汽轮机转子

汽轮机转子
汽轮机转子

]由若干个实心轮盘和两个端℃以下)。

,将叶轮热套在轴上。待叶轮冷却后,内孔对轴

就产生了很大的压紧力,保证工作时安全可靠。这种转子的主轴加工成阶梯形,中间直径大,两端直径小,这样不仅有利于减少转子的挠度,而且便于叶轮的套装与定位。套装转子的优点是加工制造方便、节省材料、易保证质量,便于更换零件。缺点是轮孔处应力较大、转子的刚性较差、高温下易松动、轴向长度大。所以只适用于中、低冲动式汽轮机(工作温度在图整锻式转子]的叶轮、主轴和其他零件是用整体毛坯锻造以后再加工的。整锻式转子的主要优点是:叶轮和主轴是整体的,高温下不会松动;装配零件少、结构紧凑;强度高、刚性好。缺点是锻件尺寸大、加工制造困难、材料消耗大,主要用于大功率汽轮机的高压转子。

图组合式转子]是在同一转子上,高压部分采用整锻式结构,低压部分采用套装式结构。这种转子兼顾了套装式和整锻式的优点,因而广泛应用于高参数、中等功率的汽轮机上。

焊接转子[图轴拼焊而成。这种转子的优点是强度高、相对重量轻、结构紧凑、刚度大,而且能适应低压部分需要大直径的要求,因而常用作大型汽轮机的低压转子。焊接转子要求材料有很好的焊接性能,对焊接工艺的要求也很高。但是,随着冶金和焊接技术的不断发展,焊接转子的应

用必将日益广泛。

第十章 蒸汽动力循环及汽轮机基础知识

- 113 - 第十章 蒸汽动力循环及汽轮机基础知识 10.1 蒸汽动力循环 核电站二回路系统的功能是将一回路系统产生的热能(高温、高压饱和蒸汽)通过汽轮机安全、经济地转换为汽轮机转子的动能(机械能),并带动发电机将动能转换为电能,最终经电网输送给用户。 热能转换为机械能是通过蒸汽动力循环完成的。蒸汽动力循环是指以蒸汽作为工质的动力循环,它由若干个热力过程组成。而热力过程是指热力系统状态连续发生变化的过程。工质则是指实现热能和机械能相互转换的媒介物质,其在某一瞬间所表现出来的宏观物理状态称为该工质的热力状态。工质从一个热力状态开始,经历若干个热力过程(吸热过程、膨胀过程、放热过程、压缩过程)后又恢复到其初始状态就构成了一个动力循环,如此周而复始实现连续的能量转换。核电厂二回路基本的工作原理如图10.1所示。 节约能源、实现持续发展是当今世界的主流。如何提高能源的转换率也是当今工程热力学所研究的重要课题。电厂蒸汽动力循环也发展出如卡诺循环、朗肯循环、再热循环、回热循环等几种循环形式。 10.1.1 蒸汽动力循环形式简介 1.卡诺循环 卡诺循环是由二个等温过程和二个绝热过程组成的可逆循环,表示在温熵(T -S )图中,如图10.2所示。图中, A-B 代表工质绝热压缩过程,过程中工质的温度由T 2升到T 1,以便于从热源实现等温传热; B-C 代表工质等温吸热过程,工质在温度 凝 结 水 水 蒸 汽 蒸汽推动汽轮机做功,将蒸汽热能转换成汽轮机动能;继而汽轮机带动发电机发电 。 凝结水从蒸汽发生器内吸收一回路冷却剂的热量变成蒸汽 热力循环 图10.1核电厂二回路基本的工作原理 T 1 S T 2

防止汽轮机组大轴弯曲的技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 防止汽轮机组大轴弯曲的技术措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3310-67 防止汽轮机组大轴弯曲的技术措施 (正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、汽轮机冲转前必须检查大轴偏心度<0.076mm,大轴晃动值不超过原始值的0.02 mm。汽轮机大修后启动时,必须用千分表在每个轴承挡油环上测量主轴的跳动量<0.0254mm。 2、汽缸上下缸温差(指调端高压缸上下部排汽区;中压缸上下两端排汽区)>42℃汽轮机组禁止启动。主汽阀入口温度至少具有56℃的过热度。 3、机组冷、热态启动应按“启动时主蒸汽参数”、“冷态启动转子加热规程”、“热态启动推荐值”图表曲线进行。 4、在任何情况下,汽轮机第一级蒸汽温度不允许比第一级金属温度低56℃或高111℃。 5、热态启动时,应先送汽封后抽真空,汽封送汽

前必须充分疏水,确认管道无水后才可向汽封送汽。 6、汽封供汽必须具有14℃以上的过热度,低压供汽封汽温度控制在121~177℃之间。 7、机组未盘车前禁止向汽封供汽。 8、当高、中压汽封供汽温度小于150℃或汽封供汽温度与调端高压缸端壁温差小于85℃时,检查汽封喷水应关闭。 9、在机组启动过程中,按“汽轮机转速保持推荐值”“冷态转子加热规程”“热态启动推荐值”曲线进行暖机,暖机时间由中压缸进汽温度达到260℃时开始计算。 10、在机组启动过程中,要有专人监视汽轮机组各轴瓦振动,汽轮的轴振动应在0.125mm以下,通过临界转速时,轴承振动超过0.1mm或相对轴振动值超过0.254mm时立即打闸停机。严禁强行通过临界转速或降速暖机。 11、机组运行过程中轴承振动不超过0.03mm或相对轴振动不超过0.08mm,超过时应设法消除,当相对

汽轮机介绍

1.600MW-1000MW超临界及超超临界汽轮机研制 汽轮机研究和实际运行表明:24.1MPa/538℃/566℃超临界机组热效率可比同量级亚临界机组提高约2~2.5%。而31MPa/566℃/566℃/566℃的超超临界机组热效率比同量级亚临界提高4~6%。国外各大公司更趋向于采用超临界参数来提高机组效率。就600MW~1000MW 等级超临界汽轮机而言,可以说已经发展到成熟阶段,而且其蒸汽参数还在不断提高,以期获得更好的经济性,如采用超超临界参数。 目前哈汽公司与日本三菱公司联合设计了型号为CLN600-24.2/566/566型超临界参数、一次中间再热、单轴、三缸、四排汽反动式汽轮机。高中压部分采三菱公司的技术,低压缸采用哈汽厂自主开发的新一代亚临界600MW汽轮机技术,哈汽厂与日本三菱公司联合设计,合作制造。 为进一步提高机组效率,哈汽公司已开展超超临界汽轮机前期科研开发工作。 2.600MW-1000MW核电汽轮机研制 我国通过秦山核电站(一、二、三期)和广东大亚湾、岭澳等核电站的建设,已经在核电站建设上迈出了坚实的第一步。哈汽公司成功地为秦山核电站研制了两台650MW核电汽轮机,积累了丰富的设计制造经验,为进一步发展百万等级核电准备了必要的条件。 目前哈汽公司已完成百万千瓦半转速核电汽轮机制造能力分析,并开展了前期科研开发工作。 3.大型燃气-蒸汽联合循环发电机组 联合循环由于做到了能量的梯级利用从而得到了更高的能源利用率,已以无可怀疑的优势在世界上快速发展。目前发达国家每年新增的联合循环总装机容量约占火电新增容量的 40%~50%,所有世界生产发电设备的大公司至今(如美国的GE公司87年开始、ABB90年开始)年生产的发电设备总容量中联合循环都占50%以上。最高的联合循环电站效率(烧天然气)已达55.4%,远远高于常规电站,一些国家(如日本等)已明确规定新建发电厂必须使用联合循环。 由于整体煤气化联合循环发电机组 (IGCC) 是燃煤发电技术中效率最高最洁净的技术 , 工业发达国家都十分重视,现在世界上已建成或在建拟建IGCC电站近20座,一些已进入商业运行阶段。 燃气轮发电机组在我国近几年才有较大发展,目前装机占火电总容量的3.5%,大部分由国外购进,国产机组只占9.4%,且机组容量小、初温低,机组水平只处于国外80年代水平,且关键部件仍有外商提供远不能满足大容量、高效率的联和循环机组的需要。 目前,哈汽公司与美国通用电气公司联合生产制造9F级重型燃气轮机及联合循环汽轮机。 4.300MW-600MW空冷汽轮机研制 大型空冷机组的研制与开发,不仅是国家重点扶持的攻关项目,对一个地区而言也是一个新的增长点,因为它可以带动一大批相关产业的发展。哈汽公司早期就已开展了空冷系统的研究,八.五期间,为内蒙丰镇电厂设计制造了200MW空冷汽轮机组,该机组启停灵活,安全满发,而且振动小、轴系十分稳定。为本项目创造了开发设计制造等有利的依托条件。 空冷系统与常规湿冷系统相比,电厂循环水补充量减少95%以上,空冷机组在缺水地区广泛采用,发展空冷技术是公司产品发展方向。 哈汽公司在发展空冷技术方面占有一定优势,成功地设计、制造了内蒙丰镇电厂4台200MW间接海勒系统空冷机组,目前机组运行良好,在高背压-0.1MPa下,机组安全满发,启停灵活,轴系稳定,同时在丰镇空冷机组上,做了大量试验研究: ①海勒间冷系统中混合式喷淋冷凝器试验。 ② 710mm动叶片的频率和动应力试验。 ③末级流场及湿度的测量 公司有进一步发展空冷奠定基础。曾为叙利亚阿尔电站设计了二台200MW直接空冷机组,针对直接空冷机组运行特点:高背压、背压变化范围 宽的特点,设计了落地轴承,低压缸和带冠520末级叶片。在300MW间接与直接空冷机组的设计和运行基础上进行了空冷300MW汽轮机初步设计,并针对大同二电厂,设计了二个600MW空冷机组方案。 ①哈蒙间接空冷600MW机组

汽轮机转子及构成

汽轮机转子及构成 1转子定义 汽轮机所有转动部件的组合体称为转子(图13)。它主要包括:主轴、叶轮(转鼓)、叶片、联轴器等部件。 图13 转子 转子的作用:汇集各级动叶栅所得到的机械能,并传给发电机。 转子受力分析:传递扭矩、离心力引起的应力、温度不均匀引起的热应力、轴系振动所产生的振动应力。 汽轮机转子在高温蒸汽中高速旋转,不仅要承受汽流的作用力和由叶片、叶轮本身离心力所引起的应力,而且还承受着由温度差所引起的热应力。 此外,当转子不平衡质量过大时,将引起汽轮机的振动,转子要承受轴系振动所产生的振动应力。因此,转子的工作状况对汽轮机的安全、经济运行有着很大的影响。 2转子的分类 根据汽轮机的分类,转子分为两种:轮式转子、鼓式转子。前者用于冲动式汽轮机,后者用于反动式汽轮机,鼓式转子上的动叶直接安装在转鼓上。 按临界转速是否在运行转速围,分为刚性转子和柔性转子。在启动过程中,刚性转子启动就很方便,不存在跨临界区域,而柔性转子因需要快速的跨临界,故要求用户在实际启动过程中,要充分暖机,为快速跨临界作好准备。 1、轮式转子 轮式转子根据转子结构和制造工艺的不同,可分为:套装转子、整段转子、焊接转子以及组合转子。

1-油封环2-轴封套3-轴4-动叶栅5-叶轮6-平衡槽 图14 套装转子示意图 (1)套装转子 套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套在主轴上,各部件与主轴之间采用过盈配合,并用键传递力矩。主轴加工成阶梯形,中间直径大。 适用性:只适用于中、低参数的汽轮机和高参数汽轮机的中、低压部分,其工作温度一般在400℃以下。不宜用于高温高压汽轮机的高、中压转子。 ①优点:加工方便,材料利用合理,质量容易得到保证。 ②缺点:轮孔处应力较大,转子刚性差,高温下套装处易松动。 (2)整锻转子 叶轮和主轴及其他主要零部件由整体毛坯加工制成,没有热套部件。主轴的中心通常钻有中心孔,其作用是: ①去掉锻件中残留的杂质及疏松部分; ②用来检查锻件的质量; ③减轻转子的重量。 其缺陷在于: ①使转子工作应力增大,制造成本增加; ②运行中易出现中心孔进油、进水、腐蚀,引起转子不明的振动; ③检修、动平衡复杂。 随着锻造、热处理及探伤技术水平的提高,无中心孔的转子结构应运而生。 ①优点:不会出现零件松动问题,结构紧凑,强度、刚度高,适合高温、高应力环境下工作; ②缺点:贵重材料消耗大,对加工工艺要求高。 适用性:中小型汽轮机的高压转子、大型汽轮机的任何转子(高参数或超高参数机组的高压转子)。

核电汽轮机介绍-考试答案-82分

核电汽轮机介绍 1. 由上海电气供货的我国首台出口325MW 核电汽轮机用于哪个哪个国家? ( 3.0 分) A. 印度 B. 土耳其 C. 巴基斯坦 2. 上海电气百万等级核电机组26 平米的低压缸模块末级叶片长度为?( 3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: B √答对 3. 上海电气百万等级核电机组适用于AP1000 的高压缸模块型号为?( 3.0 分) A. IDN70 B. IDN80 C.IDN90 我的答 B √答对 4. 上海电气百万等级核电汽轮机组转速?( 3.0 分)

A. 1500RPM B. 3000RPM C.3600RPM 我的答 A √答对 5. 上海电气百万等级核电机组20 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: A √答对 6. 上海电气的山东石岛湾200MW 项目是什么堆型?(3.0 分) A. M310 B. 华龙一号 C. 高温气冷堆 我的答案: C √答对 7. 上海电气出口巴基斯坦的300MW 等级核电汽轮机共有几台?( 3.0 分) A. 2 台 B. 3 台 C. 4 台 我的答案: C √答对 8. 至2018 年 6 月,上海电气已投运核电汽轮机多少台?( 3.0 分)

A. 10 台 B. 11 台 C. 12 台我的答案: C √答对 9. 上海电气百万等级核电机组30 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: C √答对 10. 上海电气百万等级核电汽轮机高压缸模块运输方式为?(3.0 分) A. 整缸发运 B. 散件发运 C. 其他 我的答案: A √答对 1. 以下哪些为高温气冷堆堆核电汽轮机特点?( 4.0 分)) A. 进汽参数高 B. 无MSR C.低压缸加强除湿 我的答ABC √答对 2. 以下哪项说法是错误的?( 4.0 分)) A. 2008 年上海电气获得阳江和防城港CPR1000 核电汽轮机订单 6 台

振动案例第三篇:不对中振动

不对中三种类型 轴瓦中心标高偏差 联轴器不对中 转子与静子不同心

案例1:波型联轴器不对中振动 现象:XF电厂2号机组,300MW,东方生产。2001年10月大修启动,运行出现一系列振动瓦温问题。 分析:2002年1月5日,对机组临时检修后检测振动数据。获得#6、#7轴振动的升速过程、轴心轨迹和轴中心平均位置,发现振动特征及故障如下: (1)升速过程振动和3000r/min空载振动的2倍频分量十分显著。如图1、图2中,本次临检更换了上瓦碎裂的#7号轴承后,#6、#7轴振动性质相比机组大修后初次启动基本没改变。 (2)通频振动的轴心轨迹均为正向进动,但形状比较复杂。图3指出,轴颈上预载荷较为严重。 (3)轴中心平均位置随转速的变化均在间隙圆内,但#6轴中心位置有异常。如图4,转子顺时针旋转时,#6轴颈中心应从间隙圆低部向左上方浮起,而不是向右上方浮起。#6轴颈浮起量也偏小。故#6轴颈与轴承安装偏移及载荷偏大问题值得怀疑。由于发电机转子重量大大超过励磁机,此种偏移可能再度导致#7瓦损坏。 证实:后来检修检查发现,励发对轮严重不对中,一个螺栓剪断,引起#6、#7瓦振动及损坏。 案例2:齿型联轴器不对中振动 概述:某大型舰船内的主发电机组系耦合式高速旋转机械。该机组振动频谱中,包含三个振动幅值均较突出的故障频率,即主激励频率、主激励频率的精确2倍频及滞后性半频。最后诊断及检修证实,主激励频率的精确2倍频所代表的是活动式联轴器连接的汽轮机转子和高速齿轮轴的严重“不对中”故障,是机组振动随负荷急剧爬升、轴承油膜失稳及轴瓦损伤的根本原因。 分析:选取某时段机组从空负荷到带负荷50%N的振动数据。机组空负荷时振动良好,频谱成分也较单纯,而带负荷后主要频谱成分相对幅值变化异常,图1还给出机组中等负荷工况、部分最有代表性测点的振动频谱,能观察到1000Hz范围内各种频谱的分布。 f1=25.0 Hz 发电机转子主激振频率

某空压机组不对中故障案例分析

某空压机组不对中故障案例分析 转子不对中通常是指相邻两转子的轴心线与轴承中心线的倾斜或偏移程度。 联轴器不对中又可分为平行不对中、偏角不对中和平行偏角不对中三种情况。 不对中故障的特征如下: 1. 转子径向振动出现二倍频,以一倍频和二倍频分量为主,轴系不对中越严重,二倍频所占的比例就越大,多数情况甚至出现二倍频能量超过一倍频能量; 2. 振动信号的原始时域波形呈畸变的正弦波; 3.联轴器两侧相邻两个轴承的油膜压力呈反方向变化,一个油膜压力变大,另一个则变小; 4. 联轴器不对中时,轴向振动较大,振动频率为一倍频,振动幅值和相位稳定; 5.联轴器两侧的轴向振动基本上是呈现出180°反相的; 6. 典型的轴心轨迹为月牙形、香蕉形,严重对中不良时的轴心轨迹可能出现“8”字形;涡动方向为同步正进动; 7. 振动对负荷变化敏感。当负荷改变时,由联轴器传递的扭矩立即发生改变,如果联轴器不对中,则转子的振动状态也立即发生变化。一般振动幅值随着负荷的增加而升高; 8. 轴承不对中包括偏角不对中和标高变化两种情况,轴承不对中时径向振动较大,有可能出现高次谐波,振动不稳定。由于轴承座的热膨胀不均匀而引起轴承的不对中,使转子的振动也要发生变化。但由于热传导的惯性,振动的变化在时间上要比负荷的改变滞后一段时间。 第一部分设备概述 这台机组由汽轮机驱动压缩机,汽轮机额定功率5714KW,额定转速为5874r /min,一阶临界转速为3850r/min。 正常进汽入口压力为8.93MPa,进汽温度为535℃;排汽压力为 3.92MPa,排汽温度为230℃,振动报警值为45μm,联锁停机值为75μm。压缩机形式为3MCL906,水平剖分式,中间由膜片联轴器联接。

汽轮机试题及答案

汽轮机试题及答案 一、选择 1.汽轮机冷却油温的设备是( C ) A.空冷器 B.凝汽器 C.冷油器 D.冷水器 2.我厂发电机静子的冷却方式是( B ) A.空冷 B.水冷 C.氢冷 D.氮冷 3.汽轮机冷态启动要求汽缸金属温度在( A )以下。 A.150℃ B.200℃ C.250℃ D.300℃ 4.汽轮发电机的出口风温应小于( B )。 A.60℃ B.65℃ C.70℃ D.75℃ 5.设备已经严重损坏或停机速度慢了会造成严重损坏的事故,停机时应采用( B )。 A.故障停机 B.紧急停机 C.滑参数停机 D.定参数停机

6.汽轮发电机的进口风温应小于( C )。 A.30℃ B.35℃ C.40℃ D.45℃ 7.用于除去锅炉给水中的溶解氧,以保护锅炉避免氧腐蚀的设备是( D )。 A.低压加热器 B.疏水扩容器 C.均压箱 D.除氧器 8.电厂中给锅炉补水的设备是( D )。 A.疏水泵 B.凝结泵 C.射水泵 D.给水泵 9.汽轮机是把蒸汽的( A )转变成轴旋转的( A )。 A.热能,机械能 B.机械能,电能 C.化学能,机械能 D.热能,电能 10.按初蒸汽参数分,我厂汽轮机为( B )。 A.低压汽轮机 B.中压汽轮机 C.高压汽轮机 D.超高压汽轮机 11.冷油器油侧的压力应( C )水侧的压力。 A.小于 B.等于 C.大于 D.不大于 12.我厂余热发电汽轮机为( B )。 A.凝汽式 B.抽汽式 C.背压式 D.中间再热式

13.在停机过程中,主蒸汽参数保持在额定值不变,仅通过关小调节汽门渐少进汽量来减少负荷,直至减负荷到零的停机方式称为 ( A )。 A.定参数停机 B.滑参数停机 C.紧急停机 D.故障停机 14.先送轴封,后抽真空的方式适用于( B )启动方式。 A.冷态启动 B.热态启动 C.定参数启动 D.滑参数启动 15.热态启动时主蒸汽的过热度应不低于( C )。 A.30℃ B.40℃ C.50℃ D.60℃ 16.危急保安器的作用是(A ) A. 防止机组超速,造成设备毁坏 B. 防止机组真空度遭到破坏 C. 防止机组发生火灾 D. 防止汽轮机进水 17.给汽轮发电机提供冷却水的水泵是( A )。 A..冷水泵 B.射水泵 C.循环泵 D.凝结泵

汽轮机设备及系统知识题库

汽轮机设备及系统知识题库 一、判断题 1)主蒸汽管道保温后,可以防止热传递过程的发生。(×) 2)热力除氧器、喷水减温器等是混合式换热器。(√) 3)在密闭容器内不准同时进行电焊及气焊工作。(√) 4)采用再热器可降低汽轮机末级叶片的蒸汽湿度,并提高循环热效率。(√) 5)多级汽机的各级叶轮轮面上一般都有5-7个平衡孔,用来平衡两侧压差,以减少轴向推力。(×) 6)发电机护环的组织是马氏体。(×) 7)" 8) 9)汽轮机找中心的目的就是为使汽轮机机组各转子的中心线连成一条线。(×) 10)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 11)蒸汽在汽轮机内做功的原理分为冲动作用原理和反动作用原理。(√) 12)汽缸冷却过快比加热过快更危险。(√) 13)盘车装置的主要作用是减少冲转子时的启动力矩。(×) 14)安装叶片时,对叶片组的轴向偏差要求较高,而对径向偏差可不作要求。(×)15)引起叶片振动的激振力主要是由于汽轮机工作过程中汽流的不均匀造成的。(√) 16): 17)转子叶轮松动的原因之一是汽轮机发生超速,也有可能是原有过盈不够或运行时间过长产生材料疲劳。(√)

18) 19)对于汽轮机叶片应选用振动衰减率低的材料。(×) 20)大螺栓热紧法的顺序和冷紧时相反。(×) 21)末级叶片的高度是限制汽轮机提高单机功率的主要因素。(√) 22)猫爪横销的作用仅是承载缸体重量的。(×) 23)轴向振动是汽轮机叶片振动中最容易发生,同时也是最危险的一种振动。(×)24)发电机转子热不稳定性会造成转子的弹性弯曲,形状改变,这将影响转子的质量平衡,从而也造成机组轴承振动的不稳定变化。(√) 25); 26)蒸汽对动叶片的作用力分解为轴向力和圆周力,这两者都推动叶轮旋转做功。(×)27)为提高动叶片的抗冲蚀能力,可在检修时将因冲蚀而形成的粗糙面打磨光滑。(×) 28) 29)除氧器的水压试验在全部检修工作结束,保温装复后进行。(√) 30)造成火力发电厂效率低的主要原因是汽轮机机械损失。(×) 31)发电机护环发生应力腐蚀开裂一般是从护环外壁开始。(×) 32)每次大修都应当对发电机风冷叶片进行表面检验。(√) 二、选择题 1): 2)火电机组启动有滑参启动和定参数两种方式,对高参数、大容量机组而言,主要是(a)方式。 3) a. 滑参数; b. 定参数; c. 任意; d. 定温。 4)在允许范围内,尽可能保持较高的蒸汽温度和压力,则使(c)。

JB1265-85汽轮机转子和主轴真空处理的碳钢和合金钢锻件技术条件

JB 1265-85汽轮机转子和主轴真空处理的碳钢和合 金钢锻件技术条件 本标准适用于蒸汽参数不超过565C,用经真空处理的钢锻制的电站汽轮机主轴和整体转子锻件。 1订货条件 1. 1需方应在订货合同中规定锻件的级别、要求的试验项目、补充要求(附录A)和任选项目。 1. 2需方应提供标明机械性能试验试样位置、锻件和中心孔尺寸的粗加工图、和最终的精加工图。 2制造 2. 1冶炼和浇注 2. 1. 1锻件用钢应在碱性电弧炉中冶炼,并需真空处理。 2. 1. 2经需方同意,也承诺采纳其它冶炼工艺。 2. 1. 3钢水应在浇注前或浇注中进行真空处理,以去除有害气体,专门是氢。在真空处理过程中真空系 统的能力,必须大到足以便开浇时的两分钟内就能将初始增高的压强降至低值。 2. 2切头切尾 每个钢锭应有足够的切除量,以确保成品锻件无缩孔,无严峻的偏析及有害的缺陷。 2. 3锻造 必须尽可能使整个锻件得到平均的组织。锻件在锻压时应使整个截面金属充分锻透,专门是保持锻 件与钢锭的轴线大致重合。钢锭较好的一端应为联轴器端。 2. 4热处理 2. 4. 1锻件锻后热处理,必须至少进行一次相当高于相变温度的正火处

理。随后,锻件应进行回火处 理。 2. 4. 2性能热处理,应在锻件第一次粗加工后进行。关于1、2、3、 4、9和10级钢应为正大和回火。关于 5、6、7和8级钢应为淬火和回火。正火处理时,供方可选择使锻件在静止空气或鼓风中冷却,征得需方 同意,1、2、3、4、9和10级钢可采纳较快的冷却速度。可采纳液体淬火、喷水或喷雾冷却得到较快的冷却 速度。 2. 4. 2. 1正火或淬火处理应高于相变温度,但要低于锻后热处理的正火温度。 2 ? 4. 2. 2回火温度尽量高些,以满足机械性能要求。1?7和10级钢回火温度不得低于580 °C ,8级钢 不得低于565C, 9级钢不得低于650C。 2. 4. 3在性能热处理,及随后的粗加工和打中心孔后,锻件应在最终回火温度以下不低于55C的温度 范畴内排除应力,但不得低于550 C o 2 ? 4. 3. 1征得需方预先同意,排除应力温度能够是接近、等于或稍超过最终回火温度,以便调整最终强 度或韧性,如排除应力温度在最终回火温度的15C范畴内或稍高一些, 则必须作附加抗拉试验。 2. 5机械加工 2. 5. 1锻件性能热处理前,所有表面应进行第一次粗加工。 2. 5. 2锻件在性能热处理后,排除应力和热稳固性试验之前,应进行第二次粗加工。 2. 5. 3供方可在排除应力处理往常对锻件打中心孔。需方另有要求时按附录A.A.2执行 2 ? 5 ? 3. 1按需方订货图规定的尺寸和公差打中心孔。为了去除由超声波检测出来的不承诺的中心缺

核电厂汽轮机基础知识

核电厂汽轮机基础知识 核电厂大多数都使用饱和汽,为了降低发电成本,单机容量已增加到1000MW级。在总体配置上,饱和汽轮机组总是设计成高压缸和一组低压缸串级式配置,在进入低压缸前设置有汽水分离再热器,有的设计在汽水分离再热器和低压缸之间设置中压缸或中压段。一般情况下,核电厂大功率汽轮机的所有汽缸都设计成双流的,且两个或更多的低压缸是并联设置。还有在高压缸两端对称地每端布置两个低压缸的设计。我国田湾核电厂就采用这种汽轮机配置。大亚湾核电厂的汽轮机为英国公司设计制造的多缸单轴系冲动式汽轮机。汽轮机的转速为3000r/min,额定功率为900MW,新汽参数为6.63MPa,283℃,低压缸排汽压力0.0075MPa,额定负荷下蒸汽流量为5515t/h,汽轮机为4缸、六排汽口型式。一个高压缸和3个低压缸皆为双流对分式。新蒸汽分4路经高压缸汽室后由进汽短管导入高压缸,高压缸的两个排汽口,各通过4根蒸汽管与低压缸两侧的汽水分离再热器相连。高压缸排汽在汽水分离再热器经汽水分离再热后,进入低压缸,每个低压缸的两个排汽口与一台凝汽器相接,整台汽轮机,共有6个抽汽口,供2组高压加热器和4组低压加热器以及给水泵汽轮机用汽。除氧器用汽来自高压缸排汽。高压缸为铬钼材料铸造的单层缸结构,水平对分型式,每一汽流流向各有5级。其中隔板皆采用隔板套结构,高压缸转子由镍铬钼钒钢锻成,每个流向都有锻成一体的5级叶轮,各级叶片的叶根皆为多*型,叶片长度为91mm,叶片的顶部有预加工的铆钉头,用来装置围带,每一级叶片的围带都由数段组成扇形叶片组。高 有基本相同的结构,皆为双层缸,水平对分式。内缸包含环形进汽室和所有的隔板。外缸提供低阻力的蒸汽流道并将内缸的反冲力矩传递给汽轮机基础。低压缸的内、外缸都由碳钢制造,内缸为焊接结构,外缸为焊接组装结构。低压缸隔板由铁素体不锈钢制造,隔板的结构为标准的焊接静片和内外围带结构,嵌在隔板套的槽内。低压转子由镍铬钼钒钢锻成,轴心钻有孔,双流整体式结构,每一流向5级叶片,动叶片由铁素体不锈钢制造,末级叶片的前缘装有一片抗腐蚀的司太立硬质合金复盖层。末级叶片之间装有交错布置的拉金,防止叶片在低负荷下的自激振动。前4级低压动叶片采用销钉固定的多*式叶根,末级叶片采用强度很高的侧向嵌入的枞树型叶根。

90万千瓦核电站汽轮机简介

90万千瓦核电站汽轮机简介: 1、由热能变为机械能的原动机:蒸汽机、内燃机、涡轮机——又分为汽轮机和燃气轮机。汽轮机的特点:高温高压高转速,功率大体积小。 2、汽轮机分冲动式、反动式、轴流式、幅流式。我们现在用的是轴流式——冲动式汽轮机。这种汽轮机效率η高,功率N大,体积V小。 3、汽轮机的基本原理: 汽体膨胀,产生速度,冲击推动叶片作功,带动转子旋转产生扭矩。○1汽轮机作功需要一个高热源和一个低冷源,在海水温度一定时,初参数(t,p)愈高,可提高可利用焓降h,效率η就能提高。另一方面,尽量利用汽体的汽化潜热r,也是提高效率η的一个办法。 机组的初参数:283℃,6.71Mpa,664.8kcal/kg 排汽参数:40.3℃,7.5kpa,614.9 kcal/kg 再加上高压缸排汽经再热,可利用焓降h仅为104.2 kcal/kg,这个焓降是很低的。 在凝汽器内放出的汽化潜热r=574.9 kcal/kg,大量的热量排到大海里去。对于1kg汽体而言,排到大海里的热量是可利用热量的5.5倍,所以我们要尽量减少汽化潜热r的损失。低真空采暖是一个最好的办法,几乎100%利用汽化潜热。可是一年还有夏天,我们只能利用加热器加热给水减少汽化潜热r的损失,提高机组效率。 低真空的形成:1kg水的容积0.001m3,初蒸汽的容积0.2426 m3/kg,排汽的容积19. 6m3/kg,循环水凝结1kg排汽,可使19. 6 m3的空间形成真空。汽机后面有真空,前面的汽体才能膨胀出现速度,达到汽流作功的目的。 所以,想要提高效率η,就要提高初始参数,提高可利用焓降h,利用汽化潜热r。核电站提高初始参数受到限制,效率低是必然的,但核电站优势是明显的,将来国家发电主要依靠核电站。 机组增大功率主要是增大蒸汽流量。 ○2速度三角形:汽流的相对速度w,轮周速度u,绝对速度c,进口角α,出口角β。 速度三角形是计算效率、功率的依据。 ○3叶片、机翼的升力F: v1>v2,p1<p2,p2- p1=F 若是平板或圆球在气流中就不可能产生升力。 4、制造汽轮机的关键技术: ○1长叶片的设计、加工。1g质量产生的离心力达到几吨的力。 ○2几十吨重的大锻件、大铸件,都是合金钢。 ○3大机床高精度的加工设备。

汽轮机转子不平衡诊断及治理

汽轮机转子不平衡诊断及治理 发表时间:2018-07-03T10:22:54.897Z 来源:《电力设备》2018年第7期作者:齐莹莹 [导读] 摘要:工业生产是经济的重要组成部分,在生产过程中,汽轮机的装机容量在需求下不断提升。 (哈尔滨汽轮机厂有限责任公司黑龙江省哈尔滨 150046) 摘要:工业生产是经济的重要组成部分,在生产过程中,汽轮机的装机容量在需求下不断提升。由此,也使得汽轮机的结构愈加的复杂,零件也更加精密,因此出现故障的几率和引发故障的原因也不断增加,故障的诊断变得越来越有难度。而汽轮机转子出现不平衡就会极大地影响发电效率,造成发电量不足,所以说对汽轮机转子不平衡的问题的研究以及如何治理显得尤为重要。本文将会简单介绍汽轮机转子不平衡的现象,讲解如何诊断汽轮机转子不平衡状况,对汽轮机转子不平衡治理加以深入地研究分析,希望利用这些分析使得汽轮机转子的工作运营能够稳定,更好地完成工作,促进工业生产的更好发展。 关键词:汽轮机;转子;不平衡;诊断;治理 0引言 汽轮机的重要组成部分之一就是汽轮机转子。在现实问题中,汽轮机转子使得汽轮机发生故障导致运行出状况的主要原因有两个方面:一方面是转子重量偏离重心,另一方面就是转子破损。有资料分析显示,在旋转机械中有超过一半的故障是由转子不平衡引起的,汽轮机也包括在其中。因此,加大对汽轮机转子不平衡的诊断以及原理研究具有十分重要的现实意义,合理的治理方法地提出也刻不容缓。 1 汽轮机转子不平衡的种类 1.1 可汽轮机转子不平衡的种类 1.1.1原始不平衡 指的是在制造过程中就已经发生差错,例如装备达不到标准,用于制造的材料不均匀等,这些都会使汽轮机转子在出厂时因振幅过大而致使平衡精度不符合标准。 1.1.2渐发性不平衡 由于时间较长,汽轮机转子会出现不均匀的污垢沉积现象,灰尘等物质磨损叶片或叶轮,磨蚀转子,都会造成不平衡的幅度越来越大。 1.1.3突发性不平衡 转子零部件由于某种缘故脱落或者叶轮出现卡塞,机组真值突变。 1.2 汽轮机转子不平衡原理 在旋转过程中,汽轮机转子将会产生离心力,离心力的大小可以根据公式F=mew2来进行确定,其中e指的是转子的偏心距。离心力属于交变力,它最终导致了转子产生不平衡的状况。 1.3 汽轮机转子不平衡特征 在不一样的方向方面,汽轮机转子的刚度也不尽相同,严格来说的话,实际转轴的轨迹并不是一个十分标准的圆,而是接近椭圆的形状。不平衡的特征表现主要有以下五个方面: 第一点,转子不平衡振动波形可类似看作是正弦波形。 第二点,如果转子的实际转速低于临近转速,振幅就会以正相关的形式展现,如果转子的转速比临界转速高,那么振幅就会变成一个固定的值,而如果转子转速与临近值十分接近,就会产生共振现象,振幅会在这个时候出现峰值。 第三点,对汽轮机转子的频谱图进行分析,可以发现谐波能量主要集中自基频方面,这就使得实际的频谱图的表现形状展现为“枞树形”。 第四点,转轴的运行轨迹不是一个圆形,准确来说是一个类似椭圆的形状。 第五点,实际上,转子的转速应归为确定值,所以在相位方面不会有较大的波动。 下图展示的汽轮机转子的三维图。 汽轮机转子的三维图 2 汽轮机转子不平衡诊断方法 上面提到,转子不平衡的形式主要有三种,包括原始不平衡、渐变不平衡和突发性不平衡。在这三种不平衡之间不仅存在着许多直接、确定的联系,而且也有着较大的不同。在进行故障诊断的时候,主要从以下两个方面来进行判断 2.1 汽轮机转子振幅变化趋势 在原始不平衡方面,汽轮机转子会显现出清晰的表现特征,而在转子的渐变不平衡方面,当汽轮机还在运行的最初阶段时,不平衡的现象并不会显著地表现出来,只有在伴随着运行时间的推移之后,这样的不平衡现象才会愈加地凸显展示出来。再说转子的突发性不平衡方面,汽轮机转子会出现振动值突变的表现,而在这以后就会展现出比较严重的不平衡的现象。

汽轮机“闷缸”技术详细讲解

汽轮机“闷缸”技术详细讲解 一、闷缸的定义 指隔绝汽机汽缸,停机后关闭与汽缸相连接的各疏水门,保持上下缸温差,每30分钟手动盘车180度,对转子进行直轴,防止转子出现永久弯曲。 二、“闷缸”的由来 在汽轮机打闸停机后,由于某种原因,盘车装置无法投入(包括手动盘车,此时往往是厂用电全停,润滑油泵、顶轴油泵都不能投运),由于刚停机,缸温比较高,不及时投入盘车装置,大轴会在上下缸温差的作用下发生弯曲。这个在安规防止大轴弯曲里有解释的。 三、应采取的措施 1、关严进入汽轮机的各路汽源; 2、将汽缸疏水完毕后关严疏水门; 3、在各汽缸轴封处,用保温棉进行封堵,防止进冷气; 4、当高、中压缸温达到转子脆性转变温度时,手动再盘动转子180度。 四、闷缸处理的操作措施 1、真空到0 kPa; 2、关闭与缸体相连的所有疏水阀; 3、停止轴封供汽; 4、除非出现厂用电消失、油系统着火等情况,否则,顶轴油泵和润滑油泵应尽量投入运行; 5、大轴不盘车。此时应注意上下缸温差,一般不超过50℃,一般情况下无须处理,如果温差过大或温差增加过快,应怀疑是否有进水或进冷气的可能性,及时检查系统并排除异常。 以上情况可维持到缸温降至150℃以下,再及时处理。 五、闷缸过程中投盘车的条件 在闷缸处理过程中情况好转,可试投盘车,但必须达到如下条件: 1、油泵和顶轴油泵工作正常,最高瓦温不大于90℃; 2、上下缸温差不大于50℃; 3、能手动试投盘车,异音消失; 4、与盘车相关的设备运转正常,具备投盘车的条件。 六、防范措施 严禁汽轮机内进入冷水或冷的蒸汽,为此,需要做到以下几点:

1、要严密监视汽轮机缸体各部分的温度变化情况,尤其要注意上下缸温差的变化情况,遇到异常情况要迅速查明原因,及时排除; 2、高低压轴封要分别供汽,其供汽管应有良好的疏水措施,如果疏水系统存在问题,择机进行改造,以消除隐患; 3、停机过程中,运行人员要按照规程要求确认疏水阀门已打开,一定要保证疏水畅通 4、注意监视汽包、凝汽器、除氧器水位的变化,水位保护应能正常投入,如发现异常应及时查明原因,予以处理,严禁凝汽器满水等事故发生。 5、运行过程中要加强对高、低压加热器水位的监视及控制,确保各加热器水位保护正常投入,严防因加热器管子泄漏、运行操作不当(加热器水位控制不当)等因素而造成的汽缸进水事故; 6、要加强对高排逆止门及各抽汽逆止门的试验及维护工作,确保在停机时高排逆止门及各抽汽逆止门迅速关闭,防止蒸汽倒入汽缸内。 七、停机过程中及停机后防止汽轮机进冷汽、冷水的措施 1、检查核对凝汽器水位及补水门的关闭情况。 2、检查核对高、低压旁路及减温水的关闭情况。 3、检查核对给水泵中间抽头的关闭情况。 4、检查核对除氧器进汽电动门、高加疏水至除氧器电动门、除氧器至轴封供汽门、门杆漏汽至除氧器隔离门的关闭情况。 5、检查核对主蒸汽、再热蒸汽辅助汽源至轴封供汽的隔离门的关闭情况。 6、检查核对汽缸、法兰加热联箱进汽总门及调整门的关闭情况。 7、检查核对汽缸本体疏水门、再热蒸汽冷段、热段,高压旁路后、低压旁路前的各疏水门的开启情况。 8、停机后运行人员应经常检查汽轮机的隔离措施是否完备落实,检查汽缸温度是否下降,汽轮机上下缸温差是否超标。

盘动汽轮机转子的方法

盘动转子的方法 在实际运行及靠背轮检查过程中,转子经常需要盘动,为此,转子必须由轴向推力严格固定,而且轴承必须有止转装置及足够的润滑油。 在找中时如果没有顶轴油系统,可以使用一种有较大粘度的矿物油(汽缸油)来盘动转子(启动室内行车)。这种油注入到转子转入侧的油槽里。裸露的轴颈应当保护起来以防灰尘及污物。可以用适当的可弯曲金属片或纸板来覆盖,但是绝对不可以使用布、箔片、纸或者类似材料,因为这些材料可能会被带了油的转子卷起并卷入到润滑油缝里。 注意:油应当注入转子转入的一侧。确认所用润滑油与透平油相容。 为了确保转子在随后的找中工作中其特定的轴向位置不改变,应当制造一个固定工具并装于轴承下半,与已经装好的止转保护装置相对应。这个固定装置应当用铜或铝来制造以避免转子转动时轴颈损坏,如果使用钢来制造的话,则应当在滑动区域使用一层铜焊料,图1。 1.盖3油 2油槽(在转入的一侧) 4轴承体下半 图1:轴承体的覆盖与润滑 顶轴油泵的操作 如果找中时有顶轴油系统则应注意以下几点: 系统的清洁 使用顶轴油泵时要确保油系统经过油冲洗完全地清洁。 油冷却 油的冷却通过带有冷油器的油循环系统来实现,在转子找中时,如果需要,可以通过使用润滑油回油管端部的迂回冲洗管来保证开启顶轴油泵时油冷却。调节用的润滑油节流阀完全关闭,小的孔则用无头固定螺钉来封闭,使之处于与压力试验时相同的状态。 启停 虽然顶轴油泵需要频繁启动,但是工作是连续的,如果当前工作不需要顶轴油时,不应当关闭油泵,而应该使用X接口让它御荷(回油管处压力10~15 bar)。如果可能,在试车及转子找中过程顶轴油泵启动时,应采用手动减压。用来实现减压的X接口非常灵敏,应当小心操作以避免出现瞬间高压。

汽轮机找中心

浅谈联轴器找正之我见 摘要:旋转设备在安装或维修后始终存在轴对中的问题,是机组安装检修过程中一个极其重要的环节,对中精度的高低对设备运行周期及运行效率有着直接的影响,找正的目的是保证旋转设备各转子的中心线连成一条连续光滑的曲线,各轴承负荷分配符合设计要求,使旋转设备的静止部件与转子部件基本保持同心,将轴系的扬度调整到设计要求,找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。因此在每次检修中必须进行转动机械设备轴中心找正工作,使两轴的中心偏差不超过规定数值。在我厂化工设备(不包括厂家给出冷态与热态的中心数据),其中心标准基本上都在0.05mm(即5丝)以内。现就对联轴器找中心的原理、步骤并对联轴器找中心在实际工作作中常见的一些方法、注意事项以及找正在实践中的应用作简单的介绍。 一、找中心的原理:测量时在一个转子对轮上装上磁性表座,另一个对轮上装上百分表,径向、轴向各一付,(为防止转子窜轴,轴向则需装二个表,相差180度)。连接对轮(一般一到二枚螺丝,拧紧即可),然后一起慢慢地转动转子,每隔90度停下来测量一组数据记下,测出上、下、左、右四处的径向a、轴向s四组数据,将数据记录在下图所示的方格内。 a1 a4 s1 s4 s2 s3 a2 a3

一般圆里面的为轴向数据s,外面的为径向数据a,在测得的数值中,若a1=a2=a3=a4,则表明两对轮同心;若s1=s2=s3=s4,表明两对轮的端面平行。若同时满足上述两个条件,则说明两轴的中心线重合;若所测数据不等,根据计算结果是否在标准范围内,超出标准则需对两轴进行找中心。 二、找中心步骤 1、检查并消除可能影响对轮找中心的各种因素。如清理对轮上油污、锈斑及电机底脚、基础。 2、连接对轮,保证两对轮距离在标准范围内。 3、用塞尺检查电机的底脚是否平整,有无虚脚,如果有用塞尺测出数值,用铜皮垫实。 4、先用直尺初步找正。主要是左右径向,相差太大用百分表测量误差太大,并容易读错数据。 5、安装磁性表座及百分表。装百分表时要固定牢,但要保证测量杆活动自如。测量径向的百分表测量杆要尽量垂直轴线,其中心要通过轴心; 6、测量轴向的二个百分表应在同一直径上,并离中心距离相等。装好后试转一周。并回到原来位臵,此时测量径向的百分表应复原。为测记方便,将百分表的小表指针调到量程的中间位臵,并最好调到整位数。大针对零。 7、把径向表盘到最上面,百分表对零,慢慢地转动转子,每隔90度测量一组数据记下,测出上、下、左、右四处的径向a、轴向s 四组数据,将数据记录在右图内。径向的记在圆外面,轴向数据记录在圆里面。注意:拿到一组数据你要会判断它的正确性,你从那里开始对零的,盘一周后到原来位臵径向表应该为0,径向表读数上下之和与左右之和应相差不多,两只轴向表数据相同。否则的话要检查磁性表座和百分表装得是否牢固。

汽轮机大轴直轴方案

汽轮机转子弯曲现场应力松驰法直轴 Xxxxxx电厂xx 一、概述: 某热电厂,装机容量xxxx万千瓦。其汽轮机为xx汽轮机厂制造,型号C50-8.82/0.98,进汽调节方式:喷咀调节。高压单缸冲动单抽汽凝汽式。工作转速3000r/min,临界转速1678r/min,盘车为50r/min,汽轮机转子与发电机转子为刚性联接。汽轮机分一个调节级,十七个压力级和一个抽汽级共19级组成,转子为整锻加套装轮盘结构,第1到14级叶轮为整锻式叶轮,直接从整锻转子上车出,第15至19级叶轮则为红套装配式叶轮,转子材料为:30Cr2M0V,其中心孔Ф100。 该厂#1汽轮发电机运行中,因电气操作时“转速≥3420r/min”超速继电器保护误动,关闭自动主汽门导致发电机组解列,汽机破坏真空紧急停机,电动盘车。1小时后系统恢复正常,#1汽轮机准备重新冲转。检查发现盘车电流24—28A偏大,晃动度7丝,上下缸温差接近50℃,用听筒听机组,未发现异常,继续盘车1小时后,盘车电流降至24A,晃动度5丝,其它无异常。机组开始热态定参数冲转,定速至并网带负荷2MW,机组振动正常,1小时后负荷升至5MW,汽机水平振动升至5丝,立即降负荷振动不变,负荷至零,#2轴承急剧上升至13.5 丝,#1轴瓦、#3轴瓦振动报警,紧急停机,投入电动盘车,测量晃动度为10丝,盘车至汽缸常温,测量晃动度仍有10丝,转子大轴弯曲。 二、检查及测量: 揭盖检查及测量轴弯曲时发现,前轴封、隔板汽封9到14级外圆周有明显

摩擦痕迹,其中11级最为严重。在汽发对轮脱开状态测量弯曲度,绘出曲线如图: 由图可见,最大弯曲点在测量点12,直径为620处(第8级与第9级叶轮间),凸出方位在第#7对轮螺栓孔与#8中间处,其值为0 .10 mm. 三、直轴方案的选择: 由于该轴为整锻合金材料,弯曲度较小,所以决定采用先对轴做稳定性热处理(应力松驰),再做低速动平衡,其方案主要对温度的控制。 该转子为30Cr2M0V钢,抗松驰性能较好,故加热温度取660℃—680℃,低于回火温度30—50℃,以防引起性能改变。为了加快直轴过程工作需连续进行。 四、直轴前的准备工作: 根据现场条件及设备,经研究决定: ①支承:将汽机转子放入下半空缸内,#1、#2汽机轴承为支承,轴瓦及轴 承盖回装,通入润滑油,50r/min电动盘车装置通过变频至5r/min,连续

相关文档
最新文档