六年级奥数数的整除

六年级奥数数的整除
六年级奥数数的整除

六年级奥数数的整除集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

六年级奥数:第五讲整数问题之一整数是最基本的数,它产生了许多有趣的数学问题.在中、小学生的数学竞赛中,有关整数的问题占有重要的地位.我们除了从课本上学习整数知识以外,还必须通过课外活动来补充一些整数的知识,以及解决问题的思路和方法。

对于两位、三位或者更多位的整数,有时要用下面的方法来表示:49=4×10+9,

235=2×100+3×10+5,

7064=7×1000+6×10+4,

…………………

有时我们用a,b,...表示数字,例如abcde是个五位数,也就是abcde=a×10000+b×1000+c×100+d×10+e

一、整除

整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b的倍数.

1.整除的性质

性质1如果a和b都能被m整除,那么a+b,a-b也都能被m整除(这里设a>b).

例如:3丨18,3丨12,那么3丨(18+12),3丨(18-12).

性质2如果a能被b整除,b能被c整除,那么a能被c整除。

例如: 3丨6,6丨24,那么3丨24.

性质3如果a能同时被m、n整除,那么a也一定

能被m和n的最小公倍数整除.

例如:6丨36,9丨36,6和9的最小公倍数是18,18丨36.

如果两个整数的最大公约数是1,那么它们称为互质的.

例如:7与50是互质的,18与91是互质的.

性质4整数a,能分别被b和c整除,如果b与c互质,那么a能被b×c整除.

例如:72能分别被3和4整除,由3与4互质,72

能被3与4的乘积12整除.

性质4中,“两数互质”这一条件是必不可少的.72分别能被6和8整除,但不能被乘积48整除,这就是因为6与8不互质,6与8的最大公约数是2.

性质4可以说是性质3的特殊情形.因为b与c互

质,它们的最小公倍数是b×c.事实上,根据性质4,我们常常运用如下解题思路:

要使a被b×c整除,如果b与c互质,就可以分别考虑,a被b整除与a被c整除.

能被2,3,4,5,8,9,11整除的数都是有特征的,我们可以通过下面讲到的一些特征来判断许多数的整除问题.

2.数的整除特征

(1)能被2整除的数的特征:

如果一个整数的个位数是偶数,那么它必能被2整除.

(2)能被5整除的数的特征:

如果一个整数的个位数字是0或5,那么它必能被5整除.

(3)能被3(或9)整除的数的特征:

如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.

(4)能被4(或25)整除的数的特征:

如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或2 5)整除.

(5)能被8(或125)整除的数的特征:

如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除.

(6)能被11整除的数的特征:

如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.

例1:四位数7a4b能被18整除,要是这个四位数尽可能的小,a和b 是什么数字?

解:18=2×9,并且2与9互质,根据前面的性质4,可以分别考虑被2和9整除.

要被2整除,b只能是0,2,4,6,8.

再考虑被9整除,四个数字的和就要被9整除,已有7+4=11.

如果 b=0,只有 a=7,此数是 7740;

如果b=2,只有a=5,此数是7542;

如果b=4,只有a=3,此数是 7344;

如果 b=6,只有 a=1,此数是 7146;

如果b=8,只有a=8,此数是7848.

因此其中最小数是7146.

根据不同的取值,分情况进行讨论,是解决整数问题常用办法,例1就是一个典型.

例2一本老账本上记着:72只桶,共□67.9□元,其中□处是被虫蛀掉的数字,请把这笔账补上.

解:把□67.9□写成整数679,它应被72整除.72=9×8,9与8又互质.按照前面的性质4,只要分别考虑679被8和被9整除.从被8整除的特征,79要被8整除,因此b=2.从6792能被9整除,按照被9整除特征,各位数字之和+24能被9整除,因此a=3.

这笔帐是367.92元.

例3在1,2,3,4,5,6六个数字中选出尽可能多的不同数字组成一个数(有些数字可以重复出现),使得能被组成它的每一个数字整除,并且组成的数要尽可能小.

解:如果选数字5,组成数的最后一位数字就必须是5,这样就不能被偶数2,4,6整除,也就是不能选2,4,6.为了要选的不同数字尽可能多,我们只能不选5,而选其他五个数字1,2,3,4,6.1+2+3+4+6=1 6,为了能整除3和6,所用的数字之和要能被3整除,只能再添上一个2,16+2=18能被3整除.为了尽可能小,又要考虑到最后两位数能被4整除.组成的数是

122364.

例4四位数7□4□能被55整除,求出所有这样的四位数.

解:55=5×11,5与11互质,可以分别考虑被5与11整除.

要被5整除,个位数只能是0或5.

再考虑被11整除.

(7+4)-(百位数字+0)要能被11整除,百位数字只能是0,所得四位数是7040.

(7+4)-(百位数字+5)要能被11整除,百位数字只能是6(零能被所有不等于零的整数整除),所得四位数是7645.

满足条件的四位数只有两个:7040,7645.

例5一个七位数的各位数字互不相同,并且它能被11整除,这样的数中,最大的是哪一个?

解:为了使这个数最大,先让前五位是98765,设这个七位数是9876 5ab,要使它被11整除,要满足(9+7+5+b)-(8+6+a)=(21+b)-(14+ a)

能被11整除,也就是7+b-a要能被11整除,但是a与b只能是0,1,2,3,4中的两个数,只有b=4,a=0,满足条件的最大七位数是987650 4.

再介绍另一种解法.

先用各位数字均不相同的最大的七位数除以11(参见下页除式).

要满足题目的条件,这个数是9876543减6,或者再减去11的倍数中的一个数,使最后两位数字是0,1,2,3,4中的两个数字.

43-6=37,37-11=26,26-11=15,15-11=4,因此这个数是98765 04.

思考题:如果要求满足条件的数最小,应如何去求,是哪一个数呢?

(答:1023495)

例6某个七位数1993□□□能被2,3,4,5,6,7,8,9都整除,那么它的最后三个数字组成的三位数是多少?

与上例题一样,有两种解法.

解一:从整除特征考虑.

这个七位数的最后一位数字显然是0.

另外,只要再分别考虑它能被9,8,7整除.

1+9+9+3=22,要被9整除,十位与百位的数字和是5或14,要被8整除,最后三位组成的三位数要能被8整除,因此只可能是下面三个数:

1993500,1993320,1993680,

其中只有199320能被7整除,因此所求的三位数是320.

解二:直接用除式来考虑.

2,3,4,5,6,7,8,9的最小公倍数是2520,这个七位数要被252 0整除.

现在用1993000被2520来除,具体的除式如下:

因为 2520-2200=320,所以1993000+320=1993320能被2520整除.

例7下面这个41位数

能被7整除,中间方格代表的数字是几?

解:因为 111111=3×7×11×13×37,所以

555555=5×111111和999999=9×111111

都能被7整除.这样,18个5和18个9分别组成的18位数,也都能被7整除.

右边的三个加数中,前、后两个数都能被7整除,那么只要中间的55□99能被7整除,原数就能被7整除.

把55□99拆成两个数的和:

55A00+B99,

其中□=A+B.

因为7丨55300,7丨399,所以□=3+3=6.

注意,记住111111能被7整除是很有用的.

例8甲、乙两人进行下面的游戏.

两人先约定一个整数N.然后,由甲开始,轮流把0,1,2,3,4,5,6,7,8,9十个数字之一填入下面任一个方格中

每一方格只填一个数字,六个方格都填上数字(数字可重复)后,就形成一个六位数.如果这个六位数能被N整除,就算乙胜;如果这个六位数不能被N整除,就算甲胜.

如果N小于15,当N取哪几个数时,乙能取胜?

解:N取偶数,甲可以在最右边方格里填一个奇数(六位数的个位),就使六位数不能被N整除,乙不能获胜.N=5,甲可以在六位数的个位,填一个不是0或5的数,甲就获胜.

上面已经列出乙不能获胜的N的取值.

如果N=1,很明显乙必获胜.

如果N=3或9,那么乙在填最后一个数时,总是能把六个数字之和,凑成3的整数倍或9的整数倍.因此,乙必能获胜.

考虑N=7,11,13是本题最困难的情况.注意到1001=7×11×13,乙就有一种必胜的办法.我们从左往右数这六个格子,把第一与第四,第二与第五,第三与第六配对,甲在一对格子的一格上填某一个数字后,乙就在这一对格子的另一格上填同样的数字,这就保证所填成的六位数能被1001整除.根据前面讲到的性质2,这个六位数,能被7,11或13整除,乙就能获胜.

综合起来,使乙能获胜的N是1,3,7,9,11,13.

记住,1001=7×11×13,在数学竞赛或者做智力测验题时,常常是有用的.

二、分解质因数

一个整数,它的约数只有1和它本身,就称为质数(也叫素数).例如,2,5,7,101,….一个整数除1和它本身外,还有其他约数,就称为合数.例如,4,12,99,501,….1不是质数,也不是合数.也可以换

一种说法,恰好只有两个约数的整数是质数,至少有3个约数的整数是合数,1只有一个约数,也就是它本身.

质数中只有一个偶数,就是2,其他质数都是奇数.但是奇数不一定是质数,例如,15,33,….

例9○+(□+△)=209.

在○、□、△中各填一个质数,使上面算式成立.

解:209可以写成两个质数的乘积,即

209=11×19.

不论○中填11或19,□+△一定是奇数,那么□与△是一个奇数一个偶数,偶质数只有2,不妨假定△内填2.当○填19,□要填9,9不是质数,因此○填11,而□填17.

这个算式是11×(17+2)=209,

11×(2+17)= 209.

解例9的首要一步是把209分解成两个质数的乘积.把一个整数分解成若干个整数的乘积,特别是一些质数的乘积,是解决整数问题的一种常用方法,这也是这一节所讲述的主要内容.

一个整数的因数中,为质数的因数叫做这个整数的质因数,例如,2,3,7,都是42的质因数,6,14也是42的因数,但不是质因数.

任何一个合数,如果不考虑因数的顺序,都可以唯一地表示成质因数乘积的形式,例如

360=2×2×2×3×3×5.

还可以写成360=23×32×5.

这里23表示3个2相乘,32表示2个3相乘.在23中,3称为2的指数,读作2的3次方,在32中,2称为3的指数,读作3的2次方.

例10有四个学生,他们的年龄恰好是一个比一个大1岁,而他们的年龄的乘积是5040,那么,他们的年龄各是多少?

解:我们先把5040分解质因数

5040=24×32×5×7.

再把这些质因数凑成四个连续自然数的乘积:

24×32×5×7=7×8×9×10.

所以,这四名学生的年龄分别是7岁、8岁、9岁和10岁.

利用合数的质因数分解式,不难求出该数的约数个数(包括1和它本身).为寻求一般方法,先看一个简单的例子.

我们知道24的约数有8个:1,2,3,4,6,8,12,24.对于较大的数,如果一个一个地去找它的约数,将是很麻烦的事.

因为24=23×3,所以24的约数是23的约数(1,2,22,23)与3的约数(1,3)之间的两两乘积.

1×1,1×3,2×1,2×3,22×1,22×3,23×1,23×3.

这里有4×2=8个,即(3+1)×(1+1)个,即对于24=23×3中的23,有(3+1)种选择:1,2,22,23,对于3有(1+1)种选择.因此共有(3+1)×(1+1)种选择.

这个方法,可以运用到一般情形,例如,

144=24×32.

因此144的约数个数是(4+1)×(2+1)=15(个).

例11在100至150之间,找出约数个数是8的所有整数.

解:有8=7+1; 8=(3+1)×(1+1)两种情况.

(1)27=128,符合要求,

37>150,所以不再有其他7次方的数符合要求.

(2)23=8,

8×13=104,8×17=136,符合要求.

33=27;

只有27×5=135符合要求.

53=135,它乘以任何质数都大于150,因此共有4个数合要求:12 8,104,135,136.

利用质因数的分解可以求出若干个整数的最大公约数和最小公倍数.先把它们各自进行质因数分解,例如

720=24×32×5,168=23×3×7.

那么每个公共质因数的最低指数次方的乘积就是最大公约数,上面

两个整数都含有质因数2,较低指数次方是23,类似地都含有3,因此720与168的最大公约数是

23×3= 24.

在求最小公倍数时,很明显每个质因数的最高指数次方的乘积是最

小公倍数.请注意720中有5,而168中无5,可以认为较高指数次方是51=5. 720与168的最小公倍数是

24×32×5×7=5040.

例12两个数的最小公倍数是180,最大公约数是30,已知其中一个

数是90,另一个数是多少?

解:180=22×32×5,

30=2×3×5.

对同一质因数来说,最小公倍数是在两数中取次数较高的,而最大

公约数是在两数中取次数较低的,从22与2就知道,一数中含22,另一数中含2;从32与3就知道,一数中含32,另一数中含3,从一数是

90=2×32×5.

就知道另一数是

22×3×5=60.

还有一种解法:

另一数一定是最大公约数30的整数倍,也就是在下面这些数中去找

30, 60, 90, 120,….

这就需要逐一检验,与90的最小公倍数是否是180,最大公约数是否是30.现在碰巧第二个数60就是.逐一去检验,有时会较费力.

例13有一种最简真分数,它们的分子与分母的乘积都是420.如果把所有这样的分数从小到大排列,那么第三个分数是多少?

解:把420分解质因数

420=2×2×3×5×7.

为了保证分子、分母不能约分(否则约分后,分子与分母的乘积不再是420了),相同质因数(上面分解中的2),要么都在分子,要么都在分母,并且分子应小于分母.分子从小到大排列是

1,3,4,5,7,12,15,20.

分子再大就要超过分母了,它们相应的分数是

两个整数,如果它们的最大公约数是1.就称这两个数是互质的.

例13实质上是把420分解成两个互质的整数.

利用质因数分解,把一个整数分解成若干个整数的乘积,是非常基本又是很有用的方法,再举三个例题.

例14将8个数6,24,45,65,77,78,105,110分成两组,每组4个数,并且每组4个数的乘积相等,请写出一种分组.

解:要想每组4个数的乘积相等,就要让每组的质因数一样,并且相同质因数的个数也一样才行.把8个数分解质因数.

6=2×3, 24=23×3,

45=32×5, 65=5×13,

77=7×11, 78=2×3×13,

105=3×5×7, 110=2×5×11.

先放指数最高的质因数,把24放在第一组,为了使第二组里也有三个2的因子,必须把6,78,110放在第二组中,为了平衡质因数11和13,必须把77和65放在第一组中.看质因数7,105应放在第二组中,45放在第一组中,得到

第一组:24,65,77,45.

第二组:6,78,110,105.

在讲述下一例题之前,先介绍一个数学名词--完全平方数.

一个整数,可以分解成相同的两个整数的乘积,就称为完全平方数.

例如:4=2×2, 9=3×3, 144=12×12, 625=25×25.4,9,1 44,625都是完全平方数.

一个完全平方数写出质因数分解后,每一个质因数的次数,一定是

偶数.

例如:144=32×42, 100=22×52,…

例15甲数有9个约数,乙数有10个约数,甲、乙两数最小公倍数是28 00,那么甲数和乙数分别是多少?

解:一个整数被它的约数除后,所得的商也是它的约数,这样的两

个约数可以配成一对.只有配成对的两个约数相同时,也就是这个数是完全平方数时,它的约数的个数才会是奇数.因此,甲数是一个完全平方数.

2800=24×52×7.

在它含有的约数中是完全平方数,只有

1,22,24,52,22×52,24×52.

在这6个数中只有22×52=100,它的约数是(2+1)×(2+1)=9(个).

2800是甲、乙两数的最小公倍数,上面已算出甲数是100=22×52,因此乙数至少要含有24和7,而24×7=112恰好有(4+1)×(1+1)=1 0(个)约数,从而乙数就是112.

综合起来,甲数是100,乙数是112.

例16小明买红蓝两种笔各1支共用了17元.两种笔的单价都是整元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一

种),可是他无论怎么买都不能把35元恰好用完,问红笔、蓝笔每支各多少元?

解:35=5×7.红、蓝的单价不能是5元或7元(否则能把35元恰好用完),也不能是17-5=12(元)和17-7=10(元),否则另一种笔1支是5元或7元.

记住:对笔价来说,已排除了5,7,10,12这四个数.

笔价不能是35-17=18(元)的约数.如果笔价是18的约数,就能把18元恰好都买成笔,再把17元买两种笔各一支,这样就把35元恰好用完了.因此笔价不能是18的约数:1,2,3,6,9.

当然也不能是17-1=16,17-2=15,17-3=14,17-6=11, 17-9=8.现在笔价又排除了:

1,2,3,6,8,9,11,14,15,16.

综合两次排除,只有4与13未被排除,而4+13=17,就知道红笔每支 13元,蓝笔每支 4元.

三、余数

在整数除法运算中,除了前面说过的“能整除”情形外,更多的是不能整除的情形,例如95÷3,48÷5.不能整除就产生了余数.通常的表示是:

65÷3=21…… 2,38÷5=7…… 3.

上面两个算式中2和3就是余数,写成文字是

被除数÷除数=商……余数.

上面两个算式可以写成

65=3×21+2, 38=5×7+3.

也就是

被除数=除数×商+余数.

通常把这一算式称为带余除式,它使我们容易从“余数”出发去考虑问题,这正是某些整数问题所需要的.

特别要提请注意:在带余除式中,余数总是比除数小,这一事实,解题时常作为依据.

例175397被一个质数除,所得余数是15.求这个质数.

解:这个质数能整除

5397-15=5382,

而 5382=2×31997×13×23.

因为除数要比余数15大,除数又是质数,所以它只能是23.

当被除数较大时,求余数的一个简便方法是从被除数中逐次去掉除数的整数倍,从而得到余数.

例18求645763除以7的余数.

解:可以先去掉7的倍数630000余15763,再去掉14000还余下 176 3,再去掉1400余下363,再去掉350余13,最后得出余数是6.这个过程可简单地记成

645763→15763→1763→363→13→6.

如果你演算能力强,上面过程可以更简单地写成:

645763→15000→1000→6.

带余除法可以得出下面很有用的结论:

如果两个数被同一个除数除余数相同,那么这两个数之差就能被那个除数整除.

例19有一个大于1的整数,它除967,1000,2001得到相同的余数,那么这个整数是多少?

解:由上面的结论,所求整数应能整除 967,1000,2001的两两之差,即

1000-967=33=3×11,

2001-1000=1001=7×11×13,

2001-967=1034=2×11×47.

这个整数是这三个差的公约数11.

请注意,我们不必求出三个差,只要求出其中两个就够了.因为另一个差总可以由这两个差得到.

小学数学奥数习题-整除 通用版

整除 整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b的倍数. 1.整除的性质 性质1 如果a和b都能被m整除,那么a+b,a-b也都能被m整除(这里设a>b). 例如:3丨18,3丨12,那么3丨(18+12),3丨(18-12). 性质2如果a能被b整除,b能被c整除,那么a能被c整除。 例如: 3丨6,6丨24,那么3丨24. 性质3如果a能同时被m、n整除,那么a也一定 能被m和n的最小公倍数整除. 例如:6丨36,9丨26,6和9的最小公倍数是18,18丨36. 如果两个整数的最大公约数是1,那么它们称为互质的. 例如:7与50是互质的,18与91是互质的. 性质4整数a,能分别被b和c整除,如果b与c互质,那么a能被b×c整除. 例如:72能分别被3和4整除,由3与4互质,72 能被3与4的乘积12整除. 性质4中,“两数互质”这一条件是必不可少的.72分别能被6和8整除,但不能被乘积48整除,这就是因为6与8不互质,6与8的最大公约数是2. 性质4可以说是性质3的特殊情形.因为b与c互 质,它们的最小公倍数是b×c.事实上,根据性质4,我们常常运用如下解题思路:要使a被b×c整除,如果b与c互质,就可以分别考虑,a被b整除与a被c整除. 能被2,3,4,5,8,9,11整除的数都是有特征的,我们可以通过下面讲到的一些特征来判断许多数的整除问题. 2.数的整除特征 (1)能被2整除的数的特征: 如果一个整数的个位数是偶数,那么它必能被2整除. (2)能被5整除的数的特征: 如果一个整数的个位数字是0或5,那么它必能被5整除. (3)能被3(或9)整除的数的特征: 如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.

数的整除练习题及答案

数的整除练习题及答案 1. 在自然数里,最小的质数是(),最小的合数是(),最小的奇数是(),最小的自然数是()。 2. 在1,2,9这三个数中,()既是质数又是偶数,()既是合数又是奇数,()既不是质数也不是合数。 3. 10能被0.5(),10能被5()。 4. a÷b=4(a,b都是非0自然数),a是b的()数,b是a的()数。 5. 自然数a的最小因数是(),最大因数是(),最小倍数是()。 6. 20以内不是偶数的合数有(),不是奇数的质数有()。 7. 同时是2,3,5的倍数的最小三位数是(),最大三位数是()。 8. 18和30的最大公因数是(),最小公倍数是()。 9. 102分解质因数是()。 10. 数a和数b是互质数,它们的最小公倍数是最大公因数的()倍。 11. 在1到10之间的十个数中,()和()这两个数既是合数又是互质数;()和()这两个数既是奇数又是互质数;()和()这两个数既是质数又是互质数;()和()这两个数一个是质数,一个是合数,它们是互质数。 12. 在6,9,15,32,45,60这六个数中,3的倍数的数是();含有因数5的数是();既是2的倍数又是3的倍数的数是();同时是3和5的倍数的数是()。 13. 28的因数有(),50以内13的倍数有()。 14. 一位数中,最大的两个互质合数的最小公倍数是()。 15. 在自然数中,最小的质数与最小的奇数的和是(),最小的合数与最小的自然数的差是()。 16. 256 的分数单位是(),它减少()个这样的分数单位是最小的质数,增加()个这样的分数单位是最小的合数。 17. 493至少增加()才是3的倍数,至少减少()才有因数5,至少增加()才是2的倍数。 18. 把4.87的小数点向左移动三位,再向右移动两位后,这个数是()。 19. 一个最简真分数的分子是质数,分子与分母的积是48,这个最简真分数是()。 20. A=2×2×3×7,B=2×2×2×7,A和B的最大公因数是(),最小公倍数是()。 21. 一个数的最大因数是36,这个数是(),把它分解质因数是( )。 22. 三个质数的最小公倍数是231,这三个质数是(),(),()。 23. 从0,2,3,6,8和5这六个数中选四个数,组成的同时是2,3,5的倍数的最大四位数是()。

最新小学奥数之数的整除性(题目+答案)

数的整除性 一、填空题 1. 四位数“3AA1”是9的倍数,那么A=_____. 2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____. 3. 能同时被2、3、5整除的最大三位数是_____. 4. 能同时被2、5、7整除的最大五位数是_____. 5. 1至100以内所有不能被3整除的数的和是_____. 6. 所有能被3整除的两位数的和是______. 7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____. 8. 如果六位数1992□□能被105整除,那么它的最后两位数是_____. 9. 42□28□是99的倍数,这个数除以99所得的商是_____. 10. 从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号. 二、解答题 11. 173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字, 所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少? 12.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?

13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券? 14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.

六年级奥数6、整除及数字整除特征

6、整除及数字整除特征 【数字整除特征】 例1 42□28□是99的倍数,这个数除以99所得的商是__。 (上海市第五届小学数学竞赛试题) 讲析:能被99整除的数,一定能被9和11整除。 设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。 又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。经验证,(b-a-8)是11的倍数不合。 所以a-b=3。 又a+b=2或11,可求得a=7,b=4。 从而很容易求出商为427284÷99=4316。 例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。 (1993年全国小学数学奥林匹克初赛试题) 讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。 而1993000÷2520=790余2200。 于是再加上(2520-2200)=320时,就可以了。所以最后三位数字依次是3、2、0。 例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。 (上海市第五届小学数学竞赛试题) 讲析:设千位上和个位上的数字分别是a和b。则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。 要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。 则有 b-a=8,或者a-b=3。 ①当 b-a=8时,b可取9、8; ②当 a-b=3时,b可取6、5、4、3、2、1、0。

小学五年级奥数:数的整除知识点汇总+例题解析 (2)

小学五年级奥数:数的整除知识点汇总+例题解析(2).DOC 数的整除问题;内容丰富;思维技巧性强。它是小学数学中的重要课题;也是小学数学竞赛命题的内容之一。 一、基本概念和知识 1.整除——约数和倍数 例如:15÷3=5;63÷7=9 一般地;如a、b、c为整数;b≠0;且a÷b=c;即整数a除以整除b(b不等于0);除得的商c正好是整数而没有余数(或者说余数是0);我们就说;a能被b整除(或者说b能整除a)。记作b|a.否则;称为a不能被b整除;(或b不能整除a);记作ba。 如果整数a能被整数b整除;a就叫做b的倍数;b就叫做a的约数。 例如:在上面算式中;15是3的倍数;3是15的约数;63是7的倍数;7是63的约数。 2.数的整除性质 性质1:如果a、b都能被c整除;那么它们的和与差也能被c整除。 即:如果c|a;c|b;那么c|(a±b)。

例如:如果2|10;2|6;那么2|(10+6); 并且2|(10—6)。 性质2:如果b与c的积能整除a;那么b与c都能整除a.即:如果bc|a;那么b|a;c|a。 性质3:如果b、c都能整除a;且b和c互质;那么b与c的积能整除a。 即:如果b|a;c|a;且(b;c)=1;那么bc|a。 例如:如果2|28;7|28;且(2;7)=1, 那么(2×7)|28。 性质4:如果c能整除b;b能整除a;那么c能整除a。 即:如果c|b;b|a;那么c|a。 例如:如果3|9;9|27;那么3|27。 3.数的整除特征 ①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面;个位数字是偶数(包括0)的整数;必能被2整除;另一方面;能被2整除的数;其个位数字只能是偶数(包括0).下面“特征”含义相似。

六年级奥数第一讲数的整除

第一讲数的整除 学生黄文浩学生年级六年级学科数学授课教师马老师上课日期2016年 9 月24 日时段 核心容数的整除课型一对一教学目标 1.熟记2、5、3的倍数的特征。 2.灵活掌握8、9、11的倍数的特征。 3.综合运用所学知识灵活解决问题。 重难点掌握2、5、3、8、9、11的倍数的特征,解决问题。 【课首沟通】 了解学生对2、5、3的倍数的特征的掌握情况; 适当的向学生提出问题4、8、9、11的倍数的特征; 引起学生的好奇心,激发学生学习探讨的兴趣。 【知识导图】 精准诊查

【课首小测】 1.人们口上经常所说的单数、双数是什么意思?(口述回答) 2.从下面四数字卡中取出三,按要求组成三位数。(有几个写几个) 奇数: ( ) 偶数:( ) 2的倍数:( ) 3的倍数:( ) 5的倍数:( ) 5的倍数:( ) 既是2又是3的倍数:( ) 【知识梳理】 能被2整除的数:个位数是0、2、4、6、8。 能被5整除的数:个位数是0或5。 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数 导学一 2、5的倍数的特征 1.判断题。 (1)两个奇数的和不一定是偶数。( ) (2)个位上是0的数既是2的倍数,又是5的倍数。( ) 2.填一填。 (1)2的倍数中最小的三位数是( );最大的三位数是( )。 (2)5的倍数中最小的两位数是( );最大的两位数是( )。 (3)既是2的倍数又是5的倍数的最大的两位数是( )。 奇数+奇数= 偶数+偶数= 奇数-奇数= 奇数+偶数= 奇数×奇数= 奇数×偶数= 3.选择题 (1)能被5整除的数,个位上是( )。

五年级奥数-数的整除

专题一数的整除 数的整除问题,内容丰富,思维技巧性强。它是小学数学中的重要课题,也是小学数学竞赛命题内容之一。 一、基本概念和知识 1.整除 例如:15÷3=5,63÷7=9 一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a 能被b整除(或者说b能整除a) 7是63的约数。 2.数的整除性质 性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。 例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。性质2:如果b与c的积能整除a,那么b与c都能整除a. 即:如果bc|a,那么b|a,c|a。 性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。 即:如果b|a,c|a,且(b,c)=1,那么bc|a。 例如:如果2|28,7|28,且(2,7)=1, 那么(2×7)|28。 性质4:如果c能整除b,b能整除a,那么c能整除a。 即:如果c|b,b|a,那么c|a。 例如:如果3|9,9|27,那么3|27。 3.数的整除特征

①能被2整除的数的特征:个位数字是0、2、4、6、8的整数. ②能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。 ③能被4(或25)整除的数的特征:末两位数能被4(或25)整除。 ④能被5整除的数的特征:个位是0或5。 ⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。 ⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的 数字之和的差(大减小)是0或11的倍数。 ⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的 数字所组成的数之差(以大减小)能被7(11或13)整除。 例题1. 四位数“3AA1”是9的倍数,那么A=_____。(小五奥数) 解析:已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之。 练习(1)在“25□79这个数的□内填上一个数字,使这个数能被11整除, 方格内应填_____。(小五奥数) 练习(2)已知一个五位数□691□能被55整除,所有符合题意的五位_____。 例题 2. 1至100以内所有不能被3整除的数的和是_____。 解析:先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和。 (1+2+3+…+100)-(3+6+9+12+…+99) =(1+100)÷2?100-(3+99)÷2?33 =5050-1683=3367 练习所有能被3整除的两位数的和是______。 例题3. 能同时被2、3、5整除的最大三位数是_____。 练习能同时被2、5、7整除的最大五位数是_____。 例题4. 173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字, 所得到的3个四位数,依次可被9、11、6整除。”问:数学老师先后填入的3个

六年级下册数学讲义-小学奥数精讲精练:第十二讲 整除问题(一)(无答案)全国通用

, 第十二讲 整除问题(一) 在学习整数除法时,我们已经知道: 被除数=除数×商数+余数 这里要求除数不为零,且余数小于除数。当两个整数 a 和 b (b ≠0),a 被 b 除的余数为零时(商为整数),则称 a 被 b 整除或者 b 整除 a ,也把 a 叫作 b 的倍数,b 叫 4a 的约数,记作 b |a 。 如果a 被b 除所得的余数不为零,则称a 不能被b 整除,或b 不整除a 很显然,1 是任何整数的约数,即对于任何整数 a ,总有 1|a ,0 是任何非零 整数的倍数,a ≠0,a 为整数,则 a |0。 一般来说,整数 a 是否能被整数 b 整除,只要真正作除法就可判断。但是对于一些特殊数,可以有比较简单的判断办法。 一、数的整除的特征 1.前面我们已学过奇数与偶数,我们正是以能否被 2 整除来区分偶数与奇数的。因此,有下面的结论:末位数字为 0、2、4、6、8 的整数都能被 2 整除。偶数总可表为 2k ,奇数总可表为 2k +1(其中 k 为整数)。 2.末位数字为零的整数必被 10 整除。这种数总可表为 10k (其中 k 为整数)。 3.末位数字为 0 或 5 的整数必被 5 整除,可表为 5k (k 为整数)。

4.末两位数字组成的两位数能被4(25)整除的整数必被4(25)整除。 如 1996=1900+96,因为 100 是 4 和 25 的倍数,所以 1900 是 4 和 25 的倍数,只要考察96 是否4 或25 的倍数即可。 由于4|96 能被 25 整除的整数,末两位数只可能是00、25、50、75。能被 4 整除的整数,末两位数只可能是00,04,08,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的数。 5.末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除。 由于1000=8×125,因此,1000 的倍数当然也是8 和125 的倍数。 如判断765432 是否能被8 整除。 因为765432=765000+432 显然8|765000,故只要考察8是否整除432即可。由于432=8×54,即8|432,所以8|765432。 能被 8 整除的整数,末三位只能是000,008,016,024,…984,992。 由于125×1=125,125×2=250,125×3=375;

六年级下册奥数试题数的整除特征(二)全国通用(含答案)

第2讲数的整除特征(二) 知识网络 上一章我们已经学习了被2、3、5、8、9、25、125等整除的数的特征和一些整除的基本性质,但作为奥林匹克竞赛仅仅掌握以上知识还不够,这一讲继续学习有关数的整除知识。 (1)能被7、11和13整除的数的特征:如果一个数的末三位数字所表示的数与末三以前的数字所表示的差(一定要大数减小数)能被7、11或13整除,那么这个数就能被7、11或13整除。 (2)能被11整除的数的特征还有:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。 重点·难点 同学们在牢记上面整除的数的特征的同时,重点应弄清楚能被7、11、13整除的数为什么有上面的特征。 学法指导 上面数的整除特征可以结合例子来理解。例如:443716,判断它能否被7、11、13整除的方法是:716-443=273。因为273能被7整除,所以443716能被7整除;因为273不能被11整除,所以443716不能被11整除;因为273能被13整除,所以443716能被13整除。记忆要理论联系实际。 经典例题 [例1]用1、9、8、8这四个数字能排成几个被11除余8的四位数? 思路剖析 能被11整除的数的特征是这个数的奇位数字之和与偶位数字之和的差能被11整除。一个数要能被11除余8,那么这样的数加上3后,就能被11整除了,于是得到被11除余8的数的特征是:将偶位数字相加得到一个和数,再将奇位数字相加再加上3,得到另一个和数,如果这两个和数之差能被11整除,那么这个数就是被11除余8的数。 解答 要把1、9、8、8排成被11除余8的四位数,可以把这四个数字分成两组,每组两个数字,其中一组作为千位和十位数,它们的和记作p,另外一组作为百位和个位数,它们之和加上3记作q,且p 和q的差能被11整除,满足要求的分组只可能是p=1+8=9,q=(9+8)+3=20,q-p=20-9=11,所以1988是被11除余8的四位数。 如果一个数被11除余8,那么在奇位的任意两介数字互换,或者在偶位的任意两个数字互换,得到的新数被11除也余8,因此除1988外,还有1889、8918与8819共四个被11除余8的四位数。 [例2]如果下面这个41位数□能被7整除,那中间方格内的数字是几? 思路剖析 对于数555555,由于555–555=0是7的倍数,根据能被7整除的数的特征,555555也能被7整 除;同理999999也能被7整除,所以和也能被7整除,所以我们可以把这个41位数分成几个数的和,其中部分能被7整除。

小学五年级奥数:数的整除知识点汇总+例题解析

小学五年级奥数:数的整除知识点汇总+例题解析 数的整除 数的整除问题,内容丰富,思维技巧性强。它是小学数学中的重要课题,也是小学数学竞赛命题的内容之一。 一、基本概念和知识 1.整除——约数和倍数 例如:15÷3=5,63÷7=9 一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作ba。 如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a 的约数。 例如:在上面算式中,15是3的倍数,3是15的约数;63是7的倍数,7是63的约数。

2.数的整除性质 性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。 即:如果c|a,c|b,那么c|(a±b)。 例如:如果2|10,2|6,那么2|(10+6), 并且2|(10—6)。 性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。 性质3:如果b、c都能整除a,且b和c互质,那么b与c 的积能整除a。 即:如果b|a,c|a,且(b,c)=1,那么bc|a。 例如:如果2|28,7|28,且(2,7)=1, 那么(2×7)|28。 性质4:如果c能整除b,b能整除a,那么c能整除a。 即:如果c|b,b|a,那么c|a。 例如:如果3|9,9|27,那么3|27。

3.数的整除特征 ①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。 ②能被5整除的数的特征:个位是0或5。 ③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。 ④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。 例如:1864=1800+64,因为100是4与25的倍数,所以1800是4与25的倍数.又因为4|64,所以1864能被4整除.但因为2564,所以1864不能被25整除. ⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。 例如:29375=29000+375,因为1000是8与125的倍数,所以29000是8与125的倍数.又因为125|375,所以29375能被125整除.但因为8375,所以829375。

奥数数的整除讲义及答案

数的整除(1)性质、特征、奇偶性 教室:姓名:学号: 【知识要点】: 整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。 (2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。 (4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。整除特征:(1)若一个数的末两位数能被4(或25)整除,则这个数能被4(或25)整除。(2)若一个数的末三位数能被8(或125)整除,则这个数能被8(或125)整除。 (3)若一个数的各位数字之和能被3(或9)整除,则这个数能被3(或9)整除。 (4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。 (5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7(或13)整除,则这个数能被7(或13)整除。 奇偶性:(1)奇数±奇数=偶数(2)偶数±偶数=偶数(3)奇数±偶数=奇数(4)奇数×奇数=奇数(5)偶数×偶数=偶数(6)奇数×偶数=偶数(7)奇数÷奇数=奇数(8)…【典型例题】 例1:一个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几? 解:在两位数中,是17的倍数的数中最大的为17×5=85(17×6=102).于是所求数的前两位数字为85.因为8+5=13,故所求数的个位数字为2、5、8时,该数能被3整除,为使该数最大,其个位数字应为8.最大三位数是858. 例2:1~200这200个自然数中,能被6或8整除的数共有多少个? 解:1~200中,能被6整除的数共有33个(200÷6=33…),能被8整除的数共有25个(200÷8=25).但[6,8]=24,200÷24=8……8,即1~200中,有8个数既被6整除,又被8整除。故总共有:33+25-8=50。

四年级奥数第一讲---数的整除问题

四年级奥数第一讲---数的整除问题

第一讲数的整除问题 一、基本概念和知识: 1、整除: 定义:一般地,如果a,b,c为整数,且a÷b=c,我们就说,a能被b整除(或者说b能整除a)。用符号“b| a”表示。 2、因数和倍数: 如果a能被b整除,即a÷b=c 由a÷b=c得:a=b×c,我们就说b(c)是a 的因数(或约数),a是b(c)的倍数. 提醒:一个数的因数个数是有限的,最小因数是1,最大因数是它本身。 练习: 写出下面每个数的所有的因数: 1的因数:__________________; 7的因数:__________________; 2的因数:__________________; 8的因数:__________________; 3的因数:__________________; 9的因数:__________________; 4的因数:__________________; 10的因数:__________________;

5的因数:__________________; 11的因数:__________________; 6的因数:__________________; 12的因数:__________________; 公因数(公约数):几个自然数公有的因数,叫做这几个自然数的公因数(公约数)。 如:3和4的公因数是:___________,6和8的公因数是:___________, 3、质数与合数: 在上面的题目中,我们发现,1只有1个因数,有些数只有2个因数,还有些数有很多因数。根据因数的多少,我们可以把大于1的自然数分为两类:质数与合数。 (1)质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。 (2)合数:一个数,除了1和它本身还有别的因数,这样的数叫做合数。 (3)0和1既不是质数,也不是合数。、

完整版六年级奥数数论综合

第19讲数论综合 知识点精讲 特殊数的整除特征 1. 尾数判断法 1) 能被2整除的数的特征: 2) 能被5整除的数的特征: 3) 能被4 (或25)整除的数的特征: 4) 能被8 (或125)整除的数的特征: 2. 数字求和法: 3. 99的整除特性: 4. 奇偶位求差法: 5. 三位截断法: 特别地:7X11X13=1001, abcabc=abcX1001 二、多位数整除问题 技巧:1>目的是使多位数变短”途径是结合数的整除特征和整除性质 2>对于没有整除特性的数,利用竖式解决。 三、质数合数 1. 基本定义 【质数】一一 【合数】一一 注:自然数包括0、1、质数、合数. 【质因数】一一 【分解质因数】一一 用短除法和分拆相乘法分解质因数。任何一个合数分解质因数的结果是唯一的。 分解质因数的标准表示形式:N=a1Xa2Xa3X X n,其中a1、a2、a3 an都是合数N的质因数,且

a 1

【互质数】 【偶数】 【奇数】 2. 质数重要性质 1)100以内有25个质数: 2)除了2和5,其余的质数个位数字只能是: 3)1既不是质数,也不是合数 4)在质数中只有2是偶数,其他质数都是奇数 5)最小的质数是2?最小的奇质数是3 6)有无限多个 3. 质数的判断: 1)定义法:判断整除性 2)熟记100以内的质数 3)平方判断法: 例如:对2011,首先442<2011<452,然后用1至44中的全部质数去除2011,即可叛断出2011为质数.

4. 合数 1)无限多个 2)最小的合数是4 3)每个合数至少有三个约数 5. 互质数 1)什么样的两个数- -定是互质数? 注意:分解质因数是指一个合数写成质因数相乘的形式21=3 7,不能写成:3 7=21. 6. 偶数和奇数 1) 2) 偶数;个位数字是1,3,5,7,9的数是奇数 3) 4) 数是他们乘积的一半 5)?因此,要分解的合数应写在等号左边,如: 0属于偶数 十进制中,个位数字是0,2,4,6,8的数是 除2外所有的正偶数均为合数 相邻偶数的最大公约数为2,最小公倍 奇±奇=偶偶±禺=偶偶埼=奇

小学奥数经典专题点拨:数的整除性规律

数的整除性规律 【能被2或5整除的数的特征】(见小学数学课本,此处略) 【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。 例如,1248621各位上的数字之和是 1+2+4+8+6+2+1=24 3|24,则3|1248621。 又如,372681各位上的数字之和是 3+7+2+6+8+1=27 9|27,则9|372681。 【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。 例如,173824的末两位数为24,4|24,则4|173824。 43586775的末两位数为75,25|75,则25| 43586775。 【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。 例如,32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。 3569824的末三位数为824,8|824,则8|3569824。 214813750的末三位数为750,125|750,则125|214813750。 【能被7、11、13整除的数的特征】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。 例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即 7|448,则7|75523。

又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即 13|221,则13|1095874。 再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即 11|99,则11|868967。 此外,能被11整除的数的特征,还可以这样叙述: 一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被11整除时,则这个数便能被11整除。 例如,4239235的奇数位上的数字之和为 4+3+2+5=14, 偶数位上数字之和为2+9+3=14, 二者之差为14-14=0,0÷11=0, 即11|0,则11|4239235。

五年级奥数-②数的整除(2)

数的整除(2)(4.9) 姓名_______________ 数的整除特征: ①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.“特征”包含两方面的意义:一方面,个位数字是偶数(包括0)的整数,必能被2整除;另一方面,能被2整除的数,其个位数字只能是偶数(包括0).下面“特征”含义相似。 ②能被5整除的数的特征:个位是0或5。 ③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。 ④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。 ⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。 ⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。 ⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。 例如:判断13574是否是11的倍数? 解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。因为0是任何整数的倍数,所以11|0。因此13574是11的倍数。 例如:判断1059282是否是7的倍数? 解:把1059282分为1059和282两个数。因为1059-282=777,又7|777,所以7|1059282。因此1059282是7的倍数。 例如:判断3546725能否被13整除? 解:把3546725分为3546和725两个数.因为3546-725=2821。再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725. 例1、36、60、87、95、104、123、235、396、432、505、606、712、918这些数

六年级奥数.数论.整除问题

数的整除 知识框架 一、整除的定义: 当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a 叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b a. 二、常见数字的整除判定方法 1.一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2.一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整 除; 4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除; 5.如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除; 6.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有 两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 7.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被 7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是

六年级奥数数的整除

整除就是整数问题中一个重要的基本概念、如果整数a除以自然数b,商就是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a、此时,b就是a的一个因数(约数),a就是b的倍数、 1、整除的性质 性质1如果a与b都能被m整除,那么a+b,a-b也都能被m整除(这里设a>b)、 例如:3丨18,3丨12,那么3丨(18+12),3丨(18-12)、 性质2如果a能被b整除,b能被c整除,那么a能被c整除。 例如: 3丨6,6丨24,那么3丨24、 性质3如果a能同时被m、n整除,那么a也一定 能被m与n的最小公倍数整除、 例如:6丨36,9丨36,6与9的最小公倍数就是18,18丨36、 如果两个整数的最大公约数就是1,那么它们称为互质的、 例如:7与50就是互质的,18与91就是互质的、 性质4整数a,能分别被b与c整除,如果b与c互质,那么a能被b×c整除、 例如:72能分别被3与4整除,由3与4互质,72 能被3与4的乘积12整除、 性质4中,“两数互质”这一条件就是必不可少的、72分别能被6与8整除,但不能被乘积4 8整除,这就就是因为6与8不互质,6与8的最大公约数就是2、 性质4可以说就是性质3的特殊情形、因为b与c互 质,它们的最小公倍数就是b×c、事实上,根据性质4,我们常常运用如下解题思路: 要使a被b×c整除,如果b与c互质,就可以分别考虑,a被b整除与a被c整除、 能被2,3,4,5,8,9,11整除的数都就是有特征的,我们可以通过下面讲到的一些特征来判断许多数的整除问题、 2、数的整除特征 (1)能被2整除的数的特征: 如果一个整数的个位数就是偶数,那么它必能被2整除、 (2)能被5整除的数的特征: 如果一个整数的个位数字就是0或5,那么它必能被5整除、

六年级奥数数的整除

六年级奥数:第五讲整数问题之一 整数是最基本的数,它产生了许多有趣的数学问题.在中、小学生的数学竞赛中,有关整数的问题占有重要的地位.我们除了从课本上学习整数知识以外,还必须通过课外活动来补充一些整数的知识,以及解决问题的思路和方法。 对于两位、三位或者更多位的整数,有时要用下面的方法来表示: 49=4×10+9, 235=2×100+3×10+5, 7064=7×1000+6×10+4, ………………… 有时我们用a,b,...表示数字,例如abcde是个五位数,也就是 abcde=a×10000+b×1000+c×100+d×10+e 一、整除 整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b的倍数. 1.整除的性质 性质1如果a和b都能被m整除,那么a+b,a-b也都能被m整除(这里设a>b). 例如:3丨18,3丨12,那么3丨(18+12),3丨(18-12). 性质2如果a能被b整除,b能被c整除,那么a能被c整除。 例如: 3丨6,6丨24,那么3丨24. 性质3如果a能同时被m、n整除,那么a也一定 能被m和n的最小公倍数整除. 例如:6丨36,9丨36,6和9的最小公倍数是18,18丨36. 如果两个整数的最大公约数是1,那么它们称为互质的. 例如:7与50是互质的,18与91是互质的. 性质4整数a,能分别被b和c整除,如果b与c互质,那么a能被b×c整除. 例如:72能分别被3和4整除,由3与4互质,72 能被3与4的乘积12整除.

小学奥数教程之数的整除

学习奥数的优点 1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。 2、训练学生良好的数学思维习惯和思维品质。要使经过奥数训练的学生,思 维更敏捷,考虑问题比别人更深层次。 3、锻炼学生优良的意志品质。可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。可以养成坚韧不拔的毅力 4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。 数的整除 学生姓名授课日期 教师姓名授课时长 知识定位 本讲是数论知识体系中的一个基石,整除知识点的特点介于“定性分析与定 量计算之间”即本讲中的题型有定性分析层面的也有定量计算层面的,是很重要 的一讲,也是竞赛常考的知识板块。 本讲力求实现的一个核心目标是让孩子熟悉和掌握常见数字的整除判定特性, 在这个基础上对没有整除判定特性的数字可以将其转化为几个有整除判定特性 的数字乘积形式来分析其整除性质。另外一个难点是将数字的整除性上升到字 母和代数式的整除性上,这个对与学生的代数思维是一个良好的训练也是一个 不小的挑战。

知识梳理 1.常见数字的整除判定方法 (1). 一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除;(2). 一各位数数字和能被3整除,这个数就能比9整除; 一个数各位数数字和能被9整除,这个数就能被9整除; (3). 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除. (4). 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除. 【备注】(以上规律仅在十进制数中成立.) 注: 在给学生讲解常见数字的判定性质时,要分系列来讲,例如有2系列,5系列,3系列和7,11,13系列,便于记忆。对于11的单独判定特性需要重点讲解。 2.整除性质 性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b). 注: 在理解这个性质时,我们要注意,反过来是不成立的,即两数的和(a+b)或差(a-b)能被c整除,这两个数不一定能被c整除.如5 ︱(26+24),但526,524. 可以引入下面的问题 2∣12,12∣36.2能否整除36?显然,回答是肯定的.这是因为36是12的倍数,12又是2的倍数,那么36一定是2的倍数.由此我们又可以得出: 性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,

六年级数学-数的整除测试卷

数的整除测试卷 (90分钟,满分100分) 一、填空题(每小题3分,满分36分) 1.在能够被2整除的两位数中,最小的是. 2.和统称为自然数. 3.12和3,其中是的因数,是的倍数. 4.写出2个能被5整除的两位数:. 5.写出2个既能被5整除,又能被2整除的数:. 6.写出2个2位数的素数:. 7.在11到20的整数中,合数有:. 8.分解素因数:24=. 9.8和12的最大公因数是. 10.18和30的最大公因数是. 11.3和15的最小公倍数是. 12.已知A=2×2×3×5,B=2×3×3×7,则A、B的最小公倍数是, 最大公因数是. 二、选择题(每题3分,满分12分) 13.对20、4和0这三个数,下列说法中正确的是……………………() (A)20能被4整除;(B)20能被0整除; (C)4能被20整除;(D)4能被0整除. 14.下列说法中,正确的是………………………………………………… () (A)1是素数;(B)1是合数; (C)1既是素数又是合数;(D)1既不是素数也不是合数. 15.下列说法中,正确的是………………………………………………… ()

(A)奇数都是素数;(B)偶数都是合数; (C)合数不都是偶数;(D)素数都是奇数. 16.下列各式中表示分解素因数的式子是………………………………… () (A) 2×3=6;(B)28=2×2×7; (C)12=4×3×1;(D)30=5×6. 三、解答题(17、18题每题6分,19~23题每题8分,满分52分) 17.分解素因数. (1)120(2)238 18.写出下列各数的所有约数. (1)6(2)105 19.求下列各组数的最大公因数和最小公倍数. (1)12和18(2)24和36 20.写出最小的8个不同的素数. 21.写出最小的8个不同的合数. 22.在3至14的自然数中,哪些数与其它11个数都互素? 23.求两个自然数,使它们的和为84,它们的最大公约数为12.

相关文档
最新文档