使 σ%<15%、t s <4s ,以及当系统闭环极点为λ1,2=-3±j4时设计系统的降维状态观测器也使σ%<15%、t s <4s ,并绘制带反馈增益矩阵K 的降维状态观测器及其系统仿真。 3. 系统设计: 1)求系统可控标准型动态方程; >> A1=[-0.4 0 -0.01;1 0 0;-1.4 9.8 -0.02]; >> B1=[6.3;0;9.8]; >> C1=[0 0 1]; >> D1=0; >> G1=ss(A1,B1,C1,D1); >> n=size(G1.a); >> Qc=ctrb(A1,B1); >> pc1=[0 0 1]*inv(Qc); >> Pc=inv([pc1;pc1*A1;pc1*A1*A1]); >> G2 = ss2ss(G1,inv(Pc)); >> Gtf=tf(G2); 程序运行结果知n=3,原系统是可控的且可控标准型为: x?=[0 1 00 01?0.0980.006 ?0.42]x?+[001 ]u y ?=[61.74 ?4.99.8]x? 传递函数为: G (s )=9.8s 2?4.9s+61074 s 3+0.42s 2?0.006s+0.098 2)计算系统的单位阶跃响应 >> hold on >> grid on;hold on; >> step(G1,t,'b-.') >> step(Gtf,t,'r--')

第九章 线性系统的状态空间分析与综合习题

第九章 线性系统的状态空间分析与综合 9-1 已知电枢控制的直流司服电机的微分方程组及传递函数为 b a a a a a E t d di L i R u ++=,t d d K E m b b θ=,a m m i C M =,t d d f t d d J M m m m m m θθ+=2 2; )] ()([)()(2 m b m a a m m a m a m a m C K f R s R J f L s J L s C s U s ++++=Θ。 ⑴ 设状态变量m x θ=1,m x θ&=2,m x θ&&=3,输出量m y θ=,试建立其动态方程; ⑵ 设状态变量a i x =1,m x θ=2,m x θ&=3,输出量m y θ=,试建立其动态方程; ⑶ 设x T x =,确定两组状态变量间的变换矩阵T 。 解:⑴ 由传递函数得 a m a m m a m b m a m a u C x R J f L x C K f R x J L ++-+-=323)()(&,动态方程为 []x y u x x x x x x 001100010001032121321=??????????+????????????????????--=??????????αα&&&,其中)/()()/()()/(21m a a m m a m a m b m a m a a m J L R J f L J L C K f R J L u C u +=+==αα; ⑵ 由微分方程得 3 133 2311x f x C x J x x u x K x R x L m m m a b a a -==---=&&&,即 []x y u x x x a a a a x x x a 0200010100032133311311321=???? ? ?????+?????????????????? ??=??????????&&&,其中 m m m m a b a a J f a J C a L K a L R a ////33311311-==-=-=; ⑶ 由两组状态变量的定义,直接得到???? ? ???????????????=??????????3213331 321010001 0x x x a a x x x 。 9-2 设系统的微分方程为 u x x x =++23&&& 其中u 为输入量,x 为输出量。 ⑴ 设状态变量x x =1,x x &=2,试列写动态方程; ⑵ 设状态变换211x x x +=,2122x x x --=,试确定变换矩阵T 及变换后的动态方程。 解:⑴ u x x x x ??????+????????????--=??????1032102121&&,[]?? ????=2101x x y ; ⑵ ??????=??????2121x x T x x ,??????--=2111T ;?? ????--=-11121 T ;AT T A 1-=,B T B 1-=,CT C =; 得,? ?????--=2111T ;u x x x x ?? ????-+????????????-=??????1110012121&&,[]??????=2111x x y 。 9-3 设系统的微分方程为 u y y y y 66116=+++&&&&&& 其中u 、y 分别系统为输入、输出量。试列写可控标准型(即A 为友矩阵)及可观标准型(即A 为友矩 阵转置)状态空间表达式,并画出状态变量图。

线性系统的状态空间描述

第一章线性系统的状态空间描述 1.内容 系统的状态空间描述 化输入—输出描述为状态空间描述 由状态空间描述导出传递函数矩阵 线性系统的坐标转换 组合系统的状态空间方程与传递函数矩阵 2.基本概念 系统的状态和状态变量 状态:完全描述系统时域行为的一个最小变量组 状态变量:构成系统状态的变量 状态向量 设系统状态变量为X i(t),X2(t)厂,X n(t)写成向量形式称为状态向量,记为 _X i (t) x(t)= _X n(t) 状态空间 状态空间:以状态变量为坐标轴构成的n维空间 状态轨迹:状态变量随时间推移而变化,在状态空间中形成的一条

轨迹。

3. 状态空间表达式 设系统r 个输入变量:U i (t ),u 2(t )^ ,u r (t ) m 个输出:yQM), ,y m (t) n 个状态变量:X i (t),X 2(t), ,X n (t) 例:图示RLC 电路,建立状态空间描述 i L C 电容C 和电感L 两个独立储能元件,有两个状态变量, 方程为 如图中所注, L di L (t) dt Ri L (t) U c (t) =u(t) C 沁 “L (t) dt X i (t)二 L(t), X 2(t)二 U c (t) 二 LX i (t) RX i (t) X 2(t)二 u(t) Cx (t)二 X (t) N(t) - R/L 殳⑴门1/C 0 匚X 2(— O u(t) U c

输出方程 一般定义 状态方程:状态变量与输入变量之间的关系 dX i (t) dt = X i (t)二 f i 〔X i (t),X 2(t), ,X n (t);U i (t),U 2(t), ,U r (t);tl dX 2(t) dt = X 2(t)二 f 2'X i (t),X 2(t)^ ,X n (t);U i (t),U 2(t), ,U r (t);t 】 dX n (t) dt 二 X n (t)二 f n 〔X i (t),X 2(t), ^⑴小⑴心⑴,,U 「(t);t 】 用向量表示,得到一阶的向量微分方程 x(t)二 f 'X(t),u(t), t 1 其中 X i (t) U ](t) fQ) “、 X 2(t) - U 2(t) . f 2(?)?Qn X(t) - c R ,u(t)戶;c R , f (?) ^^ : c R N(t) 一 JU r (t) 一 -f n (叽 输出方程:系统输出变量与状态变量、输入变量之间的关系,即 %(t)二 g i X i (t),X 2(t), ,X n (t);U i (t),U 2(t), ,U r (t);t ] y 2(t)二 g 2 X i (t), X 2(t), ,X n (t);U i (t),U 2(t), ,U r (t);t 〔 y(t)二 %(t)二 1 01 X i (t) 殳(t).

线性系统理论试卷

湘潭大学研究生考试试题 考试科目:线性系统理论/现代控制理论考生人数:20考试形式:闭卷 适用专业: 双控单控/电传 适用年级:一年级 试卷类型: A 类 一、给定多项式矩阵如下: 22121()1 2s s s s D s s s ?? ?????? ++++= ++ 1. 计算矩阵的行次数,判断系统是否行既约? 2. 计算矩阵的列次数,判断系统是否列既约? 3. 寻找单模矩阵,将多项式矩阵()D s 化为史密斯型。 二、设系统的传递函数矩阵为右MFD 1()()N s D s -,其中: 210 ()21s D s s s s ? ? ????? ? -= +-+,()11N s s s ???? =-+ 试判断{}(),()N s D s 是否右互质;如果不是右互质,试通过初等运算找出其最大右公因子。 三、给定()G s 的一个左MFD 为: 1 210 1 0()112 1s s G s s s s -? ? ?? ?????????? ? ? -+= +-+ 试判断这个MFD 是否是最小阶的;如果不是,求出其最小阶MFD 。 四、确定下列传递函数矩阵的一个不可简约左MFD : 21 1 0()102 2s s s G s s s s s ????????? ? ?? += +++ 五、给定系统的传递函数矩阵为

22 3 (1)(2)(1)(2)()31(1)(2) (2)s s s s s s G s s s s s s ???? ?? ??????? ? +++++= +++++ 试计算出相应的评价值,并写出其史密斯--麦克米伦型。 六、给定传递函数矩阵如下: 2 2221156()1253 43s s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试定出其零、极点,并计算出其结构指数。 七、给定系统的传递函数矩阵如下: 2 2211 154()14 3 712s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试求出一个控制器型实现。 八、确定下列传递函数矩阵()G s 的一个不可简约的PMD 2 2 141()143 32s s s s G s s s s s ?? ?? ?? ??? ??? ++-= ++++ 九、给定系统的传递函数矩阵如下: 1 2 2 430 11()221 21s s s s G s s s s s -?????? ??????? ?? ? ++-+= +++ 试设计一个状态反馈K,使得状态反馈系数的极点为: 12λ*=-, 23λ*=-, 4,5 42j λ* =-±

《自动控制原理》第九章 线性系统的状态空间分析与综合

第九章 线性系统的状态空间分析与综合 在第一章至第七章中,我们曾详细讲解了经典线性系统理论以及用其设计控制系统的方法。可以看到,经典线性理论的数学基础是拉普拉斯变换和z 变换,系统的基本数学模型是线性定常高阶微分方程、线性常系数差分方程、传递函数和脉冲传递函数,主要的分析和综合方法是时域法、根轨迹法和频域法,分析的主要内容是系统运动的稳定性。经典线性系统理论对于单输入-单输出线性定常系统的分析和综合是比较有效的,但其显著的缺点是只能揭示输入-输出间的外部特性,难以揭示系统内部的结构特性,也难以有效处理多输入-多输出系统。 在50年代蓬勃兴起的航天技术的推动下,在1960年前后开始了从经典控制理论到现代控制理论的过渡,其中一个重要标志就是卡尔曼系统地将状态空间概念引入到控制理论中来。现代控制理论正是在引入状态和状态空间概念的基础上发展起来的。 在现代控制理论的发展中,线性系统理论首先得到研究和发展,已形成较为完整成熟的理论。现代控制理论中的许多分支,如最优控制、最优估计与滤波、系统辨识、随机控制、自适应控制等,均以线性系统理论为基础;非线性系统理论、大系统理论等,也都不同程度地受到了线性系统理论的概念、方法和结果的影响和推动。 现代控制理论中的线性系统理论运用状态空间法描述输入-状态-输出诸变量间的因果关系,不但反映了系统的输入—输出外部特性,而且揭示了系统内部的结构特性,是一种既适用于单输入--单输出系统又适用于多输入—多输出系统,既可用于线性定常系统又可用于线性时变系统的有效分析和综合方法。 在线性系统理论中,根据所采用的数学工具及系统描述方法的不同,又出现了一些平行的分支,目前主要有线性系统的状态空间法、线性系统的几何理论、线性系统的代数理论、线性系统的多变量频域方法等。由于状态空间法是线性系统理论中最重要和影响最广的分支,加之受篇幅限制,所以本章只介绍线性系统的状态空间法。 9-1 线性系统的状态空间描述 1. 系统数学描述的两种基本类型 这里所谓的系统是指由一些相互制约的部分构成的整体,它可能是一个由反馈闭合的整体,也可能是某一控制装置或受控对象。本章中所研究的系统均假定具有若干输入端和输出端,如图9-1所示。图中方块以外的部分为系统环境,环境对系统的作用为系统输入,系统对环境的作用为系统输出;二者分别用向量12[,,...,] T p u u u u =和 12[,,...,] T q y y y y =表示,它们均为系统的外部变量。描述系统内部每个时刻所处状况的

光学信息技术第三章习题

第三章习题解答 3.1参看图3.5,在推导相干成像系统点扩散函数( 3.35 )式时,对于积分号前的相位因子 相对于它在原点之值正好改变n 弧度? 设光瞳函数是一个半径为 a 的圆,那么在物平面上相应 h 的第一个零点的半径是 多少? 时可以弃去相位因子 由于原点的相位为零,于是与原点位相位差为 的条件是 式中r x 2 y 2,而 试问 exp j#(x ; y o ) 2d o 2 2 x y i M 2 (1) 物平面上半径多大时,相位因子 exp j£(x 0 y 0) d o (2) (3) 由这些结果,设观察是在透镜光轴附近进行,那么 a ,入和d o 之间存在什么关系 exp k 2 2 (x 。 y 。) 2d o (2) y 2) 賦 2d o ,r o ... d o 根据(3.1.5 ) 式,相干成像系统的点扩散函数是透镜光瞳函数的夫琅禾费衍射图 样,其中心位于理想像点 (%, %) h(x °,y °;x, y) 1 2 d °d i 2 P (x,y)exp jp (xi %)2 (yi %)2]dxdy r circ 一 a J_aJ,2 a ) 2 d o d i

(3)根据线性系统理论,像面上原点处的场分布,必须是物面上所有点在像面上的点 扩散函数对于原点的贡献 h(x ),y 0;0,0) o 按照上面的分析,如果略去 h 第一个零点以 外的影响,即只考虑h 的中央亮斑对原点的贡献, 那么这个贡献仅仅来自于物平面原点 附近r 。 0.61 d 。/ a 范围内的小区域。当这个小区域内各点的相位因子 2 exp[jkr ° /2d °]变化不大,就可认为(3.1.3 )式的近似成立,而将它弃去,假设小区 域内相位变化不大于几分之一弧度(例如 /16 )就满足以上要求,则 kr ;/2d 0 16 2 r ° d °/16,也即 a 2.44. d 0 (4) 例如 600nm , d ° 600nm ,则光瞳半径a 1.46mm ,显然这一条件是极易满足 的。 3.2 一个余弦型振幅光栅,复振幅透过率为 放在图3.5所示的成像系统的物面上,用单色平面波倾斜照明,平面波的传播方向在 X 0Z 平 面内,与z 轴夹角为Bo 透镜焦距为 f ,孔径为D O (1) 求物体透射光场的频谱; (2) 使像平面出现条纹的最大B 角等于多少?求此时像面强度分布; (3) 若B 采用上述极大值, 使像面上出现条纹的最大光栅频率是多少?与B =0时的截 止频率比较,结论如何? (% y o )2 (d i 在点扩散函数的第一个零点处, J ,(2 a ) 0 ,此时应有2 a 3.83,即 0.61 (2) 将(2)式代入(1 )式,并注意观察点在原点 ( X i y 0) ,于是得 r o 0.61 d o a (3) t(X 0,y °) cos 2 f °X 0 2

2014《现代控制理论》学习指导书及部分题目答案

现代控制理论学习指导书第一部分重点要点 线性系统理论 线性系统数学模型 稳定性、可控性和可观测性 单变量极点配置的条件和方法。 最优控制理论 变分法 极小值原理 最优性原理 动态规划 最优估计理论 参数估计方法 掌握最小方差估计和线性最小方差估计方法 状态估计方法 预测法,滤波 系统辨识理论 经典辨识方法 最小二乘辨识方法 系统模型确定方法 自适应控制理论 用脉冲响应求传递函数的原理和方法。 两种设计方法

智能控制理论 掌握智能控制的基本概念、基本方法以及智能控制的特点。 了解分级递阶智能控制、专家控制、神经网络控制、模糊控制、学习控制和遗传算法控制的基本概念 第二部分练习题 填空题 1.自然界存在两类系统:______静态系统____和______动态系统____。 2.系统的数学描述可分为___外部描述_______和___内部描述_______两种类型。 3.线性定常连续系统在输入为零时,由初始状态引起的运动称为___自由运动_______。 5.互为对偶系统的__特征方程________和___特征值_______相同。 6.任何状态不完全能控的线性定常连续系统,总可以分解成____完全能控______子系统和____完全不能控______ 子系统两部分。 7.任何状态不完全能观的线性定常连续系统,总可以分解成__完全能观测________子系统和____完全不能观测______子系统两部分。 8.对状态不完全能控又不完全能观的线性定常连续系统,总可以将系统分解___能控又能观测、能控但不能观测、不能控但能观测、不能控又不能观测四个子系统。 9.对SISO系统,状态完全能控能观的充要条件是系统的传递函数没有__零极点对消_。 10.李氏稳定性理论讨论的是动态系统各平衡态附近的局部稳定性问题。 11.经典控制理论讨论的是__在有界输入下,是否产生有界输出的输入输出稳定性问题,李 氏方法讨论的是_动态系统各平衡态附近的局部稳定性问题。 12. ___状态反馈_______和__输出反馈________是控制系统设计中两种主要的反馈策略。 13.综合问题的性能指标可分为优化型和非优化型性能指标。 14.状态反馈不改变被控系统的___能控性_______;输出反馈不改变被控系统的___能控性 _______和____能观测性______ 15.状态方程揭示了系统的内部特征,也称为__内部描述________。 16.控制系统的稳定性,包括____外部______稳定性和____内部______稳定性。 17.对于完全能控的受控对象,不能采用____输出反馈______至参考信号入口处的结构去实现闭环极点的任意配置。 18.在状态空间分析中,常用___状态结果图_______来反映系统各状态变量之间的信息传递关系。 19.为了便于求解和研究控制系统的状态响应,特定输入信号一般采用脉冲函数、__阶跃函数________ 和斜坡函数等输入信号。 21.当且仅当系统矩阵A的所有特征值都具有_负实部_________时,系统在平衡状态时渐近

相关文档
最新文档