锰硅合金冶炼降低吨铁电耗方法浅析

锰硅合金冶炼降低吨铁电耗方法浅析
锰硅合金冶炼降低吨铁电耗方法浅析

12500KV A矿热炉生产锰硅合金降低冶炼电耗措施浅析

摘要分析了影响锰硅矿热炉吨铁冶炼电耗升高的原因,结合实际生产情况,指出了降低吨铁冶炼电耗所采取的措施,取得了良好的经济效益。

关健词锰硅合金矿热炉冶炼电耗避峰生产

前言

公司两台(12.5MV A)矿热炉自2004年9月份生产锰硅合金以来,受当地电价影响,一直采取避电价高峰期生产方式,避峰时间较长,送电后炉温提升缓慢,技术经济指标较差,锰收得率低,吨铁冶炼电耗较高。为降低吨铁冶炼电耗,进一步降低成本,经过对影响冶炼电耗升高的因素全面分析,有针对性地改进了冶炼工艺,并加强了工艺及操作管理。通过努力,在2006~2008年,进一步提高了电炉的生产能力,冶炼电耗较大辐度的逐年降低(参见表1),取得了良好的经济效益。

表1:我公司2005~2008年平均吨铁冶炼电耗

1 影响吨铁冶炼电耗的因素

1.1 综合料入炉品位

综合料入炉品位是指按理论计算配好的入炉料中的含锰量。一般来说,随着矿石含锰量的升高,单位炉料合金产出率就会越高,从而单位电耗就会越低。反之,综合料含锰量较低时,综合锰矿中脉石(无用和有害杂质)含量所占比例就会越大,导致冶炼中渣量增加,渣铁比升高,锰的回收率降低,单炉产量降低,吨铁电耗升高。

1.2 还原剂质量

焦炭作为冶炼锰硅合金的还原剂固定碳要高,灰分低,粒度均衡,电阻率高,化学活性好,才能提高矿热炉的电效率和热效率,取得优异的技术经济指

标,并为强化冶炼打下基础。还原剂粒度较小时,一方面入炉后烧损增大,吨铁焦耗升高;另一方面易造成炉内上层料多碳,下层料缺碳,电极较难下插,炉底温度低,恶化炉况,炉膛内反应区化学反应不充分,元素收得率低,产量降低,吨铁电耗升高。

2007年12月份,我公司焦丁粒度小于5mm量大于40%时与搭配炼铁厂供粒度焦丁10~25mm的量>60%,影响产量指标情况对比情况见表2:

表2:不同焦丁粒度对冶炼指标的影响

1.3 单炉用电量

矿热炉生产锰硅合金冶炼周期通常是根据每炉用电量来确定的(理论上以不“翻渣”为界,而实际生产中又受铁水包容积、天车起重量等因素限制),简单地说,每炉冶炼锰硅合金时炉内物理化学反应状态过程大致分为冶炼前期、中期和后期这么三个阶段。冶炼前期送电后,三相电极下插,电能通过电极弧光热和炉料电阻热转化为内能,逐渐加热炉料,随着炉温升高炉料熔化形成液态熔渣时,开始伴随着一部分的还原反应,当温度升高到约1700K时,还原出来的铁、锰和硅元素结合形成合金积聚在炉膛底部,冶炼前期和中期熔化速度要远大于还原速度,冶炼后期随着电能的不断输入,炉温不断升高,炉料熔化较多,成渣较多时,还原速度会越来越快,在单炉用电量较充足的情况下,还原剂与炉渣间的还原反应相对充分,渣量一定情况下,渣中含锰较少时停电出铁,能有效提高单炉产量,降低吨铁电耗。当单炉用电量不足时,冶炼后期会直接影响还原速度,导致元素还原不充分,渣中含锰高,渣量大,元素收得率低,单炉产量低,吨铁冶炼电耗升高。

1.4 炉渣碱度

炉渣碱度对实际生产中影响较大,炉渣碱度太低时,熔渣中二氧化硅传质

速度降低,炉渣的导电性变差,炉内温度梯度增大,距离电极稍远的一些区域渣液温度降低,具体表现为:渣液粘稠,出炉排渣困难,排渣不彻底,炉口易翻渣,电炉常常跟不满负荷,炉底温度偏低,熔池坩埚缩小,化料慢。合适的炉渣碱度,有利于改善炉渣的流动性和导电性,因为(MnO)属碱性氧化物,渣中碱性物增多可提高MnO 在渣中的活度系数。根据我公司投产以来累积经验,冶炼锰硅合金炉渣三元碱度控制在0.8~1.0为佳。

1.5 原料粒度

入炉原料的粒度不均匀,粉末和大块料入炉,无法保证炉内透气性的良好和还原反应的正常进行,根据还原反应原理可知,大块炉料参与反应的比表面积较小,不易还原;粉状料粒度太小,入炉后会严重影响炉料的透气性,导致炉膛内产生的高温燃气不能够充分预热上层炉料,且易造成“剌火”、翻渣等现象,恶化炉况,从而造成冶炼电耗升高。

1.6 配碳量

合理的配碳量也是影响班组冶炼吨铁电耗升高或降低的主要原因,工艺要求,冶炼锰硅合金为多碳操作,有些厂家为追求较低的冶炼电耗而对收得率要求较低情况下,一般是在理论配碳基础上适当减少入炉总配碳的1~5%,以便于三相电极更好的下插,炉口热损失减少,炉底温度高,从而吨铁电耗相对较低,但因料批中碳量相对减少,还原反应不充分,渣中氧化锰也会升高,锰元素收得率相对降低。

1.7 料批结构

矿石的冶金性能包括物理特性和化学特性,如自身的熔点、密度、粒度、最低还原温度、主要化学成份和有用元素的成矿形态等等。各种矿石的冶金性能不同,在炉内的熔化和还原程度就不同,配料时配入熔点较高、较难还原的矿石较多时,势必会造成冶炼电耗升高。一般情况下,我公司现使用的朝阳矿品位低,碳酸盐所占比例高些,熔点高些,锰存在形态为MnO和MnCO3;而富锰渣中锰的存在形态多为硅酸锰,熔点相对低些,进口矿(巴西、南非矿)多为硬锰矿(mMnO.MnO2.nH2O),熔点较高。我公司08年5月份更换配比时,配入了38%的富锰渣和15%的青海矿,两者占总数的53%,青海矿含二氧化硅

约为40%左右,由MnO-SiO2二元相图可知,青海矿中锰的存在形态多数为硅酸锰,熔点低,且含二氧化硅量为40%时该硅酸盐的熔点仅为1251℃,富锰渣中锰主要存在形态也多为硅酸锰,较多低熔点含锰原料的配入,炉温提升快,冶炼过程中化料较快,料面均匀下沉,无“剌火”和翻渣现象,炉况良好,元素收得率升高,单炉产量高,冶炼电耗降低。

1.8 炉前操作

在出炉的一个周期内,如何使化料速度与还原速度相适应,是提高锰收得率降低冶炼电耗的一个重要环节。而关键是是炉前操作制度的合理性,主要反映在以下两个方面:

(1)、保持电极在炉料中有足够的埋入深度单位时间内输入炉内的有功功率转变的热能,主要用于维持熔池反应区的高温,有助于提高Mn还原反应速度和还原程度,三相电极插入炉料的深度不够,熔池反应区温度就会降低,不利于锰元素的还原,造成单产低,冶炼电耗升高。

(2)、炉长判断炉况和处理炉况能力。由于我公司还原剂露天存放,雨天焦丁水份较大,入炉后易造成炉内缺碳,炉长判断和处理炉况不及时,三相电流跟不负荷,用电量降低,元素还原不充分,冶炼电耗升高。

1.9 电极工作端

合适的电极工作端是维持良好炉况的先决条件。电极工作端过短时,单位时间向炉内输入功率减小,且易形成“刺火”和翻渣现象,影响正常冶炼的进行;电极工作端过长时,电极难以下插,暴露于料面以上空气中电极较多,加快了电极的氧化消耗,炉口热损失大,且在送电过程中电极震动,易出现裂纹发生电极硬断现象,电极硬断后,焙烧电极时冶炼电耗升高。

2.0 炉眼寿命

矿热炉炉眼为可修复重复性使用的碳质炉眼,在使用过程中氧化较大时,可使用电极糊炒热后填充,等其烧结有一定的强度后使用。炉眼前期,炉眼小,好开易堵,堵眼时不用停电,大大减少工艺停炉,产量指标良好。炉眼后期氧化较大,出铁渣铁流量较大,有时必须停电堵眼,影响生产。我公司目前避峰生产方式,谷期生产3炉,冶炼时间为8小时,中途出铁过程中炉眼后期不好

堵眼时,必须停电堵眼,势必会造成单炉用电量降低,冶炼电耗升高。

2、降低吨铁冶炼电耗的措施

2.1 适当提高综合料入炉品位

根据国标GB21341-2008铁合金产品能源消耗限额规定,冶炼锰硅合金在入炉品位34%上下,品位每升高或降低1%,吨铁电耗降低或升高100kwh,在实际生产中,入炉品位超出36%,吨铁电耗降低幅度和收得率提高幅度就不是很大了,况且入炉料中含锰量提高了,矿石中CaO、MgO、Al2O3等杂质含量也相应增加了,综合料的入炉品位反而降低了。在冶炼锰硅合金牌号一定的情况下,最高入炉品位也就一定了(一般Mn≤34.5%),所以说在冶炼条件一定的情况下,适当提高综合料的入炉品位,有利于降低吨铁冶炼电耗。根据我公司2007年配料比与产量指标统计分析,生产FeMn64Si18产品,入炉品位控制在32.5~34.5%时产量指标良好。

2.2 保证还原剂质量

根据生产实践经验,合适的焦丁粒度对产量指标至关重要,经营科应按照原材料技术要求标准,严格控制焦丁进货质量,原料场对焦丁及时进行晾晒、筛分,达到入炉粒度要求。入炉焦丁粒度合适,才能维持反应区内焦炭层的一定厚度,有利于元素回收,提高单炉产量,降低冶炼电耗。

2.3 增加单炉用电量

影响单炉用电量的因素主要有:

(1)、配碳量

入炉料配碳量不足时,炉膛内反应区焦碳层变薄,炉料电阻增加,电极下插较深,电流却跟不满负荷,小时用电量减少;配碳量过剩时,炉料升温后电阻减小,三相电极难以下插,炉口热损失增加,送入炉内的电功值减小,冶炼电耗升高,所以,配料时一定要根据实际情况,配入合适的焦丁量。

(2)、一、二次电压(送电制度)

要提高夜班单炉用电量,必须提高单位时间内输入炉内的有功功率,即小时有功值,而实际生产中小时有功值与进线电压(一次侧电压)和二次侧电压有关,二次侧电压一定情况下,一次侧电压越高,小时有功值越大;一次侧电压

一定情况下,二次侧电压越高,小时有功值将越大,所以在进线电压较低的情况下,我们可以提高电压等级来提高二次侧电压,增加小时有功值,提高入炉电能的有效功率,进而提高反应温度,促进化学反应速率的加快。

(3)、炉眼维护

A、严格按照工艺技术操作规程维修炉眼,提高修眼质量,控制合适的开、修眼时间,采取新旧炉眼轮流出铁方式,即夜班第1、2炉使用好开易堵的新炉眼,第3炉使用流量较大的旧炉眼,可减少夜班工艺停炉,增加用电量,降低冶炼电耗。

B、采用开堵眼机进行开、堵眼操作,可有效提高炉眼寿命,做到生产中炉眼好开易堵,减小工艺停炉时间,增加用电量,降低冶炼电耗。

(4)、电极硬断

避峰期间和冶炼中都要加强电极维护,避免电极急冷急热,内部产生应力后出现裂纹,引起电极硬断。电极硬断后,电极较难下插,炉口热损失增加,影响用电量。

(5)、设备、工艺停炉。

改进设备,改善工艺,加强管理,减少设备和工艺停机,增加用电量。2.4 控制合适的炉渣碱度

在生产过程中,炉渣碱度低,粘度大,流动性差,排渣不畅,不利于MnO 的还原,Mn回收率低;因此,控制适当的炉渣碱度,改善炉渣流动性,以提高元素回收率,降低冶炼电耗至关重要。近年来立足理论,深入生产中总结,影响炉渣碱度高低的主要因素有:

(1)、配碳量

配碳量不足时,硅元素回收率低,炉渣中SiO2含量增加,使炉渣碱度降低。

(2)、料批结构

综合锰矿中含碱性氧化物量少时会造成炉渣碱度偏低,这种情况需配加一部份碱性氧化物来调节炉渣碱度。如白云石,碱性烧结矿或含GaO+MgO较高的转炉钢渣。

(3)、电极工作端

电极工作端合适,插入炉料深度合适,炉内温度高,反应充分进行,元素回收率高,炉渣碱度高。

2.5 精料入炉

精料对锰硅合金生产而言至关重要,是取得好的技术经济指标的前提条件。

原料的粒度均匀,杜绝粉末和大块料入炉,才能保证炉内透气性良好,炉况顺行。单位时间内输入炉内的有功功率转变的热能,主要用于维持熔池反应区的高温,炉料粒度合适,反应所产生高温燃气能很好地预热上层冷炉料,减少冷料在反应区的吸热,维持反应区的高温状态,提高元素回收率,降低冶炼电耗。

2.6 正确的炉前操作

加料必须勤加、少加,保持电极周围成200~300mm高的锥体。边缘低于炉口平均100~200mm,中心料面高于炉口平台500mm左右,禁止炉料和料管连在一起。每炉中心附加料应在上一炉出铁前20分钟下到炉膛中心,每炉东、西附加料应在冶炼开始后均匀加到三相电极根部。

2.7 加回炉渣冶炼

加回炉渣冶炼是指生产中所产生的含锰量较高的炉渣再回炉重熔的过程,如一、二次扒渣产物。回炉渣在送电前加到三极电极根部,相对增加了电极周围的炉料电阻,冶炼过程中有利于三相电极的下插。回炉渣熔点较低,可在送电后不久熔化后沿电极下到炉膛反应区内,迅速造渣,加快了冶炼前期的造渣速度,化学反应提前进行,入炉后能有效促进各种化学反应充分进行,有利于元素收得率的提高,降低冶炼电耗。

2.8 留渣法操作

在料批配比、回收率一定的情况下,根据每个料批的渣量变化,确定每炉留渣量,进行冶炼操作。留渣法操作特点在于它是利用炉渣电阻热代替常规的电弧热,促使炉内反应区扩大,达到降低电耗,提高元素回收率和生产能力的目的。具体表现为:

1、在渣层中能量转换率稳定。

2、在出铁操作中放出的液体温度稳定。

3、扩大了反应区,气体分布均匀,热量利用率高。

4、炉渣与合金分离较彻底。

2.9 电极工作端的维护

冶炼过程中加强电极工作端的维护,制定完善合理的电极压放制度,减少和避免电极硬断和软断现象对降低吨铁电耗也是十分重要的。我公司工艺要求,电极硬断长度达800mm时必须取出,小于800mm可直接压入炉内,炉内存有电极断头后,直接影响到电极的下插,增加炉口的热损失,炉底温度低,不利于降低单位电耗。

3、结论

我公司两台矿热炉生产实践表明,通过采取上述措施以后,稳定了炉况,降低了吨铁冶炼电耗,进一步降低了成本,获得了良好的经济效益,可在锰硅炉上参考及推广应用。

硅锰合金冶炼对入炉原料、辅料的要求

1、锰矿石 锰矿石是指可供工业提取锰或直接用于工业上的含锰矿物。根据一成条件可分为沉积矿床、变质矿床和风化层矿床,按化学结构可分为氧化锰矿、碳酸盐锰矿、硅酸盐锰矿等。我国锰矿资源大部分集中在中南和西南地地区,类型以氧化锰矿和碳酸锰矿为主。在锰硅合金生产中,对锰矿石的要求有以下几个方面: 1.1含Mn高:含锰量是锰矿石的主要质量指标,锰含量越高,越有益于各项经济技术指标的改善。 1.2含Fe适中:由于铁在冶炼过程中95%以上进入合金,因此对锰矿中铁含量随生产品种不同要求也不一样,在实际生产中,常使用锰矿石和含铁低的富锰渣搭配入炉,得到合格的产品。 1.3SiO2不作严格限制:锰矿石中含有一定的SiO2对锰硅合金生产是有益的,但也不是越高越好,一般以料批中不须配入硅石即能生产出合格产品为益。 1.4CaO和MgO不予限制。 1.5P、Al2O3要低:锰矿中的P、Al2O3对所有锰系合金冶炼来说都是无益组分,但适量Al2O3的对冶炼过程有一定的促进作用。 1.6物理特征:锰矿石要求有一定的粒度、抗压强度和低的含水量。粉矿会降低炉料的透气性,抗压强度低的矿石在炉内易粉化,也会降你炉料透气性,锰挥发多,不利于化学反应和热交换,锰回收率低;含水量高的矿石入炉后会使热损耗增大,降低化料速度。 2、焦炭 在锰硅合金生产中对焦炭的要求一般为:固定碳含量80%以上,灰分低于18%,挥发分不作限制(4~5%),水分越低越好,电阻率高,反应活性好,粒度合适,有一定的机械强度。 3、辅料 3.1硅石:要求SiO2含量在97%以上,粒度适合,具有良好的抗爆性能。 3.2白云石:要求CaO%≧30%,MgO≧20%,粒度合适。 3.3石灰:要求CaO%≧82%,使用前无粉化。 3.4萤石:要求CaF2%≧50%,粒度合适。

铁合金生产一些常见知识简介

铁合金生产一些常见知识简介 1、矿热炉和精炼炉的区别?以及各自的优缺点? 铁合金的生产方法,按照使用设备的不同,可分为电炉法、高炉法、炉外法、转炉法、及真空电阻炉法。 电炉法又分为矿热炉法和精炼炉法。 矿热炉是矿石加热还原电炉的简称。矿热炉法是以碳作还原剂还原矿石生产铁合金的一种工艺方法。其生产过程是,将炉料连续加入炉内,并将电极插埋于炉料中,依靠电弧和电流通过炉料而产生的电弧热和电阻热,进行埋弧还原冶炼操作,熔化还原产生的金属和熔渣集聚在炉底,并通过出铁口定时出铁出渣。生产过程是连续进行的。用此方法生产的品种主要有硅铁、硅钙合金、工业硅、高碳锰铁、硅锰合金、高碳铬铁、硅铬合金、镍铁等。 精炼炉法又称为电弧炉法,其原意是指将初级铁合金用电弧炉进行精炼降低杂质元素而得到精炼铁合金产品的一种工艺方法,一般是用硅(硅质合金)、铝等作还原剂生产含碳量低的铁合金产品,依靠电弧热、硅氧或铝氧反应热进行冶炼,炉料从炉顶或炉门加入炉内,整个冶炼过程分为引弧、加料、熔化、精炼和出铁等五道工序。生产过程是间歇进行的,即每炉一个循环。主要生产的品种有:中、低碳锰铁,中、低、微碳铬铁,钒铁等。我公司用精炼炉生产镍铁,严格地说不是一个精炼过程,而是一种电碳热熔分冶炼工艺,只是沿用了传统铁合金生产精炼炉法的称谓而已。 矿热炉法和精炼炉法的主要特点和差别:

A矿热炉设备较复杂,而精炼炉设备相对较简单; B生产工艺流程方面,矿热炉是连续进行的,而精炼炉法是间歇进行的; C操作控制方面,矿热炉相对较难,而精炼炉相对较为容易; D在铁合金生产领域,矿热炉法较易实现大型化规模化,而精炼炉法则受到局限; E矿热炉生产效率较高,而精炼炉生产效率相对较低; F矿热炉一般使用自焙电极,电极插入炉料较深,为埋弧操作,而精炼炉一般使用石墨电极,电极插入炉料较浅,为遮弧操作; G就我公司目前镍铁生产而言,精炼炉产品P、S杂质含量可控制得较低,且已实现矿石热装,从而电耗较低,而矿热炉使用烧结矿,没有热装,电耗较高,环境控制较难,这在广西金源公司采用的回转窑加矿热炉工艺后将会有根本的改变。 2、从统计学的角度,每种合金产品需要重点关注的指标有哪些?每个指标的意义及其影响因素? 原则上来讲,就是要关注在成本构成中所占比例较大的指标。 A产量,是所有生产指标体系中最基础的首要指标。影响产量的主要因素有:设备的正常运行率、电气制度的合理选择、原辅料的性质、配料的合理性(熔剂、还原剂用量适度,渣型合理)、操作的稳定性和管理水平等。 B质量,是其它指标的前提,产品质量不符合要求,则产量和成本也就无从谈起。影响质量的主要因素有:原辅料质量是否满足工艺

硅锰合金的冶炼

硅锰合金的冶炼
关于硅锰合金的冶炼方式和方法 邓绍鑫、邓元华 内容摘要:硅锰合金是炼钢中常用的复合脱氧剂,因此,世界上对于硅锰合金的 冶炼都十分的重视。本文通过对硅锰合金的冶炼过程进行剖析阐述,客观上总结了国 内外硅锰合金冶炼的技术手段和方法。b5E2RGbCAP 关键词:硅锰合金 复合脱氧剂 冶炼
硅锰合金是炼钢常用的复合脱氧剂,又是生产中,低碳锰铁和电硅热法生产金属 锰的还原剂。 硅锰合金可在大中小型矿热炉内采取连续式操作进行冶炼。目前,世界上硅锰合 金电炉正向大型化、全封闭的方向发展,南非 1975 年投产了一台 88000KVA 的大型硅 锰合金电炉。p1EanqFDPw 生产硅锰合金的原料有锰矿、富锰渣、硅石、焦炭。 生产硅锰合金可使用一种锰 矿或几种锰矿(包括富锰渣)的混合矿。为保证炼出合格产品,矿石中的锰铁比和锰
DXDiTa9E3d
磷比应满足一定要求,见表 1-2 所示。所用的锰矿含锰越高, 表 1-2 各项指标越好,图 1-1 为锰矿品位对硅锰合金技术经 济指标的影响。锰矿中二氧 化硅含量通常不受限制。采用含二氧化硅较高的锰矿 (30~40%SiO2)来冶炼硅锰合金在技术上是允许的,在资源利用上是合理的。
1 / 11

图 1-1 锰矿中的杂质 P 2O 5 要低,P 2O 5 使合金中磷含量升高。锰矿粒度一般为 10~80mm,小于 10mm 不超过总量的 10%。RTCrpUDGiT 对于硅石的要求,SiO 2≥97%,P 2O 5<0.02,粒度 10~40mm,不带泥土及杂物。 对于焦炭的要求,固定碳≥84%,灰分≤14%,焦炭粒度,一般中小电炉使用 3~13mm,大电炉使用 5~25mm。5PCzVD7HxA 对于石灰的要求与碳素锰铁对石灰的要求相同。 为了改善硅的还原,炉料中必须有足够的 SiO 2 使在酸性渣中进行冶炼,渣中 SiO 2 过高,会使排渣困难,通常冶炼硅锰合金的炉渣成分:jLBHrnAILg CaO+MgO (SiO 2)=34~42%,=0.6~0.8 SiO 2 锰的高价氧化物不稳定,受热后容易分解和被 CO 还原成低价的氧化物 MnO ,在 1373K~1473K 的温度区间,锰的高价氧化物已经分解或还原成 MnO 。MnO 较稳定,只 能用碳直接还原,由于炉料中 SiO 2 较高,MnO 在没开始还原时就与它反应成硅酸盐, 富锰渣中的硅锰也是硅酸盐的形式存在,因此从 MnO 中还原锰的反应,实际上是液态 炉渣的硅酸盐中进行还原的。xHAQX74J0X 由于锰与碳组成稳定的化合物 Mn 3C ,用碳还原 MnO 得到的不是纯锰,而是锰的 化合物 Mn 3C 。 MnO·SiO24 3 C= 1 3
2 / 11
Mn<8%

硅锰合金的牌号和化学成分

硅锰合金的牌号和化学成分(GB4008) 发表商友:6517 发表时间: 2004年09月15日 10:46 阅读数: 1285 ...牌号................................化学成分% ....................Mn...........Si..........C...............P..............S ....................................................Ⅰ.......Ⅱ.. (Ⅲ) ...................................................不大于 FeMn60Si25.....60.0—70.0....25.0—28.0.....0.5....0.10....0.15....0.25....0. 04 FeMn63Si22.....63.0—70.0....22.0—25.0.....0.7....0.10....0.15....0.25....0. 04 FeMn65Si20.....65.0—70.0....20.0—22.0.....1.2....0.10....0.15....0.20....0. 04 FeMn65Si17.....65.0—70.0....17.0—20.0.....1.8....0.10....0.15....0.20....0. 04

FeMn60Si17.....60.0—70.0....17.0—20.0.....1.8....0.10....0.15....0.20....0. 04 FeMn65Si14.....65.0—70.0....14.0—17.0.....2.5....0.10....0.15....0.20....0. 04 FeMn60Si14.....60.0—70.0....14.0—17.0.....2.5....0.20....0.25....0.30....0. 04 FeMn60Si12.....60.0—70.0....12.0—14.0.....3.0............0.30 FeMn60Si10.....60.0—70.0....10.0—12.0.....3.5............0.35

钢铁中锰含量的测定 (2)

实验报告 钢铁中锰含量的测定——银盐氧化光度法 班级:应111-1 姓名:王海花 学号:201169503147 指导老师:王老师

一.实验目的: 1.通过实验,了解钢铁中锰的存在形式,测定意义。 2.了解测定钢铁中锰含量的测定方法。 3.掌握钢铁中锰含量的测定原理。 4.熟练掌握分光光度计的使用,进一步训练移液管、容量瓶的正确使用。 5.掌握用比色法测定钢材中锰含量的方法 二.实验原理: 1.锰在钢铁中主要以MnC、MnS、FeMnSi或固溶体状态存在。生铁中一般 含锰0.5%~6%,普通碳素钢中锰含量较低,含锰0.8%~14%的为 高锰钢,含锰12%~20%的铁合金称为镜铁,含锰60%~80%的铁合 金称为锰铁。 2.锰溶于稀酸中,生成锰(Ⅱ)。锰化物也很活泼,容易溶解和氧化。在 化学反应中,由于条件的不同,金属锰可部分或全部失去外层价电子, 而表现出不同的价态,分析上主要有锰(Ⅱ)、锰(Ⅲ)、锰(Ⅳ)、锰(Ⅶ), 少数情况下亦有锰(Ⅵ),这就为测定锰提供了有利条件。 3.常用测定方法:一般碳素钢,低合金钢,生铁试样常以HNO 3 (1+3)或 硫磷混酸溶解。难溶的高合金钢以王水溶解,加HClO 4或H 2 SO 4 冒烟溶 解。溶解试样的酸主要依靠H 2SO 4 ,HCl,HNO 3 ,因H 2 SO 4 -HCl可使MnS 分解。HNO 3分解碳化物(Mn 3 C)生成CO 2 逸出,加磷酸可使Fe3+配合成 无色而消除Fe3+的干扰。同时因为磷酸的存在,防止了MnO 2 沉淀的生 成和HMnO 4 的分解。 4.主要反应方程式: 3MnS+12HNO 3=3Mn(NO 3 ) 2 +6HNO 3 +3SO 2 +6H 2 O 3Mn 3C+28HNO 3 =29Mn(NO 3 ) 2 +3CO 2 +10NO+14H 2 O MnS+H 2 SO 4 =MnSO4+H 2 S 2AgNO 3 +(NH 4 ) 2 S 2 O 8 =Ag 2 S 2 O 8 +2NH 4 NO 3 Ag 2 S 2 O 8 +2H 2 O=Ag 2 O 2 +2H 2 SO 4 5Ag 2O 2 +2 Mn(NO 3 ) 2 +6HNO 3 =2HMnO 4 +10AgNO 3 +2H 2 O 三.实验仪器及试剂: 1.实验仪器:721型分光光度计,分析天平,容量瓶(50mL),移液管(1ml, 2ml,3ml),滴管,洗耳球,电炉 2.实验试剂:硝酸溶液(1:3),王水(1浓硝酸+3浓盐酸)硫磷混酸(700ml 水中加入150ml磷酸及硫酸150ml,摇匀),0.5%硝酸银溶液,20%过 硫酸铵溶液,5%EDTA,锰标准溶液(0.1mg/ml) 四.实验步骤: 1.溶样:钢样0.2630g于50ml烧杯,加5mlH 2 O,15ml王水溶解,(可稍热) 2mlHClO 4 加热至冒白烟2min冷却,加硫磷混酸10ml加热至冒白烟,除尽Cl-冷却,定量转移至50ml容量瓶定容,摇匀,备用。 2.显色:移取试样溶液5ml4份于4个小烧杯,加H 2 O5ml,硫磷混酸5ml 依次加入锰标准溶液0.00ml,1.00ml,2.00ml,3.00ml,AgNO 3 2ml, (NH 3) 2 S 2 O 8 5.0ml,煮沸20-40s放置1min,冷水冷却转移定容至50ml容 量瓶。 3.测定A:在530nm的波长下,测定溶液的吸光度,比色皿b=1cm,以水为 参比溶液。

锰硅合金矿热炉(电弧炉)烘炉及冶炼操作工艺

锰硅合金矿热炉(电弧炉) 烘炉及冶炼操作工艺 2019年3月4日 烘炉 硅锰炉内衬砌筑好之后的第一步就是进行烘炉,烘炉也是影响整个炉子使用寿命和质量的重要步骤。 (1)准备好木材,大块焦炭。将炉内清扫干净,三相电级下铺一层黏土砖,放长电极,将电极下到炉底松开铜瓦,把持器抬到上线位置再抱紧,焙烧长度大于2500mm,在电极焙烧部位扎上5?6个小孔,间距200mm。下放电极后向壳内添加电极糊,保证电极糊柱高3500mm。 (2)砌筑花墙,烘烤电极。围绕三相电极用黏土砖砌一圈花墙,花墙内矿热炉与电极矿热炉面距350mm,花墙高度以花墙上沿与铜瓦下缘距350mm为好,花墙底部装引火木柴并加少量废油,其上部加大块焦炭,引火,视电极直径大小烘烤35?48h,电极焙烧好,要迅速拆除花墙,尽量掏净花墙黏土砖。 (3)烘电极不松开铜瓦,但要关小铜瓦水。烘烤完毕将电极倒放,铜瓦要夹烘好的电极200mm以上。

(4)送电前必须向操作工提交送电制度矿热炉。 (5) 送电时可以用较正常使用电压高1?2级送电引弧,引弧后1h,改为正常电压级烘炉,开始加料的工作电压不超过满载负荷的一半,电烘炉前期(额定矿热炉三分之一断)应有间歇时间,间歇时间不超过20min,后期连续送电,从电烘炉一加料一第一炉一第二炉,出第二炉前各料管封上,各工作区间电耗和加料批数。 (6)月计划检修后的开炉操作:矿热炉经过小修后,必须立即送电生产,使炉况恢复正常,送电前,与大中修后开炉时要求相同,检查机电设备。送电时必须按正常规则操作,送电后缓给负荷,一般为停电时间的三分之一到二分之一给满负荷,送电前与煤气净化组联系完毕才能送电。 锰硅合金冶炼具体操作 1、熔炼操作 正常的锰硅合金合金炉况,必须有足够大的坩埚,炉料透气性良好,炉口冒火均匀,炉气净化时不冒火,创造足够的世祸空间的条件是:入炉原料杂质少,粒度和水分符合要求,配料准确,原料成分及粒度稳定。炉渣碱度适合,二元碱度Ca0/Si02=0.6?0.85,炉渣中Si02=35%43%,

我国锰系合金生产工艺介绍

我国锰系合金生产工艺介绍 锰铁:锰和铁组成的铁合金。主要分类:高碳锰铁(含碳7%)、中碳锰铁(含碳1.0~1.5%)、低碳锰铁(含碳0.5%)、金属锰、镜铁、硅锰合金。 高炉冶炼 一般采用1000米3以下的高炉,设备和生产工艺大体与炼铁高炉相同。锰矿石在由炉顶下降的过程中,高价的氧化锰(MnO2,Mn2O3,Mn3O4)随温度升高,被CO逐步还原到MnO。但MnO只能在高温下通过碳直接还原成金属,所以冶炼锰铁需要较高的炉缸温度,为此炼锰铁的高炉采用较高的焦比(1600公斤/吨左右)和风温(1000℃以上)。为降低锰损耗,炉渣应保持较高的碱度(CaO/SiO2大于1.3)。由于焦比高和间接还原率低,炼锰铁高炉的煤气产率和含CO量比炼铁高炉高,炉顶温度也较高(350℃以上)。富养鼓风可提高炉缸温度,降低焦比,增加产量,且因煤气量减少可降低炉顶温度,对锰铁的冶炼有显著的改进作用。 电炉冶炼 近年来,国内外众多铁合金厂家就如何在硅锰冶炼中提高锰元素回收率,进行了深入的研究和时间。虽然在工艺配比、渣型选择、配送点制度等方面存在不尽相同的观点,但这些厂家均通过时间提高了回收率。“精料入炉,优化配料”是合金生产的发展方向之一,不同理化性能原料的搭配在很大程度上影响着铁合金的各项经济技术指标。 提高入炉有效功率。电炉设备参数和电器操作制度对炉内冶炼熔池温度影响较大,温度差异直接影响化学反应速率。根据设备参数及实际原料条件合理地选择供电制度,确定合适的二次电压、二次电流、有功功率,使电炉熔池和极心圆功率密度达到最理想状态,电炉甚至可以通过超负荷运行来确保熔池达到足够高的冶炼温度。温度越高,MnO和SiO2还原进入合金的程度越大,其中MnO和SiO2对还原温度的要求更高。在铁合金电炉内,主要存在由电能向热能的转化,即提高有效入炉功率有利于提高炉膛温度,同时有利于促进Mn和Si的还原。 选择合理的工艺制度。锰硅合金炉料配比以精料入炉为原则,入炉原料的有效成分应包括Mn、Fe、SiO2的总和(下问题到的有效成分皆同上),有效成分越高,即主要元素的富集度越高,越有利于增大

硅锰合金标准

硅锰合金国家标准GB/T4008-1996 代替GB 4008-87 前言 原国家标准GB 4008-87《锰硅合金》牌号过多,有些牌号没有生产,原标准主元素在各牌号之间有不衔接 .没有形成系列化,组织生产、判级比较困难。这次修改,删去一些牌号,补充了个别牌号。各牌号主元素 含量和个别牌号的参数在不影响使用的前提下进行了合理的调整。 本标准1983年首次发布,1987年第一次修订。 自本标准实施之日起。代替GB 4008-87。 本l标准由中华人民共和国冶金工业部提出。 本标准由冶金工业部信息标准研失院归口。 本标准由上海申佳铁合金有限公司负责起草。 本标准主要起草人:陈震华、章少春、钱宗华。 1范围 本标准规定了锰硅合金的技术要求、试验方法、检验规则、包装、储运、标志和质量证明书。 本标准适用于炼钢及铸造作合金剂、复合脱氧剂利脱硫剂。冶炼中低碳锰铁作还原剂用的锰硅合金。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所 有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 3650-83 铁合金验收、包装、储运、标志和质量证明书的一般规定。 GB/T 4010-94 铁合金化学分析用试样采取和制备 GB 5686.1-88 锰硅合金化学分析方法电位滴定法测定锰量 GB 5686.2-85 锰硅合金化学分析方法重量法测定硅量 GB 5686.3-88 锰硅合金化学分析方法中和滴定法测定磷量 GB 5686.4-85 锰硅合金化学分析方法钼蓝光度法测定磷量 GB 5686.5-88 锰硅合金化学分析方法红外线吸收法测定碳量 GB/T 13247-9l 铁合金产品粒度的取样和检测方法 3技术要求

铁合金基本概述

铁合金基本概述 1.1 铁合金的定义、分类、用途 1.1.1铁合金的定义 铁合金是由一种或两种以上的金属或非金属元素与铁元素融合在一起的合金。例如,硅铁是硅与铁形成的Fe2Si、Fe5Si3、FeSi、FeSi2等硅化物,它们是硅铁的主要组分,硅铁中的硅主要以FeSi和FeSi2形式存在,特别是FeSi较为稳定。不同成分硅铁的熔点也不相同,例如45%硅铁熔点为1260℃,75%硅铁为1340℃。锰铁是锰与铁的合金,其中也含有碳、硅、磷等少量其他元素,依其碳含量的不同,锰铁分为高碳锰铁、中碳锰铁和低碳锰铁。含有足够硅量的锰铁合金称为硅锰合金。 铁合金不是可以直接使用的金属材料,而是主要作为钢铁生产和铸造业的脱氧剂、还原剂及合金添加剂的中间原料。 1.1.2铁合金的分类 随着现代科学技术的发展,各个行业对钢材的品种、性能的要求越来越高,从而对铁合金也提出了更高的要求。铁合金品种繁多,分类方法也多,一般按以下方法分类: 1、按铁合金中主元素分类,可分为:硅、锰、铬、钒、钛、钨、钼等系列铁合金。 2、按铁合金中碳含量分类,可分为:高碳、中碳、低碳、微碳、超微碳等品种。

3、按生产方法分类,可分为:高炉铁合金,包括高炉高碳锰铁、低硅锰合金、低硅铁等;电炉铁合金,包括高碳锰铁、高碳铬铁、硅铁、硅锰合金、硅铬合金、硅铝合金、硅钙合金、磷铁、中低碳和微碳铬铁、中低碳锰铁、精炼钒铁等;炉外法(金属热法)铁合金,包括金属铬、钼铁、钛铁、硼铁、锆铁、高钒铁等;真空固态还原法铁合金,包括超微碳真空铬铁、氮化铬铁、氮化锰铁等;转炉铁合金,包括转炉中碳铬铁、转炉低碳铬铁、转炉中碳锰铁等;电解法铁合金,包括电解金属铬、电解金属锰等。此外,还有氧化物压块与发热铁合金等特殊铁合金。 4、按多元铁合金所含有的两种或两种以上合金元素分类,主要品种有硅铝合金、硅钙合金、硅锰铝合金、硅钙铝合金、硅钙钡合金、硅铝钡钙合金等。 各国根据炼钢的要求,把各种产品又分为若干个牌号。我国国家颁发的铁合金标准有几百个牌号,在铁合金品种中硅、锰、铬三大系列铁合金的生产量最大,约占铁合金总产量的90%以上。在硅、锰、铬三大铁合金系列中,硅铁、硅锰、铬铁是产量最大的品种,因此,本报告也主要分析这三个品种的产供销等情况。 1.1.3铁合金的用途 铁合金是钢铁工业和机械铸造行业必不可少的重要原料之一。随着我国钢铁工业的持续、快速发展,钢的品种不断扩大和

一种锰铝钛铁合金生产工艺的介绍

一种锰铝钛铁合金生产工艺的介绍 作者: 所属系别:锰 关键字:锰 发布日期: 2010年01月11日 17:56 编者按: 本发明涉及一种用准沸腾钢工艺冶炼焊条钢的脱氧及合金化添加剂,特别是锰铝钛铁合金。 目前,用准沸腾钢工艺冶炼焊条钢的脱氧及合金化添加剂主要为锰铝铁合金,如中国专利92107299公开的“铝锰铁复合脱氧剂”,其组分为(重量百分比):铝20—26%,锰30—35%,铁38—48%,余量为杂质。用铝锰铁合金生产的焊条在使用时有时出现焊缝开裂现象,其原因之一是由于焊缝金属中氢、氮的溶解析出所致,特别是当钢中同时含有游离的氢、氮时,会显著增加焊缝金属的冷脆倾向。虽然可以通过对钢材的预热及严格烘烤部分消除氢的不利影响,但是氮的有害作用则难以消除。 本发明目的是提供一种锰铝钛铁合金,作为脱氧和合金化添加剂,消除氮、氢的影响,减少生产的焊条在使用时出现焊缝开裂现明,解决现有技术存在的上述问题。 本发明目的是通过如下技术方案实现的。 锰铝钛铁合金各组分的重量百分比为:锰30—40%,铝15—28%,钛1.0—4.0%,铁23—43%,其余为杂质,杂质中包括碳、硅、磷、硫等。 本发明较佳的成分范围是:锰36—40%,铝15—19%,钛1.5—3.0%,铁28—38%,其余为杂质,杂质中包括碳、硅、磷、硫等。本发明最佳的成分范围是:锰36%,铝19%,钛2.0%,铁38%,其余为杂质,杂质中包括碳、硅、磷、硫等。

采用本发明锰铝钛铁合金作为冶炼焊条钢的脱氧及合金化添加剂除具有普通锰铝铁合金的脱氧及合金化作用外,还具有如下特点: 1.由于含钛而形成的三元复合脱氧交互作用进一步提高了金属的脱氧能力。 2.由于钛和氮的亲和力高于铝与氮的亲和力(TiN和AlN二才在1500℃的生成自由能差为-10101.2J/.atom),当钢中二者含量相同时优先生成TiN。 3.由于钛和氧结合生成TiO2的能力远小于铝和氧生成Al2O3能力(二者在1600℃生成自由能之差为-205540.5J/g.atom),因此在同等条件下铝优先与氧结合形成Al2O3,Ti则残留在钢中。 4.焊条中的碳、硅、铝等的含量应尽可能低,而含Ti为0.02%时对焊条钢电阻率的不利影响要比上述元素低得多。 5.由于焊条钢中含有0.006%氮时,它与0.02%的钛达到最佳配比1.15≤Ti/N≤3.4,从而显著改善焊缝性能,这是因为钛固定了含缝金属中的氮形成的TiN,致使由氢、氮引起的冷脆性得到抑制,而TiN粒子对氢捕获有陷阱作用,亦使氢的不利作用难以发挥,TiN粒子的细化晶粒作用,使解里断裂单元得到细化,从而提高缩性和改善焊缝韧性,减少焊缝开裂。 以下结合实施对本发明作进一步叙述: 附表为本发明实施例中各组分的含量(重量百分比) 该合金由中频感应炉冶炼,所用原料为复合国家标准。有确定化学成分的锰铁、钛铁和纯铝,所用废钢为含碳量在0.3%以下的低碳钢,按各元素的吸收率严格计算各元素的加入量。开炉前,向炉辟加入少许覆盖剂,然后加入20%铝,同时加入废钢,废钢开始深溶

锰铁合金

锰铁合金工业的污染核算 目录 第一节我国铁合金及锰系铁合金行业综述 (1) 第二节锰铁合金的基础 (3) 一锰铁的概念: (3) 二锰铁的分类: (4) 第三节锰铁合金的原料 (5) 第四节锰铁合金的生产工艺流程 (7) 一锰铁合金的生产原理 (7) 二锰铁合金的生产流程 (7) 第五节锰铁合金工业的环境污染 (15) 一锰铁合金工业的废气污染 (21) 二锰铁合金工业的废水污染 (21) 三锰铁合金工业的废渣污染 (22) 第六节锰铁合金工业的污染治理 (23) 一废气的处理 (23) 二废渣的处理 (24) 三废水的处理 (24) 第七节锰铁合金其他相关知识 (26) 一锰铁合金冶炼污染流程节点图 (26) 二锰系铁合金连续成形技术的设备研制 (26) 第一节我国铁合金及锰系铁合金行业综述 2006年,我国共生产铁合金1433.2万吨,比2005年的1067万吨增长34.32%。2006年,我国共进口锰矿石621.26万吨,比2005年的457.84万吨增长35.69%。2006年,锰系铁合金总产量预计为605万吨,当年出口量为80.25万吨,占锰系铁合金总产量的13.26%,出口量比2005年增加了47.03%。

锰矿: 在上下游商家的持续拉锯战中,三月锰矿行情疲态尽显,成交量始终未能得以突破,港口出货速度缓慢。价格方面,受BHP三月锰矿报价大幅下滑影响,三月澳洲、南非等主流国家锰矿现货市场价格跌幅明显(1-3元/吨度),马来西亚等非主流锰矿价格相对保持平稳。 一下游市场 虽然三月锰合金招标价格较二月持稳,但自二月初,钢厂对于锰合金采购量持续减少,直接导致硅锰及锰铁合金成交价格的下滑。整个三月,硅锰及锰铁整体跌幅在200元/吨左右,滞销现象十分明显。有合金厂负责人称,三月锰合金市场已经倒挂,对于锰矿采购需求保持低位。 至三月下旬,四月钢厂采购价格相继出炉。受南方地区丰水期电价即将下调、钢厂锰合金库存充足以及BHP三四月锰矿报价大跌等诸多外界因素影响,四月钢厂对锰系产品采购价格在三月基础上再现200元/吨跌幅,锰合金厂家叫苦不迭,锰矿需求进一步走低。虽然临近月末港口锰矿市场询盘明显增多,但80%以上锰合金厂询盘目的仅以了解价格为主,实际采购不多。合金厂普遍盼锰矿价格再降以减小生产成本,持币观望等待者甚多。 二港口锰矿成交 在合金厂对价格的持续打压以及锰矿出货压力日益增大的影响下,三月港口锰矿价格现1-3元/吨度松动。其中,跌幅最为明显的即BHP主营矿种----澳洲锰矿。澳块Mn45%市场报价由三月初53-54元/吨一路下滑至月底50元/吨度,成交稀少;南非Mn38%Fe5%等相对畅销的矿种也因此受到一定影响,Mn38%Fe5%南非锰块主流价格由月初46.5元/吨度跌至月底45.5元/吨度;而巴西、加蓬等其他主流国家锰矿亦受明显冲击,现1-2元/吨度跌幅,且成交不畅。

锰硅合金生产工艺

锰硅合金生产工艺 一、技术要求 执行GB/T4008-96标准,其化学成份见表一。 表一:锰硅合金牌号及化学成分 通常生产FeMn68Si18的牌号,根据用户需求生产其它牌号的锰硅合金和含P<0.1%的低磷硅锰,S<0.03%的低硫硅锰,合金表面和断面均不得带有非金属杂质。 二、冶炼原理 以焦炭作还原剂,在高温电热状态下(1500。C以上)还原矿石中的氧化锰、二氧化硅、氧化铁并按一定比例形成锰硅合金。最终反应方程式为 MnxOy+yC=xMn+yCO↑ SiO2+2C=Si+2CO↑ FexOy+yC=xFe+yCO↑ 冶炼中还带入一部分其它有害元素,如磷、碳、硫等,应在原料中加以控制。冶炼中还存在未还原物质,如氧化锰、二氧化硅等,要加入石灰石或白云石与此反应形成炉渣。炉渣碱度应控制在0.6~0.8之间。 三、入炉原料技术要求 冶炼锰硅合金的原料有:锰矿石、富锰渣、硅石、熔剂(白云石或石灰),入炉原料技术要求如下: 1、锰矿石 1.1 Mn>30%,Mn/Fe 6~8,P/Mn<0.002。 1.2 粒度5~80mm,水份≤6% (巴西矿、加蓬矿除外)。 2、焦炭 2.1 冶金焦:固定炭≥80%,灰份≤10%,粒度5~20mm。 2.2 煤气焦:固定炭≥80%,灰份≤10%,粒度5~20mm。 2.3 硅石:SiO2≥97%,Al2O3≤1.5%, P2O5≤0.02%,粒度10~40mm。 2.4 熔剂(白云石):CaO+MgO≥50%,粒度5~40mm。 四、配料 1、配料准备 1.1 收料人同应将当天的进料情况向工艺人员通报,并按工艺人员要求进行原料准备。1.2 需破碎加工的原料按上述技术要求加工后送入指定料位,并通知配料人员。

锰硅合金冶炼各岗位安全操作规程

1、冶炼炉前工岗位安全操作规程 1.1新的或长期停用的旧的铁水包(渣包)、锭模,一定烘烤到120℃以上方能使用。 1.2吊车吊物或浇注、倒渣时,应有专人按规定信号指挥吊车,其它人员应远离吊物。 1.3电炉在生产时,禁止在炉口下逗留或通过。如必须在该处工作时,要有专人看管炉口。 1.4烧炉眼时,工作鞋、手套必须干燥。使用大锤者,不准戴手套。 1.5用氧开炉眼时,应安放挡板,开氧气时应由小到大缓慢开启。炉眼烧开后,迅速成关闭氧气,氧气安全关闭后,方准将氧气管拉出安全挡板外。 1.6使用氧气时,应遵守下列规定: 1.6.1氧气瓶必须有关防震圈、安全帽等安全附件。搬运时要轻拿轻放,严禁在地面滚动、碰撞和吊车吊运。 1.6.2氧气瓶要在指定地点存放。不准在露天曝晒,不准接近高温,距明火要10米以上。 1.6.3氧气瓶或使用的工具严禁沾油。 1.6.4开氧气时,站在氧气瓶的一侧。严禁吸烟,集中注意力。 1.7用卷扬拉铁水包(渣包)时,钢丝绳和铁水包(渣包)两则不准有人,拉到位置后必须脱钩。 1.8不准用潮湿样勺取铁液样,不准将潮湿物体或密闭容器投入铁水包、锭模中,炉前严禁积水,防止发生爆炸。 1.9熟记吊车联系信号,并严格执行。 2、冶炼炉面工岗位安全操作规程 2.1送电前,班长必须与有关岗位联系好,人员离开危险区,确认无误方可发出送电信号,送电后解除信号。 2.2正常工作时,不准同时接触两相电极。 2.3电炉工作时,不准往短网上投掷物品,严禁用水浇短网,不得爬上烟罩。 2.4不准随意从操作平台上往下扔物品。必要时,要有专人监护,确保安全。 2.5洗炉时,禁止向炉内投入冷料。必须加入时,要有确保避免爆炸的措施。 3、冶炼配电岗位工安全操作规程 3.1供配电按电业系统有关规定执行。 3.2在正常供电或停、送电、下放电极等过程中,要与冶炼工密切配合,听从冶炼班长指挥。 3.3拉、合闸,揿按钮要一看、二确认、三操作。 3.4操作高压部分,要一人操作,一人监护。 3.5高压合闸操作,先合隔离开关,后合油开关,分闸时,先分油开关,后分隔离开关。 3.6非工作人员,一律不得进入配电室和变压器房。 3.7进入液压房、变压器房,严禁吸烟。 4、加糊工岗位安全操作规程 4.1吊运电极糊,执行吊车工安全操作规程。 4.2向电极筒内加电极糊时,要准确,不许掉在电极悬挂及压放设备上,加电极糊平台要保持整洁,不准放金属物。 4.3同一座电炉不准同时从事装填电极糊和焊接电极壳。 4.4用大锤破碎电极糊时,禁止戴手套。 4.5禁止同时接触两相电极或同时接触电极与金属构件。 4.6加完电极糊后要清扫作业场地,电极筒顶端加好盖。 5、修炉工岗位安全操作规程

铜和铜合金的基础知识

铜和铜合金的基础知识 铜合金(copper alloy )以纯铜为基体加入一种或几种其他元素所构成的合金。纯铜呈紫红色﹐又称紫铜。纯铜密度为﹐熔点为1083℃﹐具有优良的导电性﹑导热性﹑延展性和耐蚀性。主要用于制作发电机﹑母线﹑电缆﹑开关装置﹑变压器等电工器材和热交换器﹑管道﹑太阳能加热装置的平板集热器等导热器材。常用的铜合金分为黄铜﹑青铜﹑白铜3大类。 黄铜以锌作主要添加元素的铜合金﹐具有美观的黄色﹐统称黄铜。铜锌二元合金称普通黄铜或称简单黄铜。三元以上的黄铜称特殊黄铜或称复杂黄铜。含锌低於36%的黄铜合金由固溶体组成﹐具有良好的冷加工性能﹐如含锌30%的黄铜常用来制作弹壳﹐俗称弹壳黄铜或七三黄铜。含锌在36~42%之间的黄铜合金由和固溶体组成﹐其中最常用的是含锌40%的六四黄铜。为了改善普通黄铜的性能﹐常添加其他元素﹐如铝﹑镍﹑锰﹑锡﹑硅﹑铅等。铝能提高黄铜的强度﹑硬度和耐蚀性﹐但使塑性降低﹐适合作海轮冷凝管及其他耐蚀零件。锡能提高黄铜的强度和对海水的耐腐性﹐故称海军黄铜﹐用作船舶热工设备和螺旋桨等。铅能改善黄铜的切削性能﹔这种易切削黄铜常用作钟表零件。黄铜铸件常用来制作阀门和管道配件等。 青铜原指铜锡合金﹐后除黄铜﹑白铜以外的铜合金均称青铜﹐并常在青铜名字前冠以第一主要添加元素的名。锡青铜的铸造性能﹑减摩性能好和机械性能好﹐适合於制造轴承﹑蜗轮﹑齿轮等。铅青铜是现代发动机和磨床广泛使用的轴承材料。铝青铜强度高﹐耐磨性和耐蚀性好﹐用於铸造高载荷的齿轮﹑轴套﹑船用螺旋桨等。铍青铜和磷青铜的弹性极限高﹐导电性好﹐适於制造精密弹簧和电接触元件﹐铍青铜还用来制造煤矿﹑油库等使用的无火花工具。 白铜以镍为主要添加元素的铜合金。铜镍二元合金称普通白铜﹔加有锰﹑铁﹑锌﹑铝等元素的白铜合金称复杂白铜。工业用白铜分为结构白铜和电工白铜两大类。结构白铜的特点是机械性能和耐蚀性好﹐色泽美观。这种白铜广泛用於制造精密机械﹑化工机械和船舶构件。电工白铜一般有良好的热电性能。锰铜﹑康铜﹑考铜是含锰量不同的锰白铜﹐是制造精密电工仪器﹑变阻器﹑精密电阻﹑应变片﹑热电偶等用的材料。 [编辑本段] 铜合金的分类 — 铜合金的分类方法有三种:

硅锰合金生产工艺

锰系产品 一、锰系产业链及我司操作相关产品在产业链中位置(红色) 从图上看到不管锰矿还是中间任何的其它产品最终是以钢材为最终产品,钢材产品的价格直接影响相关其它产品的介个走势。其中电价是按季节变动的,在每年夏季的丰水期价格相应都会下调部分。 锰矿:储量主要集中在南非、莫桑比克、澳大利亚、俄罗斯、缅甸、加蓬等国,我国的锰矿产地是辽宁、湖南、四川、广西等地区,但是因为品位低,所以每年需要从国外进口大量高品位锰矿搭配使用。: 二、硅锰生产所需主原料: 锰、焦炭、硅、电

据不完全统计,锰矿品位每降低1%,硅锰合金电耗升高135KWh。尽可能提高入炉锰矿石的品位,是提高锰回收率、降低电耗,改善其他各项指标的重要手段。对于硅石的要求:SiO2>97%,P2O5<0.02%,粒度10-40mm,不带泥土及杂物。对于焦炭的要求:固定碳>84%,灰分<;14%,焦炭粒度,一般中小电炉使用3-13mm,大电炉使用5-25mm。 三、生产工艺: 锰矿石、硅石、碳质还原剂(焦炭)等,在配料站按冶炼工艺要求进行称量配料,混匀后,通过上料系统、布料系统及下料管加到电炉内,供电冶炼。电炉为连续还原冶炼,定时间歇出铁出渣。出炉的铁水铸锭成形,经精整破碎加工后,产品散装或包装出厂,大量的炉渣需进行水淬处理。 还原电炉是铁合金的主要冶炼设备,主要原料是矿石和炭质还原剂。含硅、锰的矿石和炭质原料在电炉中靠电弧放电作用发生还原反应,加热熔炼物料及反应所需的能量为电能。原料入炉后,在电炉炉温高达摄氏2000多度的高温下,发生还原反应,得到产品。 四、硅锰行业标准 锰硅合金GB/T4008-1996 表1 化学成分

低磷低碳锰硅合金(高硅硅锰)

低磷低碳锰硅合金(高硅硅锰合金)技术操作规程 1牌号及化学成分(见表1) 表1 低磷低碳锰硅合金牌号和化学成分(%) ┏━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃┃┃化学成分┃ ┃品种┃牌号┃┃ ┃┃┣━━━━━┳━━━━━┳━━━━━━━┳━━━━━━━┫ ┃┃┃ Mn ┃ Si ┃ C ┃ P ┃ ┣━━━━━━━━━╋━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫ ┃┃ FeMn60Si28 ┃ 60 --62 ┃≥28 ┃≤0. 050 ┃≤0. 050 ┃ ┃高硅锰硅合金I ┃┃┃┃┃┃ ┃┣━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫ ┃┃ FeMn58Si28 ┃ 58~60 ┃≥28 ┃≤0. 050 ┃≤0. 050 ┃ ┣━━━━━━━━━╋━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫ ┃┃ FeMn60Si28 ┃ 60~62 ┃≥28 ┃≤0. 080 ┃≤0. 080 ┃ ┃高硅锰硅合金II ┃┃┃┃┃┃ ┃┣━━━━━━━━╋━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━┫ ┃┃ FeMn58Si28 ┃ 58~60 ┃≥28 ┃≤0. 080 ┃≤0. 080 ┃ 2锰矿技术条件(含喂线因素)(见表2) 表2锰矿技术条件(%)

3喂线机操作(降P) 3.1 喂线准备 3.1.1检查机器各部均正常无误方可开机。 3.1.2穿线:把需要喂的线从进线口一直穿入导线管中。 3.1.3进车:按动操作盘上的前行按钮,使主机前行到位。 3.1.4落管:按动操作盘上的落管按钮,使导线管落下对准钢包。 3.2喂线操作 3.2.1 长度设定:把计数器开关拨至ON位置,使计数器显示并对其进行设定。 3.2.2按动右(左)边喂线按钮,启动右(左)边主电机。 3.2.3速度设定:旋转速度调节按钮,同时观察速度显示,直至所需喂线速度。 3.2.4压下喂线:按动右(左)边压下按钮,使右(左)边辊轮压下开始喂线。当喂够设定长度时压下轮自动升起,主电机停止运转,导线管自动升起。 3.3退线操作 退线操作规程与喂线操作一样,所不同的是操作时应按退线按钮。 4摇包机操作(降C) 4.1 使用前检查设备是否完好。 4.2 空转试车:确认设备能否正常运行。

关于我区锰系铁合金产业发展的几点思考

关于我区锰系铁合金产业发展的几点思考 遵义市红花岗区生产力促进中心史晶 1、国家有关产业政策、标准: 1.1《铁合金行业市场准入条件(修订版)》(国家发改委,2008 年); 1.2《清洁生产标准钢铁行业(铁合金)》; 1.3《钢铁产业调整和振兴规划(2009-2011)》(国务院发布); 1.4《铁合金单位产品能源消耗限额》(GB 21341-2008); 1.5《全国铁合金生产技术经济指标》(中国铁合金工业协会秘书处,2007 年); 1.6《钢铁产业发展政策》(国家发改委,2006 年); 1.7《铁合金行业产排污系数》(中钢集团武汉安全环保研究院、中国钢研科技集团公司、湖北大学编制,2007 年)。 2、我国铁合金产业发展现状: 锰系铁合金是由锰、硅、铁及少量碳和其它元素组成的合金,主要产品有硅锰和锰铁。锰具有脱氧、脱硫及调节作用(如阻止钢的粒缘碳化物的形成),还能增加钢材的强度、韧性、可淬性,在钢铁以及不锈钢制造过程中的应用非常广泛,此类用量占到了锰需求的85%-90%。锰铁总消耗量为钢产量的0.8-0.9%。探明的80%以上的锰矿资源主要分布于南非及乌克兰。其他主要的资源储藏地为中国、澳大利亚、巴西、加蓬、印度及墨西哥,中国锰矿属于稀缺资源,储量只有7.11亿吨,约占世界5%。 我国铁合金产品品种较为齐全,除少数优级特殊品种产品的生产工艺技术尚不成熟正待研发外,几乎可生产所有脱氧剂、合金剂、孕育剂、粉剂和各类包芯线产品,基本能够满足我国钢铁工业生产需要。2007年全球粗钢产量达到13.435亿吨,比2006年增长7.5%。这一数字创全球粗钢产量历史新高,同时也是全球粗钢产量增长率连续5年超过7%。其中,2007年位居全球粗钢产量前三位的国家是:中国,4.89亿吨;日本,1.202亿吨;美国,9720万吨。2007年,中国钢产量为4.89亿吨,铁合金产量1746.7万吨,锰系铁合金产量650万吨,锰铁消耗数量460万吨。目前我国铁合金产能约2800 万t,成为铁合金生产大国、消费大国和出口贸易大国。其中硅系约占30%,锰系约占44%,铬系约占11%,其它约占15%。全国电炉约有3900 座,其中矿热炉占89%,高炉占1%,其它占10%左右。 我国既是铁合金生产大国,也是铁合金产品消费大国。2008年,我国铁合金产业满足了国内5亿吨粗钢生产的需求,支撑了我国钢铁工业的快速发展,同时还有1/6的铁合金产品在严格的出口政策限制下走出了国门。这表明我国铁合金工业无论是生产能力还是供应能力,在国际上都具有相当的影响力。 我国的铁合金工业从无到有、从小到大、从弱到强发展至今,取得了丰硕的成果,但与铁合金工业强国仍有较大差距。目前,我国铁合金总产能达到3400万吨/年左右,企业总数达2000家以上,平均每家企业产能仅为1.7万吨左右,产量不足1万吨,据统计,我国产能在10万吨以上的铁合金企业仅有28家,产能在20万吨以上企业仅有8家,产能在50万吨以上企业仅有2家,而产能在1万吨以下的企业多达近1000家,行业产能庞大,产业集中度低,并且大多未采用先进技术,导致全行业工艺装备水平较低,技术进步和创新步伐缓慢。纯净产品、氮化产品,炉外精炼产品、复合脱氧剂、多元合金剂、粒化和粉剂产品、包芯线产品等科技含量和附加值高的产品产量较少。同时,由于我国小型电炉数量较多,工艺简单、设备简陋陈旧,机械化、自动化程度低,人均实物劳动生产率仅为45吨/年左右,而国外同行业人均实物劳动生产率达300吨/年左右。 针对这些问题,国务院发布了《钢铁产业调整和振兴规划(2009-2011)》、国家发改委发布了《铁合金行业市场准入条件(2008年修订版)》、环境保护部发布了《清洁生产标准钢铁行业(铁合金)》等相关产业政策,对行业实施准入制度和逐步落实节能减排政策,以淘汰落后产能,提高整体装备水平;优化产业布局和资源配置,提高产业集中度,提高资源与能源利用率、减少污染物产生与排放;实施“走出去”战略,增强国际竞争力,实现我国铁合金工业全面可持续发展。 3、我区铁合金产业发展现状: 3.1资源与能源:发展锰系铁合金产业所需主要原料是锰矿,遵义是我国主要的锰矿产区之一,具有资源优势;铁合金产业属于高能耗产业,而遵义属于我国电力富余地区,具有能源优势。由于具有资源与能源的优势,使得我区成为了电炉法铁合金的集聚之地。矿热炉冶炼加工后产生的铁合金废渣及水洗铁粉可以通过精炼炉回收利用,而精炼炉冶炼排放的炉渣又是铁合金矿热炉的原料来源之一,符合循环经济的要求,一定程度上补充了本地铁合金矿热炉的原料来源。 3.2 技术原理:根据铁合金生产采用的火法熔炼设备,国内外通常分为高炉法、电炉法、金属热法、转炉法和真空炉法等。其中电炉产品约占铁合金总产能的90%以上。电炉法包括还原电炉(矿热炉)和精炼电炉(电弧炉)两种。还原电炉法冶炼硅铁、高碳锰铁、锰硅合金、高碳铬铁铁合金产品。精炼电炉主要采用电硅热法生产铁合金,通常采用热装热兑或冷装料工艺操作技术生产中低碳锰铁、低微碳铬铁铁合金产品。

相关文档
最新文档