非均布荷载作用下路面结构力学响应计算

非均布荷载作用下路面结构力学响应计算
非均布荷载作用下路面结构力学响应计算

高大模板的确定和荷载计算方法

高大模板的确定和荷载计算方法 一、高大模板的定义: 根据《危险性较大的分部分项工程安全管理办法》(建质[2009]87号)和《建设工程高大模板支撑系统施工安全监督管理导则》(建质[2009]254号)规定:搭设高度8m及以上;搭设跨度18m及以上,施工总荷载15kN/m2及以上;集中线荷载20 kN/m及以上的模板支撑系统属于高大模板。 二、施工总荷载的计算方法: (一)荷载的组成 施工荷载=永久荷载(钢筋砼自重+模板木方钢管的自重)×分项系数+施工均布活荷载×分项系数 钢筋砼自重=板厚(m)×25KN/m3(25KN/m3为钢筋砼比重换算成KN/m3为单位,在计算均荷载时钢筋砼比重取值为25KN/m3。) 模板木方钢管的自重:0.3KN/m2(计算均荷载时取值为0.3KN/m2) 施工均布活荷载:2KN/m2 分项系数:永久荷载分项系数取1.2;施工均布活荷载分项系数取1.4 (二)计算实例: (25×M+0.3)×1.2+2×1.4=15 M=[(15-1.4x2-1.2 x0.3]/25=0.474米 取整M=474mm,即板厚达到或超过474MM时,需要专家论证。 三、集中线荷载的计算方法: (一)荷载的组成 集中线荷载=永久荷载(钢筋砼自重+模板木方钢管的自重)×分项系数+施工均布活荷载×分项系数 钢筋砼自重=梁的截面积(m2)×26KN/m3(26KN/m3为钢筋砼比重换算成KN/m3为单位,在计算集中线荷载时钢筋砼比重取值为26KN/m3。)模板木方的自重=梁截面模板的周长(m)×0.5KN/m2(计算集中线荷载时取值为0.5KN/m2) 施工均布活荷载=梁宽m×3KN/m2 分项系数 永久荷载分项系数取1.2;施工均布活荷载分项系数取1.4 1 / 2

简支梁计算公式总汇

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4).

跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

荷载计算及计算公式 小知识

荷载计算及计算公式小知识 1、脚手架参数 立杆横距(m): 0.6; 立杆纵距(m): 0.6; 横杆步距(m): 0.6; 板底支撑材料: 方木; 板底支撑间距(mm) : 600; 模板支架立杆伸出顶层横向水平杆中心线至模板支撑点长度(m):0.2; 模板支架计算高度(m): 1.7; 采用的钢管(mm): Ф48×3.5; 扣件抗滑力系数(KN): 8; 2、荷载参数 模板自重(kN/m2): 0.5; 钢筋自重(kN/m3) : 1.28; 混凝土自重(kN/m3): 25; 施工均布荷载标准值(kN/m2): 1; 振捣荷载标准值(kN/m2): 2 3、楼板参数 钢筋级别: 二级钢HRB 335(20MnSi); 楼板混凝土强度等级: C30; 楼板的计算宽度(m): 12.65; 楼板的计算跨度(m): 7.25; 楼板的计算厚度(mm): 700; 施工平均温度(℃): 25; 4、材料参数 模板类型:600mm×1500mm×55mm钢模板; 模板弹性模量E(N/mm2):210000; 模板抗弯强度设计值fm(N/mm2):205; 木材品种:柏木; 木材弹性模量E(N/mm2):9000; 木材抗弯强度设计值fm(N/mm2):13; 木材抗剪强度设计值fv(N/mm2):1.3; Φ48×3.5mm钢管、扣件、碗扣式立杆、横杆、立杆座垫、顶托。 16a槽钢。 锤子、打眼电钻、活动板手、手锯、水平尺、线坠、撬棒、吊装索具等。 脱模剂:水质脱模剂。 辅助材料:双面胶纸、海绵等。 1)荷载计算: (1)钢筋混凝土板自重(kN/m):q1=(25+1.28)×0.6×0.7=11.04kN/m; (2)模板的自重线荷载(kN/m):q2=0.5×0.6=0.3kN/m ; (3)活荷载为施工荷载标准值(kN):q3=(1+2)×0.6 =1.8kN;

汽车等效均布荷载的计算

汽车等效均布荷载的计算 本工程最小板跨为2.4m×2.5m,板厚180mm,汽车最大轮压为100KN (根据《城市桥梁设计荷载标准》第4.1.3条城—A级车辆荷载),汽车轮压着地面积为0.6m×0.2m(参考《建筑结构荷载规范》规范说明中4.1.1条“对于20~30T的消防车,可按最大轮压为60kN作用在0.6m ×0.2m的局部面积上的条件决定;”),动力系数为1.3,板顶填土S=0.9m。平面简图详见附图一。 计算过程如下: 一、X方向计算 1.填土中扩散角取30°,tan30°=0.5 2.a x=0.6+2×0.5×0.9=1.5m a y=0.2+2×0.5×0.9=1.1m a x/l x=1.5/2.4=0.625 a y/l x=1.1/2.4=0.458 l y/l x=2.5/2.4=1.042 考虑动力系数后q=1.3P/(a x a y)=78.785kN/m2 简支双向板的绝对最大弯矩: Mx max=0.0843×157.57×1.5×1.1=10.96Kn×m My max=0.0962×157.57×1.5×1.1=12.51Kn×m Me max=0.0368×qe×l2 qe=Me max/0.212=59Kn/m2 二、Y方向计算 1.填土中扩散角取30°,tan30°=0.5

2. a×=0.2+2×0.5×0.9=1.1m a y=0.6+2×0.5×0.9=1.5m a×/l×=1.5/2.4=0.458 a y/l×=1.1/2.4=0.625 l y/l×=2.4/2.5=0.96 考虑动力系数后q=1.3P/(a×a y)=78.785kN/m2 简支双向板的绝对最大弯矩: Mx max=0.0962×157.57×1.5×1.1=12.50Kn×m My max=0.0843×157.57×1.5×1.1=10.96Kn×m Me max=0.0368×qe×l2 qe=Me max/0.23=54.37Kn/m2 附图一

均布荷载作用下简支梁结构分析

均布荷载作用下简支梁结构分析 摘要:本文利用ANSYS软件中的BEAM系列单元建立简支梁有限元模型,对其进行静力分析与模态分析,得出梁的结构变形,分析梁的受力情况。并用有限元刚度矩阵知识求解简支梁端点处得位移和旋度。在此基础上,利用经典力学对以上所得的结果进行梁的有关计算,并将结果与有限元刚度矩阵和ANSYS软件所得结果进行比较。通过比较得出不同方法在简支梁求解过程中自己的优势和缺点。 关键词:ANSYS简支梁均布荷载求解应力位移 1.引言 钢制实心梁的截面尺寸为10mm×10mm(如图1所示),弹性模量为200GPa,均布荷载的大小及方向如图1所示。 图1 2.利用力学方法求解 运用力学方法将上述结构求解,易得A、B支座反力相等为500N,该简支梁的计算简图、弯矩图以及剪力图如下图所示:

1000N/m 1000mm 图2简支梁计算简图 跨中弯矩:125N㎡ 图3简支梁弯矩图 支座反力500N 图4简支梁剪力图 3.利用ANSYS软件建立模型与求解 通过关键点创建实体模型,然后定义材料及单元属性,然后划分网格,建立有限元模型。具体步骤包括:添加标题、定义关键点、定义直线、选择单元,定义实常数、定义材料属性、设定网格尺寸、划分网格、施加荷载求解(选择分析类型、定义约束、施加荷载)查看分析结果。

图5简支梁变形前后的情况 图6简支梁应力图 图7简支梁剪力图

4.计算结果对比 4.1简支梁内力分析结果比较 节点应力有下面公式计算求得: ?= 有限元计算所得结果与力学的计算结果对比如下表所示:) 单位(N/㎡ ANSYS模态结果结构力学计算结果 4.2简支梁竖向位移分析结果比较 4.2.1结构力学计算求得的简支梁最大位移 由下面图乘法求得: a

楼面等效均布荷载 B-1 计算结果(按线荷载计算)

楼面等效均布荷载计算书 项目名称:恒大珠江新城商业办公项目 项目概况:原有楼面设计活荷载为4KN/m2,现因施工要求,楼面需用到3T挖掘机进行作业。 复核结论:按线荷载复核,楼板能满足要求,详以下计算书。 施工建议:挖掘机履带下需至少用600mm宽,50mm厚的木板作为支垫行走。 复核单位:广东华南建筑设计院有限公司 复核日期:2017.04.20

1楼面等效均布荷载: B-1 1.1基本资料 1.1.1工程名称:工程一 1.1.2周边支承的双向板,按四边简支板的绝对最大弯矩等值、取短跨方向的等效荷载, 板的跨度 L x= 4600mm, L y= 3750mm,板的厚度 h = 120mm, 楼面均布荷载 g k= 1.5kN/m2,楼面均布荷载 q k= 2kN/m2 1.1.3局部荷载 整体坐标系的原点为楼板左下角,局部坐标系原点在整体坐标系中的坐标: x0= 1600mm、y0= 0mm 1.1.3.1第一局部荷载 Y 向局部线性荷载 Q' = 6kN/m,荷载作用面的宽度 b tx= 600mm,荷载作用面的宽度 b ty= 2400mm;垫层厚度 s = 0mm 荷载作用面中心至局部坐标系原点的距离: x' = 0mm, y' = 0mm 1.1.3.2第二局部荷载 Y 向局部线性荷载 Q' = 6kN/m,荷载作用面的宽度 b tx= 600mm,荷载作用面的宽度 b ty= 2400mm;垫层厚度 s = 0mm 荷载作用面中心至局部坐标系原点的距离: x' = 3000mm, y' = 1875mm 1.2局部荷载换算为局部均布荷载 1.2.1第一局部荷载 P = Q' / b tx - q k= 6/0.6-2 = 8.00kN/m2 1.2.2第二局部荷载 P = Q' / b tx - q k= 6/0.6-2 = 8.00kN/m2 1.3局部坐标系转换为整体坐标系 局部坐标系原点的坐标: x0= 1600mm、y0= 0mm 1.3.1第一局部荷载: b tx= 600mm, b ty= 2400mm; x = 1600mm, x1= 1300mm, x2= 2700mm; y = 0mm, y1= -1200mm, y2=2550mm

4荷载计算及计算简图

4 荷载计算及计算简图 4.1 竖向荷载 表4.1.1 梁自重计算 项目 梁宽 (m) 梁高 (m) 板厚 (m) 材料重 (3 /m KN) 均布梁重(m KN/) 纵轴线主梁0.3 0.6 0.12 25 3.6 横轴线主梁0.3 0.6 0.12 25 3.6 次梁0.25 0.45 0.12 25 2.063 表4.1.1 柱自重计算 层数柱截面宽 (m) 柱截面高 (m) 柱高 (m) 材料重 (3 /m KN) 柱重 (KN) 1 0.60 0.60 3.9 25 38.844 2~8 0.60 0.60 3.3 25 32.826 表4.1.3 竖向荷载计算汇总 位置项目荷载大小 屋面屋面均布恒载 6.442 /m KN 屋面均布活载0.52 /m KN 楼面 楼面均布恒载 3.772 /m KN 办公室、厕所活载 2.02 /m KN 走廊、楼梯活载 2.52 /m KN 墙体 标准层外纵墙自重 3.363m KN/标准层内横墙或纵墙自重 5.616m KN/标准层AB.CD跨山墙自重 6.048m KN/标准层BC跨山墙自重 3.363m KN/底层外纵墙自重 4.295m KN/底层内横墙或纵墙自重 6.864m KN/底层AB.CD跨山墙自重7.392m KN/底层BC跨山墙自重 4.707m KN/男女卫生间隔墙 5.928m KN/女儿墙 4.86m KN/ 梁纵轴线主梁 3.6m KN/横轴线主梁 3.6m KN/

次梁 2.063m KN / 楼、屋面荷载按照图4.1.1所示导荷方式传递到相应框架梁上。 图4.1.1 荷载传导方式 4.2 楼、屋面恒载计算 4.2.1 作用在顶层框架梁上的线荷载标准值 1)梁自重m KN g g g BC CD AB /6.3161616=== 2)均布恒载(楼板传至的梁段最大值) m KN g g CD AB /184.236.344.62626=?== m KN g BC /32.19344.626=?= 4.2.2 作用在标准层框架梁上的线荷载标准值 1)梁自重+墙自重 m KN g g CD AB /216.911== m KN g BC /85.21= 2)均布恒载(楼板传至的梁段最大值) m KN g g CD AB /572.136.377.322=?== m KN g BC /31.11377.32=?=

汽车荷载的简化计算

汽车等效均布荷载的简化计算 朱炳寅 中国建筑设计研究院(100044) 汽车(消防车)轮压以其荷载数值大、作用位置不确定及一般作用时间较短而倍受结构设计者关注。结构设计的关键问题在于汽车轮压等效均布荷载数值的确定。轮压荷载作用位置的不确定性,给等效均布荷载的确定带来了相当的困难,一般情况下,要精确计算轮压的等效均布荷载是比较困难的,且从工程设计角度看,也没有必要。“等效”和“折减”的本质都是“近似”,“等效”和“折减”的次数越多其误差就越大。本文推荐满足工程设计精度需要的汽车轮压等效均布荷载的简化计算方法,供读者参考。 1. 影响等效均布荷载的主要因素 1)跨度 等效均布荷载的数值与构件的跨度有直接的关系,在相同等级的汽车轮压作用下,板的跨度越小,则等效均布荷载的数值越大;而板的跨度越大,则等效均布荷载数值越小。结构设计中应注意“等效均布荷载”及“效应相等”的特点,汽车轮压荷载具有荷载作用位置变化的特性,是移动的活荷载,其最大效应的把握困难,且效应类型(弯矩、剪力等)的不同,等效均布荷载的数值也不相同,等效的过程就是一次近似的过程。 2)动力系数 汽车荷载属于动力荷载,板顶填土或面层对汽车动力荷载起缓冲和扩散作用,板顶覆土或面层太薄时,一般可不考虑其有利影响。而当板顶覆土厚度较大时,轮压荷载对顶板的动力影响已经不明显,可取动力系数为1.0。见表1。《荷载规范》表4.1.1中给出的车辆荷载,是一种直接作用在楼板上的等效均布荷载,已考虑了动力系数,可直接采用。 表1 汽车轮压荷载传至楼板及梁的动力系数 注:1. 覆土厚度不为表中数值时,其动力系数可按线性内插法确定; 2.当直接采用《荷载规范》表4.1.1中第8项规定的数值时,无需再乘以表中数值。 3)覆土层厚度 1)《荷载规范》表4.1.1中第8项所规定的汽车荷载,是轮压直接作用在楼板上的等效均布荷载。 2)结构板面的覆土及面层对汽车轮压具有扩散作用(车轮压力扩散角,在混凝土中按45°考虑,在土中可按30°考虑),覆土越厚,汽车轮压扩散越充分,当覆土层厚度足够厚,轮压扩散足够充分时,汽车轮压荷载可按均布荷载考虑。当覆土层厚度足够时,可按汽车在合理投影面积范围内的平均荷重计算汽车的轮压荷载,见表2。 表2 覆土厚度足够时消防车的荷载

两种等效均布荷载计算方法比较

双向板楼面等效均布活荷载确定方法的探 讨 彭勇穆文伦 (贵州新基石建筑设计有限责任公司) [摘要]:建筑结构荷载规范关于双向板楼面等效荷载计算方法的表达比较含糊,引起了对规范说明不同的理解,本文根据对规范的理解提出两种不同的计算方式,经过比较分析提出正确的计算方式 根据《建筑结构荷载规范》GB50009-2001(2006版)附录B“楼面等效均布活荷载的确定方法”的规定,对于单向板的计算已经有比较明确的公式和规定,本文不进行叙述,对于双向板的等效均布荷载计算方法,规范仅指出可按与单向板相同的原则,按四边简支板的绝对最大弯矩等值来确定。这样对规范的表述就有了不同理解,第一种理解为:按与单向板相同的计算方式进行计算;第二种理解:按四边简支板绝对最大弯矩等值的原则进行计算。两种方法计算比较如下: 1 按与单向板相同的计算原则进行计算 计算简图1 1.1 基本资料 周边支承的双向板,板的跨度Lx=2800mm,板的跨度Ly=3500mm,板的厚度h=150mm;局部集中荷载N=42kN,荷载作用面的宽度btx=1000mm,荷载作用面的宽度bty=1000mm;垫层厚度s=100mm ;荷载作用面中心至板左边的距离x=1400mm,最左端至板左边的距离x1=900mm,最右端至板右边的距离x2=900mm 荷载作用面中心至板下边的距离y=1750mm,最下端至板下边的距离y1=1250mm,最上端至板上边的距离y2=1250mm 1.2 计算结果 1.2.1 荷载作用面的计算宽度 bcx=btx+2*s+h=1000+2*100+150=1350mm bcy=bty+2*s+h=1000+2*100+150=1350mm 1.2.2 局部荷载的有效分布宽度

附录C:楼面等效均布活荷载及确定方法

附录C 楼面等效均布活荷载的确定方法 C.0.1 楼面(板、次梁及主梁)的等效均布活荷载,应在其设计控制部位上,根据需要按内力、变形及裂缝的等值要求来确定。在一般情况下,可仅按内力的等值来确定。 C.0.2 连续梁、板的等效均布活荷载,可按单跨简支计算。但计算内力时,仍应按连续考虑。 C.0.3 由于生产、检修、安装工艺以及结构布置的不同,楼面活荷载差别较大时,应划分区域分别确定等效均布活荷载。 C.0.4 单向板上局部荷载(包括集中荷载)的等效均布活荷载可按下列规定计算: 1,等效均布活荷载q c 可按下式计算: 2 max 8bl M q c = (C.0.4-1) 式中:l ——板的跨度; b ——板上荷载的有效分布宽度,按本附录C.0.5确定; M max ——简支单向板的绝对最大弯矩,按设备的最不利布置确定。 2,计算M max 时,设备荷载应乘以动力系数,并扣去设备在该板跨内所占面积上由操作荷载引起的弯矩。 C.0.5 单向板上局部荷载的有效分布宽度b ,可按下列规定计算: 1,当局部荷载作用面的长边平行于板跨时,简支板上荷载的有效分布宽度b 为(图C.0.5-1): 图C.0.5-1 简支板上局部荷载的有效分布宽度 (荷载作用面的长边平行于板跨) 当b cx ≥b cy ,b cy ≤0.6l ,b cx ≤l 时: l b b cy 7.0+= (C.0.5-1) 当b cx ≥b cy ,0.6l <b cy ≤l ,b cx ≤l 时: l b b cy 94.06.0+= (C.0.5-2) 2,当荷载作用面的长边垂直于板跨时,简支板上荷载的有效分布宽度b 按下列规定确定(图C.0.5-2):

荷载计算公式

荷载计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

均布荷载作用下简支梁结构分析

均布荷载作用下简支梁结 构分析 The Standardization Office was revised on the afternoon of December 13, 2020

均布荷载作用下简支梁结构分析 摘要:本文利用ANSYS软件中的BEAM系列单元建立简支梁有限元模型,对其进行静力分析与模态分析,得出梁的结构变形,分析梁的受力情况。并用有限元刚度矩阵知识求解简支梁端点处得位移和旋度。在此基础上,利用经典力学对以上所得的结果进行梁的有关计算,并将结果与有限元刚度矩阵和ANSYS软件所得结果进行比较。通过比较得出不同方法在简支梁求解过程中自己的优势和缺点。 关键词:ANSYS简支梁均布荷载求解应力位移 1.引言 钢制实心梁的截面尺寸为10mm×10mm(如图1所示),弹性模量为200GPa,均布荷载的大小及方向如图1所示。 图1 2.利用力学方法求解 运用力学方法将上述结构求解,易得A、B支座反力相等为500N,该简支梁的计算简图、弯矩图以及剪力图如下图所示:

1000N/m 1000mm 图2简支梁计算简图 跨中弯矩:125N㎡ 图3简支梁弯矩图 支座反力500N 图4简支梁剪力图 3.利用ANSYS软件建立模型与求解 通过关键点创建实体模型,然后定义材料及单元属性,然后划分网格,建立有限元模型。具体步骤包括:添加标题、定义关键点、定义直线、选择单元,定义实常数、定义材料属性、设定网格尺寸、划分网格、施加荷载求解(选择分析类型、定义约束、施加荷载)查看分析结果。

图5简支梁变形前后的情况 图6简支梁应力图 图7简支梁剪力图

荷载计算公式完整版

荷载计算公式标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

荷载计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式:Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn).

E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn).

E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

单向板等效均布荷载计算

单向板等效均布荷载计算技术手册 软件为单向板等效均布荷载计算,计算主要遵循《建筑结构荷载规范》GB50009-2001(2006年版)附录B中的相关条文及规定。 附录B主要针对活荷载情况,按理可推广至其他类似于活载作用方式的荷载,而不仅限于活荷载。 楼面(板、次梁及主梁)的等效均布活荷载,应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形及裂缝的等值要求来确定。在一般情况下,可仅按内力的等值来确定。 连续梁、板的等效均布活荷载,可按单跨简支计算。但计算内力时,仍应按连续考虑。 由于生产、检修、安装工艺以及结构布置的不同,楼面活荷载差别较大时,应划分区域分别确定等效均布活荷载。 单向板上局部荷载(包括集中荷载)的等效均布活荷载可按下式计算: 式中:为板的跨度; 为板上荷载的有效分布宽度; 为简支单向板的绝对最大弯矩,按设备的最不利布置确定。 计算时,设备荷载应乘以动力系数,并扣去设备在该板跨内所占面积上,由操作荷载引起的弯矩。单向板上局部荷载的有效分布宽度,可按下列规定计算: 1)当局部荷载作用面的长边平行于板跨时(),简支板上的荷载的有效分布宽度为: (1)当,,时: (2)当,,时:

注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 2)当荷载作用面的长边垂直于板跨时,简支板上荷载的有效分布宽度为:(1)当,,时: (2)当,,时: 注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 式中:为板的跨度; 为荷载作用面平行于板跨的计算宽度; 为荷载作用面垂直于板跨的计算宽度。

式中:为荷载作用面平行于板跨的宽度; 为荷载作用面垂直于板跨的宽度; 为垫层厚度; 为板的厚度。 注意:计算宽度不可超出面板实际布置范围。 3)当局部荷载作用在板的非支承边附近,即时,荷载的有效分布跨度应予折减,可按下式计算: 注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 式中:为折减后的有效分布宽度; 为单向板上局部荷载的有效分布宽度; 为荷载作用中心至非支承边的距离。 4)当两个局部荷载相邻而时,荷载的有效分布宽度应予折减,可按下式计算:

楼面等效均布活荷载的计算方法

楼面等效均布活荷载的计算方法建筑结构荷载规范关于双向板楼面等效荷载计算方法的表达比较含糊,引起了对规范说明不同的理解,本文根据对规范的理解提出两种不同的计算方式,经过比较分析提出正确的计算方式根据《建筑结构荷载规范》GB50009-2012附录B“楼面等效均布活荷载的确定方法”的规定,对于单向板的计算已经有比较明确的公式和规定,本文不进行叙述,对于双向板的等效均布荷载计算方法,规范仅指出可按与单向板相同的原则,按四边简支板的绝对最大弯矩等值来确定。这样对规范的表述就有了不同理解,第一种理解为:按与单向板相同的计算方式进行计算;第二种理解:按四边简支板绝对最大弯矩等值的原则进行计算。两种方法计算比较如下: 1 按与单向板相同的计算原则进行计算 计算简图 1 1.1 基本资料 周边支承的双向板,板的跨度Lx=2800mm,板的跨度Ly=3500mm,板的厚度h =150mm; 局部集中荷载N=42kN,荷载作用面的宽度btx=1000mm,荷载作用面的宽度bty =1000mm; 垫层厚度s=100mm ;荷载作用面中心至板左边的距离x=1400mm,最左端至板左边的距离x1=900mm,最右端至板右边的距离x2=900mm 荷载作用面中心至板下边的距离y=1750mm,最下端至板下边的距离y1=1250mm,最上端至板上边的距离y2=1250mm 1.2 计算结果 1.2.1 荷载作用面的计算宽度

bcx=btx+2*s+h=1000+2*100+150=1350mm bcy=bty+2*s+h=1000+2*100+150=1350mm 1.2.2 局部荷载的有效分布宽度 按上下支承考虑时局部荷载的有效分布宽度 当bcy≥bcx,bcx≤0.6Ly 时,取bx=bcx+0.7Ly=1350+0.7*3500=3800mm 按左右支承考虑时局部荷载的有效分布宽度 当bcx≥bcy,bcy≤0.6Lx 时,取by=bcy+0.7Lx=1350+0.7*2800=3310mm 1.2.3 绝对最大弯矩 1.2.3.1 按两端简支计算Y 方向绝对最大弯矩将局部集中荷载转换为Y 向线荷载 qy=N*btx/(btx*bty)=42*1/(1*1)=42kN/m 根据静力计算手册得出简支梁局部均布荷载作用下的弯矩: MmaxY=qy*bty*Ly(2-bty/Ly)/8=42*1*3.5*(2-1/3.5)/8=31.5kN·m 1.2.3.2 按两端简支计算X 方向绝对最大弯矩,将局部集中荷载转换为X 向线荷载qx=N*bty/(btx*bty)=42*1/(1*1)=42kN/m 根据静力计算手册得出简支梁局部均布荷载作用下的弯矩: MmaxX=qx*btx*Lx(2-btx/Lx)/8=42*1*2.8*(2-1/2.8)/8=24.15kN·m 1.2.4 由绝对最大弯矩等值确定的等效均布荷载 按上下支承考虑时的等效均布荷载 qey=8MmaxY/(bx*Ly^2)=8*31.5/(3.8*3.5^2)=5.41kN/m. 按左右支承考虑时的等效均布荷载 qex=8MmaxX/(by*Lx^2)=8*24.15/(3.31*2.8^2)=7.44kN/m. 等效均布荷载qe=Max{qex,qey}=Max{5.41,7.44}=7.44kN/m. 2 按四边简支板绝对最大弯矩等值的原则进行计算 2.1 按四边简支计算跨中最大弯矩,计算条件同第一种计算方式 2.1.1 根据计算条件,应用建筑结构静力计算手册(p227)中局部均布荷载作用下的弯矩系数表查出弯矩系数如下: 泊松比μ=0;X 方向表中系数=0.1268,Y 方向表中系数=0.1017; 计算跨中弯矩: Mx=表中系数×q×btx×bty=0.1268×42×1×1=5.33kN/m. My=表中系数×q×btx×bty=0.1017×42×1×1=4.27kN/m.

单向板等效均布荷载计算

软件为单向板等效均布荷载计算,计算主要遵循《建筑结构荷载规范》GB50009-2001(2006年版)附录B中的相关条文及规定。 附录B主要针对活荷载情况,按理可推广至其他类似于活载作用方式的荷载,而不仅限于活荷载。 楼面(板、次梁及主梁)的等效均布活荷载,应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形及裂缝的等值要求来确定。在一般情况下,可仅按内力的等值来确定。 连续梁、板的等效均布活荷载,可按单跨简支计算。但计算内力时,仍应按连续考虑。 由于生产、检修、安装工艺以及结构布置的不同,楼面活荷载差别较大时,应划分区域分别确定等效均布活荷载。 单向板上局部荷载(包括集中荷载)的等效均布活荷载可按下式计算: 式中:为板的跨度; 为板上荷载的有效分布宽度; 为简支单向板的绝对最大弯矩,按设备的最不利布置确定。 计算时,设备荷载应乘以动力系数,并扣去设备在该板跨内所占面积上,由操作荷载引起的弯矩。单向板上局部荷载的有效分布宽度,可按下列规定计算: 1)当局部荷载作用面的长边平行于板跨时(),简支板上的荷载的有效分布宽度为: (1)当,,时: (2)当,,时: 注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 2)当荷载作用面的长边垂直于板跨时,简支板上荷载的有效分布宽度为: (1)当,,时: (2)当,,时: 注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 式中:为板的跨度; 为荷载作用面平行于板跨的计算宽度; 为荷载作用面垂直于板跨的计算宽度。

式中:为荷载作用面平行于板跨的宽度; 为荷载作用面垂直于板跨的宽度; 为垫层厚度; 为板的厚度。 注意:计算宽度不可超出面板实际布置范围。 3)当局部荷载作用在板的非支承边附近,即时,荷载的有效分布跨度应予折减,可按下式计算:注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 式中:为折减后的有效分布宽度; 为单向板上局部荷载的有效分布宽度; 为荷载作用中心至非支承边的距离。 4)当两个局部荷载相邻而时,荷载的有效分布宽度应予折减,可按下式计算: 注意:局部荷载的有效分布宽度不可超出面板实际布置范围。 式中:为折减后的有效分布宽度; 为单向板上局部荷载的有效分布宽度; 为相邻两个局部荷载的中心间距。 简支单向板的绝对最大弯矩,当可确定荷载实际作用位置时,应按其作用位置及作用方式计算;当位置不确定时,按最不利布置计算。 1)当荷载为集中力时,单向板简化为梁单元计算其最大弯矩: (1)集中力位置已知,按实际位置计算: (2)集中力位置未知,按最不利位置(跨中)计算: 2)当荷载为局部面荷载时,单向板简化为梁单元计算其最大弯矩: (1)当局部面荷载作用位置已知,将面荷载等效成线荷载后,按实际位置计算: (2)当局部面荷载作用位置未知,将面荷载等效成线荷载后,按最不利位置(跨中)计算: 集中荷载或局部面荷载当其位置确定时,均可按上文公式计算得出其等效均布荷载。当其位置未知时,若需求得荷载最不利位置状态下的等效均布荷载,需由等效均布荷载计算公式判断得知,其主要控制值为最

相关主题
相关文档
最新文档