数值计算方法复习

数值计算方法复习
数值计算方法复习

2016计算方法复习

务必通过本提纲例子和书上例子掌握如下书本内容:

1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组

2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项

3. 会Jacobi 迭代、Gauss-Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性

4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速

5. 会用欧拉预报—校正法和经典四阶龙格—库塔法求解初值问题

6. 会最小二乘法多项式拟合

7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式

第1章、数值计算引论

(一)考核知识点

误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。 (二) 复习要求

1.了解数值分析的研究对象与特点。

2.了解误差来源与分类,会求有效数字; 会简单误差估计。

3.了解误差的定性分析及避免误差危害。 (三)例题

例1. 设x =0.231是精确值x *=0.229的近似值,则x 有2位有效数字。 例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为

)1ln(2++-x x 。

例3. 3

*x 的相对误差约是*x 的相对误差的1/3 倍.

第2章、非线性方程的数值解法

(一)考核知识点

对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法。 (二) 复习要求

1.了解求根问题和二分法。

2.了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。

3.理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。

4.掌握牛顿法及其收敛性、下山法, 了解重根情形。

5.了解弦截法。 (三)例题

1.为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )

(A)

11

,1

1

12-=-=

+k k x x x x 迭代公式 (B)

21211,11k

k x x x x +=+

=+迭代公式

(C) 3

/12123)1(,1k k x x x x +=+=+迭代公式 (D)231x x =-迭代公式

11221+++

=+k k k

k x x x x

解:在(A)中,

2/32)1(21

)(,1

1)(,11--='-=-=

x x x x x x ??2/3)16.1(21->=1.076 故迭代发散。应选择(A)。

可以验证在(B),(C), (D)中,?(x )满足1)<<'r x ?,迭代收敛。

2.用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求

81

10--<-k

k k x x x 。

解 此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。设

2ln )(--=x x x f

则 x x f 11)('-

=, 2''1

)(x

x f =

Newton 法迭代公式为

1

)

ln 1(/112ln 1-+=

----

=+k k k k k k k k x x x x x x x x , ,2,1,0=k 取30=x ,得146193221.34=≈x s 。 3.设)(x f 可微,求方程)(2

x f x =根的Newton 迭代格式为)

(2)

(2

1

k k k k k k x f x x f x x x '---

=+ 4. 牛顿切线法是用曲线f (x )上的点的切线与x 轴的交点的横坐标逐步逼近f (x )=0的解;而弦截法是用曲线f (x )上的;两点的连线与x 轴的交点的横坐标逐步逼近f (x )=0的解.

5. 试确定常数r q p ,,使迭代公式

52

21k

k k k x a r x a q px x ++=+.

产生的序列{k x }收敛到3a ,并使收敛阶尽量高.

解 因为迭代函数为52

2)(x

a r x a q px x ++=?,而=*x 3a .根据定理知,要使收敛阶

尽量高,应有)(**x x ?=,0)(*='x ?,0)(*=''x ?,由此三式即可得到r q p ,,所满足的三个方程为:

1=++r q p ,052=--r q p ,05=+r q .

解之得,9

1

,95-===r q p ,且0)(3≠'''a ?,故迭代公式是三阶收敛的.

P25.例2-4 P30.例2-6 P33.例2-8 P35例2-10 P35.例2-11

第3章、线性代数方程组的数值解法

(一)考核知识点

高斯消去法,列主元消去法;矩阵三角分解法;平方根法;追赶法;迭代法的基本概念,雅可比迭代法与高斯-塞德尔迭代法,超松弛迭代法SOR ,迭代解数列收敛的条件。 (二) 复习要求

1.了解矩阵基础知识,了解向量和矩阵的几种范数。

2.掌握高斯消去法,掌握高斯列主元素消去法。

4.掌握直接三角分解法,平方根法,了解追赶法,了解有关结论。

5.了解矩阵和方程组的性态,会求其条件数。

6.了解迭代法及其收敛性的概念。

7.掌握雅可比(Jacobi)迭代法、高斯-赛德尔(Gauss-Seidel)迭代法和超松弛(SOR)迭代法。 (三)例题

1.分别用顺序Gauss 消去法和直接三角分解法(杜利脱尔分解)求解线性方程组

??????

????=????????????????????201814513252321321x x x 解:1) Gauss 消去法

?????

?????----→??????????-----→??????????722400

10410143

2

1224501041014321205131825214321, 回代 x3=3, x2=2, x1=1

2) 直接三角分解法(杜利脱尔分解):

?????

?????--??????????-=??????????2400

41032

1153121513252321=LU 解Ly b =,Ux=y 得x=(1,2,3)T

2. 用平方根法(Cholesky 分解)求解方程组:

????

?

??=????? ??????? ??7351203022323321x x x

解:由系数矩阵的对称正定性,可令T LL A =,其中L 为下三角阵。

????

???

??

? ??-???????

?

?-=????? ??3636

333

23363363

323

1203022323 求解????? ??=????? ?????????

??-735363363

323321

y y y 可得???

?

?????=

-==3161

35321y y y , 求解????? ??=????? ?????????

?

?

?

?

?-3

21321363633323y y y x x x 可得?????

????===31211321x x x 3.讨论AX b =的Jacobi 迭代和Gauss-Seidel 迭代的收敛性

其中,122111(1,1,0)221T A b -??

??=--=??

??--??

解:Jacobi 迭代法的迭代矩阵1

10221()1011220J B I A --????

? ?

=-= ? ? ? ?????

则30()01J J I B B λλρ-==?=<

∴Jacobi 迭代收敛 Gauss-Seidel 迭代矩阵

1

102210220221101110102122104210086G S

B -----??

????????

? ? ??? ?

=-==- ? ? ??? ? ? ? ??? ?---??

????????

22(44)0()21G S I B B λλλλρ--=--=?=+>

∴Gauss-Seidel 迭代发散. 4.已知方程组Ax b =,其中

211121112A ????=??????,111b ??

??=??

????

(1)列出Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式;

(2)讨论上述两种迭代法的收敛性。 解:(1)Jacobi 迭代法:

1123121313

12121212

()()()()()()

()()()()/()/()/k k k k k k k k k x x x x x x x x x +++?=--?=--??=--?

Jacobi 迭代矩阵:

11

10221

102211022

()B D L U -?

??????

?=+=??????????

1()B ρ= 收敛性不能确定

(2)Gauss-Seidel 迭代法:

112311213111312121212

()()()

()()()

()()()()/()/()/k k k k k k k k k x x x x x x x x x ++++++?=--?=--??=--?

Gauss-Seidel 迭代矩阵:1110221

104211088()G D L U -?

?

???

???=-=-

???

???--????

1()B ρ==< 该迭代法收敛

5. 给定方程组???=+-=+2

31

22121x x x x ,用雅可比迭代法和高斯-塞德尔迭代法是否收敛?

解:由系数矩阵???

?

??=1321A 可知,

(1)雅可比迭代矩阵为???

?

??--=???? ??--?

??

?

??=+=--0320032011)(1

10U L D B ,由 0632

20=-==-λλ

λλB I 可知,16)(0>=B ρ,因而雅可比迭代法发散。

(2)高斯-塞德尔迭代矩阵为

???

??

?

?--=???? ??-????? ??=???? ??-???? ??=-=--3202000201310100201301)(11U L D G ,由

0323

2

02

2

=+=+

=

-λλλλλG I 可知,32)(=G ρ,因而高斯-塞德尔迭代法收敛。

P68.例3-3 P68.例3-4 P72.例3-5 P76.例3-7 P77.例3-8 P78.例3-9 P79.例3-10 P88.例3-15 P89.例3-16 P91.例3-17 P98.例3-24 P110.例3-30 P111.例3-31 P118.例3-36

第4章、插值法

(一)考核知识点

插值多项式,插值基函数,拉格朗日插值多项式,差商及其性质,牛顿插值多项式,差分与等距插值;分段线性插值;样条函数,三次样条插值函数。 (二) 复习要求

1.了解插值的概念。

2.掌握拉格朗日(Lagrange)插值法及其余项公式。

3.了解均差的概念及基本性质,掌握牛顿插值法。

4.了解差分的概念,会牛顿前插公式、后插公式。

5.了解埃尔米特(Hermite)插值及其余项公式。

6.知道高次插值的病态性质,会分段线性插值和分段埃尔米特插值及其误差和收敛性。

7.会三次样条插值,知道其误差和收敛性。 (三)例题 例1.

设46)2(,16)1(,0)0(===f f f ,则=)(1x l -x(x-2),)(x f 的二次牛顿插值

多项式为)1(716)(2-+=x x x x N ;

例2. 设l 0(x),l 1(x),l 2(x),l 3(x)是以x 0,x 1,x 2,x 3为互异节点的三次插值基函数,则

33

)2()(-∑=j j j

x x l

=3)2(-x

例3. 给定数据表:5,4,3,2,1=i ,

求4解:

)6)(4)(2)(1(1801)

4)(2)(1(60

7

)2)(1(65)1(34)6)(4)(2)(1(180

1)

4)(2)(1(60

7

)2)(1(65)1(34)(4----+------+--=----+------+--=x x x x x x x x x x x x x x x x x x x x x N ,

插值余项为

()7,1),7)(6)(4)(2)(1(!

5)

()()5(4∈-----=ξξx x x x x f x R 。

例4 已知函数y =f (x )的观察数据为

试构造f (x )n 解 先构造基函数

845-4--

=5-2-4-2-0-2-5-4-=0)

)(())()(())(()(x x x x x x x l 405-4-2+=

5-04-02--05-4-2+=1)

)()(())())((())()(()(x x x x x x x l 245-2+-

=5-40-42+45-2+=2)

)(())()(()()()(x x x x x x x l 354-2+=

4-50-52+54-2-2+=3)

()())()(())(()()(x x x x x x x x l

所求三次多项式为

P 3(x )= ∑=3

)

(k k

k x l

y

845-4-?

5-))((x x x +405-4-2+))()((x x x -245-2+?

3-))(()(x x x +354-2+)()(x x x

=1

+2155

-141-42523x x x

P 3(-1)=724=

1+21

55

-141-425-

例 试用此组数据构造Lagrange 插值多项式()x L 2, 并求()5.12L 。

解:()()()()2211002y x l y x l y x l x L ++= ,

所以()()()()()()()()()()()()()

3120210221012012010212

?----+?----+?----=x x x x x x x L ()()()

x x x x x x -+--+-=

2222

3

222321=1+x , ()5.25.12=L 。

例6.13)(47+++=x x x x f ,求]2,,2,2[710 f ,]2,,2,2[810 f .

解:1!7!7!7)(]2,,2,2[)7(7

1

===

ξf f ,0!

80!8)(]2,,2,2[)8(8

10===ξf f P130.例4-4

P131.例4-5 P133.例4-7 P135.例4-10 P142.例4-13 P143.例4-14 P145.例4-15

第5章、曲线拟合

(一)考核知识点

勒让德多项式;切比雪夫多项式;曲线拟合; 最小二乘法,正则方程组,线性拟合,超定方程组的最小二乘解,多变量的数据拟合,多项式拟合;正交多项式曲线拟合.

(二) 复习要求

1.了解函数逼近的基本概念,了解范数和内积空间。

2.了解正交多项式的概念,了解切比雪夫多项式和勒让德多项式以及它们的性质,知道其他常用正交多项式。

3.了解曲线拟合的最小二乘法并会计算,了解用正交多项式做最小二乘拟合。 (三)例题1

用最小二乘法求一个形如2bx a y +=的经验公式,使它与下列数据相拟合,并求均方误差。

解:由题意},1{2x span =Φ,210)(,1)(x x x ==??,

()51,5

100==∑=i ??,

()5327

193614449616253614438312519,222225

1

210=++++=++++==∑=i i x ??,

()7277699

374809620851369235213906251303214438312519,4

44445

1

411=++++=++++==∑=i i x ??

()4.2718.973.730.493.320.19,5

1

01=++++===∑=i i y y d ?。

()5.3693218.1893402.105845470895.201876859448.97383.73310.49253.32190.19,222225

1

2

12=++++=?+?+?+?+?===∑=i i i x y y d ?。

故法方程为??????=????????????5.3693214.2717277699532753275b a ,解得???==0500351.0972604.0b a 。 均方误差为[][]

01693.0)()()(5

1

2

25

1

2

=-+=-∑∑==i i i i i i x y bx a x y x S

2. 给定数据表

试用三次多项式以最小二乘法拟合所给数据.

解 332210)(x c x c x c c x y +++=

???

??

?

?

?

????????----=84211111000111118421A , ?????????

???=130034003401034010001005A A T T T y A )4.14,7,2.4,9.2(=

正则方程

y A Ac A T T =

的解为4086.00=c ,39167.01=c ,0857.02=c ,00833.03=c 得到三次多项式

3200833.00857.039167.04086.0)(x x x x y +++=

P174.例5-1

P176.例5-3 P178.例5-5 P180.例5-6 P181.例5-7 P182.例5-8

第6章、数值积分与数值微分

(一)考核知识点

代数精度;插值型求积公式,牛顿—柯特斯公式,梯形公式和辛普森公式, 复合求积公式,求积公式的误差,步长的自动选择,龙贝格求积公式,高斯型求积公式。(二点、三点)高斯―勒让德求积公式。 (二) 复习要求

1.了解数值求积的基本思想、代数精度的概念、插值型求积公式及其代数精度、求积公式的收敛性和稳定性。

2.掌握牛顿-柯特斯公式及其性质和余项; 梯形公式和辛普生公式.

3. 掌握复化梯形公式和复化辛普森公式及其余项。

4. 掌握龙贝格(Romberg)求积算法。

5.会高斯求积公式。 (三)例题

1.用下列方法计算积分

3

1

dy

y

?

,并比较结果。 (1)龙贝格方法; (2)三点及五点高斯公式. 解: 3

1

dy I y

=

?

故有 (2)采用高斯公式时

3

1

dy

I y

=? 此时[1,3],y ∈ 令,x y z =-则[1,1],x ∈- 1

11,2

1

(),

2

I dx x f x x -=+=+?

利用三点高斯公式,则

0.5555556[(0.7745967)(0.7745967)]0.8888889(0)1.098039

I f f f =?-++?≈

利用五点高斯公式,则

0.2369239[(0.9061798)(0.9061798)]

0.4786287[(0.5384693)(0.5384693)]0.5688889(0)1.098609

I f f f f f ≈?-++?-++?≈ 2.用复化梯形公式和复化辛普森公式计算下列积分: ?+1024dx x x

; n=8; 解:

11140.0]5

1)30556731228140172265246542578(241[161)512568241(161]51848241[161)]()(2)([27

127

12718≈++++++++=+++=+??

?

??++=++=∑∑∑===k k k k k k k k

b f x f a f h T 。 11157.0)5125682)12(1024)12(16441(481]518482161241612441[481)]

()(2)(4)([67

127027

127027

1702

18≈+++++++=+??

?

??++??? ??++++=+++=∑∑∑∑∑∑======+k k k k k k k k k

k k k k k

k k b f x f x f a f h

S

精确值为11157.04

5ln 21|)4ln(2141

2102≈=+=+?x dx x x 。

P200.例6-5 P205.例6-8 P207.例6-9 P210.例6-11 P213.例6-12 P214.例6-13 P216.例6-14 P219.例6-15

P225.例6-17,例6-18

第7章、常微分方程初值问题的数值解法

(一)考核知识点

欧拉法, 后退欧拉法;梯形公式; 改进欧拉法;龙格―库塔法,局部截断误差。 (二) 复习要求

1.掌握欧拉法和改进的欧拉法,知道其局部截断误差。

2. 知道龙格?库塔法的基本思想。知道二阶、三阶龙格?库塔法。掌握四阶龙格――库塔法,知道龙格?库塔法的局部截断误差。 (三)例题

例1 用欧拉法解初值问题??

?1=060≤≤0--='2)().(y x xy y y ,取步长h =0.2。 解h =0.2, f (x )=-y -xy 2。首先建立欧拉迭代格式

)2,1,0)(4(2.0),(2

1=-=--=+=+k y x y y hx hy y y x hf y y k k k k k k k k k k k 当k =0,x 1=0.2时,已知x 0=0,y 0=1, 有y (0.2)≈y 1=0.2×1(4-0×1)=0.8 当k =1,x 2=0.4时,已知x 1=0.2, y 1=0.8,

有y (0.4)≈y 2=0.2×0.8×(4-0.2×0.8)=0.614 4 当k =2,x 3=0.6时,已知x 2=0.4,y 2=0.6144,

有y (0.6)≈y 3=0.2×0.6144×(4-0.4×0.6144)= 0.461321

例2 设初值问题 101

)0(23<

?=+='x y y

x y .

写出用改进的Euler 法解上述初值问题数值解的公式,若0.2h =,求解21,y y ,保留两位小数。

解:改进的Euler 公式是:

1111(,)[(,)(,)]

2

n n n

n n n n n n n y y h f x y h

y y f x y f x y ++++=+??

?=++??

具体到本题中,求解的公式是:

11110.2(3

2)1.40.60.1[3232]

(0)1n n n n n n n n n n n n y y x y y x y y x y x y y ++++=++=+??

=++++??=?

代入求解得:1 1.4y =,1 1.54y =

222.276, 2.4832y y ==

例3.求解初值问题83002()()dy

y

x dx

y ?=-?≥??

=?,取步长02.h =, 经典四阶龙格—库塔

法的求解公式为:

1

123412

1324302226

83830183018302.()(.)

(.)(.)n n n

n n n y y k k k k k y k y k k y k k y k +?

=++++??

=-??=-+??=-+?

=-+?

其中 κ1=8-3 y k ;κ2=5.6-2.1 y k ;κ3=6.32-2.37y k ; κ4=4.208+1.578y k

,...)

,,(..))..()..()..((.210=54940+20161=5781-2084+372-3262+12-652+3-862

0+

=1+k y y y y y y y k k k k k k k

P240.例7-1 P244.例7-2 P251.例7-3

数值分析总复习提纲教材

数值分析总复习提纲 数值分析课程学习的内容看上去比较庞杂,不同的教程也给出了不同的概括,但总的来说无非是误差分析与算法分析、基本计算与基本算法、数值计算与数值分析三个基本内容。在实际的分析计算中,所采用的方法也无非是递推与迭代、泰勒展开、待定系数法、基函数法等几个基本方法。 一、误差分析与算法分析 误差分析与算法设计包括这样几个方面: (一)误差计算 1、截断误差的计算 截断误差根据泰勒余项进行计算。 基本的问题是 (1)1 ()(01)(1)! n n f x x n θεθ++<<<+,已知ε求n 。 例1.1:计算e 的近似值,使其误差不超过10-6。 解:令f(x)=e x ,而f (k)(x)=e x ,f (k)(0)=e 0=1。由麦克劳林公式,可知 211(01)2!!(1)! n x x n x x e e x x n n θθ+=+++++<<+ 当x=1时,1 111(01)2! !(1)! e e n n θθ=+++ ++ <<+ 故3 (1)(1)!(1)! n e R n n θ=<++。 当n =9时,R n (1)<10-6,符合要求。此时, e≈2.718 285。 2、绝对误差、相对误差及误差限计算 绝对误差、相对误差和误差限的计算直接利用公式即可。 基本的计算公式是: ①e(x)=x *-x =△x =dx ② *()()()ln r e x e x dx e x d x x x x ==== ③(())()()()e f x f x dx f x e x ''== ④(())(ln ())r e f x d f x = ⑤121212121122121122((,))(,)(,)(,)()(,)()x x x x e f x x f x x dx f x x dx f x x e x f x x e x ''''=+=+ ⑥121212((,)) ((,))(,) f x x f x x f x x εδ=

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

数值分析复习提纲

数值分析(英)复习提纲 考试以基本概念为主,书上以前布置的计算机题目都不作要求。 第一章Solving equations 1.1 THE BISECTION METHOD (a) 熟练掌握二分法; (b) 对于给定解的误差精度要求能够熟练计算所需二分法步数,参考书上28页内容。 习题5,6 1.2 FIXED-POINT ITERATION (a) 熟练掌握不动点迭代方法求方程的根;掌握不动点迭代方法的线性收敛性与收敛率; 此节书后习题不作要求。 1.4 NEWTON’S METHOD (a)熟练掌握方程求根的NEWTON’S METHOD:Example 1.11, 1.12, 1.13 (b)对于重根熟练掌握Theorem 1.12, Theorem 1.13 习题2,5,7 第二章Systems of Equations 2.2 THE LU FACTORIZATION (a)掌握矩阵LU分解方法; (b)会使用LU分解方法求线性方程组的解:Example 2.5, 2.6, 2.7 2.3 SOURCES OF ERROR 本节只要掌握矩阵范数的定义,参阅90页 2.4 THE PA = LU FACTORIZATION 熟练掌握2.4.2 Permutation matrices, 2.4.3 PA = LU factorization: Example 2.16, 2.17, 2.18 习题4 2.5 ITERATIVE METHODS 熟练掌握Jacobi Method,Gauss–Seidel Method. 习题2

第三章Interpolation 3.1 DATA AND INTERPOLATING FUNCTIONS: (a)熟练掌握Lagrange interpolation (b)熟练掌握Newton’s divided differences 习题1,2,5 3.2 INTERPOLATION ERROR 熟练掌握定理3.4, Example 3.8, 习题1,2,4 第四章Least Squares 4.1.1 Inconsistent systems of equations 熟练掌握Normal equations for least squares:Example 4.1, Example 4.2 习题1,2 第五章Numerical Differentiation and Integration 5.1 NUMERICAL DIFFERENTIATION 熟练掌握一阶导数的Two-point forward-difference formula,Three-point centered-difference formula 熟练掌握二阶导数的Three-point centered-difference formula for second derivative 习题1,2,5,8,9 5.2 NEWTON–COTES FORMULAS FOR NUMERICAL INTEGRATION 熟练掌握Composite Trapezoid Rule,Example 5.8,习题1 第六章Ordinary Differential Equations 6.1.1 Euler’s Method (a) 熟练掌握Euler方法(6.7): Example6.2 习题5 6.2.2 The explicit Trapezoid Method 熟练掌握The explicit Trapezoid Method(6.29):Example6.10 习题1

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

数值计算方法复习提纲

数值计算方法复习提纲 第一章 数值计算中的误差分析 1.了解误差及其主要来源,误差估计; 2.了解误差(绝对误差、相对误差)和有效数字的概念及其关系; 3.掌握算法及其稳定性,设计算法遵循的原则。 1、 误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字 绝对误差 E (x )=x-x * 绝对误差限ε εε+≤≤-**x x x 相对误差 ***/)(/)()(x x x x x x x E r -≈-= 有效数字 m n a a a x 10.....021*?±= 若 n m x x -?≤ -102 1 *,称*x 有n 位有效数字。 有效数字与误差关系 (1) m 一定时,有效数字n 越多,绝对误差限越小; (2) *x 有n 位有效数字,则相对误差限为)1(1 1021 )(--?≤ n r a x E 。 选择算法应遵循的原则 1、 选用数值稳定的算法,控制误差传播;

例 ?= 10 1dx e x e I x n n e I nI I n n 11101 - =-=- △!n x n =△x 0 2、 简化计算步骤,减少运算次数; 3、 避免两个相近数相减,和接近零的数作分母; 避免 第二章 线性方程组的数值解法 1.了解Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解;Crout 分解;Cholesky 分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与Gauss-Seidel 迭代法; 4.掌握向量与矩阵的范数及其性质,迭代法的收敛性及其判定 。 本章主要解决线性方程组求解问题,假设n 行n 列线性方程组有唯一解,如何得到其解 ?? ??? ? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112222212111212111) 两类方法,第一是直接解法,得到其精确解; 第二是迭代解法,得到其近似解。

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

《数值分析》总复习题-2013年-附部分答案

工程硕士《数值分析》总复习题(2013年用) [由教材中的习题、例题和历届考试题选编而成,供教师讲解和学生复习用] 疑课上的笔记整理,如有错漏,欢迎指出;碍于本人水平有限,部分题目未有解答。祝各位考试顺利! 一. 解答下列问题: 1)下列所取近似值有多少位有效数字( 注意根据什么? ): a) 对 e = 2.718281828459045…,取* x = 2.71828 ( 答: 6 位 (因为它是按四舍五入来的) ) b) 数学家祖冲之取 113355 作为π的近似值. ( 答: 7 位 ( 按定义式 621113355 10 1415929.31415926.3-?≤-=-ΛΛπ 推得 ) ) c) 经过四舍五入得出的近似值12345,-0.001, 90.55000, 它们的有效 数字位数分别为 5 位, 1 位, 7 位。 2) 简述下名词: a) 截断误差 (不超过60字) (见书P.5) 答:它是指在构造数值计算方法时,用有限过程代替无限过程或用容易计算 的方法代替不容易计算的方法,其计算结果所存在的误差 b) 舍入误差 (不超过60字) (见书P.6) 答:对原始数据、中间计算结果和最后计算结果,都只能取有限位数表示, 这就要求进行“舍入”,这时所产生的误差就是舍入误差。 c) 算法数值稳定性 (不超过60字) (见书P.9) 答:是指算法在执行过程中,某阶段所产生的小误差在随后的阶段中不会被 积累或放大,从而不会严重降低全部计算的精确度。 3) 试推导( 按定义或利用近似公式 ): 计算3 x 时的相对误差约等于x 的相对 误差的3倍。 (参考书P.7例1.2.3)

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值计算方法试题

数值计算方法试题 重庆邮电大学数理学院 一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收 敛 2、迭代过程(k=1,2,…)收敛的充要条件是 2、已知y=f(x)的数据如下 ,,, x 0 2 3 3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,, 4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5) 3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过 。 4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,, ,

5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算 y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式 三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定 积分近似计算的抛物线公式 具有三次代数精度至少具有,,,次代 数精度. 7、插值型求积公式的求积 2、若,证明用梯形公式计算积分所 系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。 参考答案: T8、 ,为使A可分解为A=LL, 其中L一、填空题 1、局部平方收敛 2、< 1 3、 4 为对角线元素为正的下三角形,a的取值范围, 4、

5、三阶均差为0 6、n 7、b-a 9、若则矩阵A的谱半径(A)= ,,, 8、 9、 1 10、二阶方法 10、解常微分方程初值问题的梯形二、计算题 格式 1、是,,,阶方法 二、计算题(每小题15分,共60分) 修德博学求实创新 李华荣 1 重庆邮电大学数理学院 2、 右边: 3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度 4、y(0.2)?0.01903 A卷三、证明题

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1 -+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2 110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。 4、)(,),(),(1 x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当 2 ≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设1326)(2 4 7 +++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[1 n x x x f 和=?0 7 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0 )(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0 =x ?,则 ?= 1 4 )(dx x x ? 。 8、给定方程组?? ?=+-=-2 21121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ?? ? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设?? ?? ? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , x 0 0.5 1 1.5 2 2.5

数值分析知识点

第一章绪论(1-4) 一、误差来源及分类 二、误差的基本概念 1.绝对误差及绝对误差限 2.相对误差及相对误差限 3.有效数字 三、数值计算的误差估计 1.函数值的误差估计 2.四则运算的误差估计 四、数值计算的误差分析原则 第二章插值(1.2.4-8) 一、插值问题的提法(定义)、插值条件、插值多项式的存在唯一性 二、拉格朗日插值 1.拉格朗日插值基函数的定义、性质 2.用拉格朗日基函数求拉格朗日多项式 3.拉格朗日插值余项(误差估计) 三、牛顿插值 1.插商的定义、性质 2.插商表的计算 3.学会用插商求牛顿插值多项式 四、等距节点的牛顿插值 1.差分定义、性质及计算(向前、向后和中心) 2.学会用差分求等距节点下的牛顿插值公式 五、学会求低次的hermite插值多项式 六、分段插值 1.分段线性插值 2.分段三次hermite插值 3.样条插值 第三章函数逼近与计算(1-6) 一、函数逼近与计算的提法(定义)、常用两种度量标准(一范数、二范数\平方逼近) 二、基本概念 连续函数空间、最佳一次逼近、最佳平方逼近、内积、内积空间、偏差与最小偏差、偏差点、交错点值、平方误差 三、学会用chebyshev定理求一次最佳一致逼近多项式,并估计误差(最大偏差) 四、学会在给定子空间上通过解方程组求最佳平方逼近,并估计误差(平方误差) 五、正交多项式(两种)定义、性质,并学会用chebyshev多项式性质求特殊函数的(降阶)最佳一次逼近多项式 六、函数按正交多项式展开求最佳平方逼近多项式,并估计误差 七、一般最小二乘法(多项式拟合)求线性拟合问题 第四章数值分析(1-4) 一、数值求积的基本思想及其机械求积公式

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ,则=( ) A . B . C . D . 3. 通过点 的拉格朗日插值基函数满足( ) A . =0, B . =0, C .=1, D . =1, 4. 设求方程 的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 作第一次消元后得到的第3个方程( ). A . B . C . D . π()()2 1 121 1()(2)636f x dx f Af f ≈ ++? A 1613122 3()()0011,,,x y x y ()()01,l x l x ()00l x ()110l x =() 00l x ()111 l x =() 00l x ()111 l x =() 00l x ()111 l x =()0 f x =12312312 20 223332 x x x x x x x x ++=?? ++=??--=?232 x x -+=232 1.5 3.5 x x -+=2323 x x -+=

单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分) 1. 设, 则 , . 2. 一阶均差 3. 已知时,科茨系数 ,那么 4. 因为方程 在区间 上满 足 ,所以 在区间内有根。 5. 取步长,用欧拉法解初值问题 的计算公 式 . 填空题答案 230.5 1.5 x x -=-T X )4,3,2(-==1||||X 2||||X =()01,f x x = 3n =()()() 33301213,88C C C === () 3 3C =()420 x f x x =-+=[]1,2()0 f x =0.1h =()211y y y x y ?'=+?? ?=?

数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲 第一章数值计算中的误差分析 1 2.了解误差 ( 绝对误差、相对误差 ) 3.掌握算法及其稳定性,设计算法遵循的原则。 1、误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字 绝对误差E(x)=x-x * 绝对误差限x*x x* 相对误差E r (x) ( x x* ) / x ( x x* ) / x* 有效数字 x*0.a1 a2 ....a n10 m 若x x*110m n ,称x*有n位有效数字。 2 有效数字与误差关系 ( 1)m 一定时,有效数字n 越多,绝对误差限越小; ( 2)x*有 n 位有效数字,则相对误差限为E r (x)1 10 (n 1)。 2a1 选择算法应遵循的原则 1、选用数值稳定的算法,控制误差传播; 例 I n 11n x dx e x e I 0 1 1 I n1nI n1 e △ x n n! △x0 2、简化计算步骤,减少运算次数; 3、避免两个相近数相减,和接近零的数作分母;避免

第二章线性方程组的数值解法 1.了解 Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解; Crout分解; Cholesky分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel 4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。 本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解? a 11x 1 a 12 x 2... a 1n x n b1 a 21x 1 a 22 x 2... a 2n x n b2 ... a n1x 1 a n 2 x 2... a nn x n b n 两类方法,第一是直接解法,得到其精确解; 第二是迭代解法,得到其近似解。 一、Gauss消去法 1、顺序G auss 消去法 记方程组为: a11(1) x1a12(1) x2... a1(1n) x n b1(1) a21(1) x1a22(1) x2... a2(1n) x n b2(1) ... a n(11) x1a n(12) x2... a nn(1) x n b n(1) 消元过程: 经n-1步消元,化为上三角方程组 a11(1) x1b1(1) a 21(2) x1a22(2 ) x2b2( 2 ) ... a n(1n) x1a n(n2) x2...a nn(n ) x n b n( n ) 第k步 若a kk(k)0 ( k 1)( k) a ik(k )(k )( k 1)( k )a ik(k )( k) a ij a ij a kk(k ) a kj b i b i a kk(k )b k k 1,...n 1 i, j k 1,....,n 回代过程:

吉林大学 研究生 数值计算方法期末考试 样卷

1.已知 ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0 .8329,试用线性插值和抛物插值计算.ln2.1的值并估计误差 2.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值 3. 分别求满足习题1和习题2 中插值条件的Newton插值 (1) (2)

3()1(2)(2)(3) 310 N x x x x x x x =+--+--4. 给出函数f(x)的数表如下,求四次Newton 插值多项式,并由此计算f(0.596)的值 解:

5.已知函数y=sinx的数表如下,分别用前插和后插公式计算sin0.57891的值

6.求最小二乘拟合一次、二次和三次多项式,拟合如下数据并画出数据点以及拟合函数的图形。 (a) (b)

7.试分别确定用复化梯形、辛浦生和中矩形 求积公式计算积分2 14dx x +?所需的步长h ,使得精度达到5 10 -。 8.求A 、B 使求积公式 ?-+-++-≈1 1)] 21()21([)]1()1([)(f f B f f A dx x f 的 代数精度尽量高,并求其代数精度;利用 此公式求? =2 1 1dx x I (保留四位小数)。 9.已知 分别用拉格朗日插值法和牛顿插值法求

) (x f 的三次插值多项式)(3 x P ,并求)2(f 的近 似值(保留四位小数)。 10.已知 求)(x f 的二次拟合曲线)(2 x p ,并求)0(f 的近似值。 11.已知x sin 区间[0.4,0.8]的函数表

(整理)数值分析计算方法超级总结

工程硕士《数值分析》总复习题(2011年用) [由教材中的习题、例题和历届考试题选编而成,供教师讲解和学生复习用] 一. 解答下列问题: 1)下列所取近似值有多少位有效数字( 注意根据什么? ): a) 对 e = 2.718281828459045…,取* x = 2.71828 b) 数学家祖冲之取 113355 作为π的近似值. c) 经过四舍五入得出的近似值12345,-0.001, 90.55000, 它们的有效 数字位数分别为 位, 位, 位。 2) 简述下名词: a) 截断误差 (不超过60字) b) 舍入误差 (不超过60字) c) 算法数值稳定性 (不超过60字) 3) 试推导( 按定义或利用近似公式 ): 计算3 x 时的相对误差约等于x 的相对 误差的3倍。 4) 计算球体积3 34r V π= 时,为使其相对误差不超过 0.3% ,求半径r 的相对 误差的允许范围。 5) 计算下式 341 8 )1(3)1(7)1(5)1(22345+-+---+---=x x x x x x P )( 时,为了减少乘除法次数, 通常采用什么算法? 将算式加工成什么形式? 6) 递推公式 ?????=-==- ,2,1,1102 10n y y y n n 如果取 * 041.12y y =≈= ( 三位有效数字 ) 作近似计算, 问计算到 10y 时误差为初始误差的多少倍? 这个计算过程数值稳定吗 ? 二. 插值问题: 1) 设函数 )(x f 在五个互异节点 54321,,,,x x x x x 上对应的函数值为 54321,,,,f f f f f ,根据定理,必存在唯一的次数 (A ) 的插值多项式 )(x P ,满足插值条件 ( B ) . 对此,为了构造Lagrange 插值多项式 )(x L ,由5个节点作 ( C ) 个、次数均为 ( D ) 次的插值基函数

相关文档
最新文档