高边坡防护及监测技术(上传)

高边坡防护及监测技术(上传)
高边坡防护及监测技术(上传)

高边坡防护及监测技术

一、前言

高边坡稳定问题是路基工程中经常遇到的问题,边坡的地质构造往往比较复杂,影响滑坡的因素也很多,高边坡加固和防护措施对边坡的稳定性影响非常大,边坡的稳定性直接决定着工程修建的可行性,影响着工程的建设投资和安全运行。

二、工程概况

白腊寨越行站位于云南省文山州广南县境内。在K394+130~

DK394+392段左侧为九级边坡,长262m,高达98m。边坡防护主要采用锚固桩、锚索框架梁内灌草护坡防护。

本段线路主要以挖方通过。属低中山剥蚀与溶蚀地貌,地形起伏大,地形坡度30~80°,自然横坡30~50°。山峰沟谷发育,沿线路方向地形波状起伏,冲沟基本沿垂直线路朝北方向发育。陡坡坡面上分部乔木和灌木林,植被覆盖率高;平缓处被开垦为旱地。地表上覆第四系全新统坡洪积粉质黏土与坡残积粉质黏土。下伏基岩为三叠系下统罗楼组粉砂岩夹页岩、泥岩。

三、高边坡防护技术

高边坡施工遵循“减载、固脚、强腰、排水”的原则,贯彻建“绿色通道、走环保之路” ,实现“恢复自然、水土保持、综合治理、因地制宜、技术先进、经济美观” 理念的目标。结合现场实际,遵循“强支挡、弱削方”的边坡加固原则,施工中采用锚式系统加固措施,并加强坡体排水,严格控制施工质量,确保高边坡安全。

白腊寨站场高边坡防护主要采用锚固桩、锚索框架梁内灌草护坡防护。

(一)锚固桩

锚固桩是穿过滑坡体深入于滑床的桩柱,用以支挡滑体的滑动力,起稳定边坡的作用,适用于浅层和中厚层的滑坡,是一种抗滑处理的主要措施。

锚固桩对滑坡体的作用是利用锚固桩插入滑动面以下的稳定地层对桩的抗力(锚固力)平衡滑动体的推力,增加其稳定性。当滑坡体下滑时受到锚固桩的阻抗,使桩前滑体达到稳定状态。锚固桩埋入地层以下深度,按一般经验,软质岩层中锚固深度为设计桩长的三分之一;硬质岩中为设计桩长的四分之一;土质滑床中为设计桩长的二分之一。当土层沿基岩面滑动时,锚固深度也有采用桩径的2~5倍。锚固桩的布置形式有相互连接的桩排,互相间隔的桩排,下部间隔、顶部连接的桩排,互相间隔的锚固桩等。桩柱间距一般取桩径的3~5倍,以保证滑动土体不在桩间滑出为原则。

锚固桩开挖前需对坡脚桩位处做临时支护,采用钢管,用钢管作为主支撑,在主支撑间用木板作为临时挡土板,防止山坡滑落泥土及碎石块伤及坡脚施工工人。

开挖原则跳桩开挖。在孔内土方开挖前,先将地表层及坡脚土石清理掉,主要防止坡面的土石被机械振动造成滑坡。在进入桩身以前检查孔口四周做好孔口的清理,孔桩口四周处用沙袋错叠码放高出土平面20cm,进孔前检查孔口的支护和通风措施。把孔的十字线及标高引到护壁上。孔内的土、石方提升采用1t的卷扬机提升。孔内的土方出孔后,用车及时运走。

桩身钢筋就地加工,锚固桩因有4~6米的外露部分,为保证光洁度,为保证外露部分的美观,其一要做到该部分模板的垂直度。每次灌注砼前核对各方位尺寸。在外露部分模板钉上PVC橡胶板以保证拆除模板后的光洁度, PVC橡胶板钉在事先预制好的模板内。桩身砼采用采用串筒集中灌注。

(二)锚索框架梁

锚索就是高挖方路段为了减少对原状土的挖方数量,保护生态环境而设计的一种特殊挡防结构。主要解决破裂面至土体临空面之间破裂土体的稳定。预应力锚索框架梁为复合支护结构,将锚索这一柔性支护手段和框架梁结合起来,在实际工程中取得了良好的支护效果。在高边坡加固工程中,为了阻止岩土体随潜在滑移面滑动,多采用预应力锚索加固坡体,预应力锚索通过潜在滑动体,深入基层岩体,主动利用基层岩体来加固坡体,防止土体下滑。而表层岩土体的加固和水土保持,则主要依靠框架梁浅表护坡,框架梁不仅可以遏制滑动体的下滑,在框架梁的框格中还可以进行植被护坡,保持水土,提高工程的绿化率,恢复原来的生态环境。

钻孔前,作业面场地要平坦、坚实、有排水沟,场地宽度大于4m。钻机就位后,保持平稳,导杆或立轴与与钻杆倾角(20°)一致,并在同一轴线上。锚索钻孔采用干钻,按设计的孔位、孔径、方向及倾角钻孔,在地层松散、破碎时,采用跟管钻进技术,若遇坍孔采用固壁灌浆处理(灌浆压力0.1~0.2MPa),待水泥砂浆初凝后重新扫孔钻进。钻孔完成后使用高压空气(风压0.2~0.4MPa)吹孔,严禁用水冲洗。钻孔时注意地层情况,以保证锚固段地层与设计相符。

锚索均采用φ15.2mm高强度、低松弛无粘结钢绞线制作,其抗拉强度不得低于1860MPa,锚索在锚固段,每隔1.0m设置一个对中支架,使锚索对中。自由段每隔1.0m采用钢丝绑扎。自由段套Φ20的PVC管,套管两端10~20cm长度范围内用黄油填充,外绕工程胶布固定。锚固段采用紧箍环和扩张环,自由段安装紧箍环和定位支架,保证钢铰线顺直地安放在钻孔中心。锚索束放入后及时灌浆,采用孔底反压注浆法一次完成注浆,灌浆压力0.6~0.8MPa。

框架梁为钢筋砼现浇,将锚具中的螺旋钢筋、锚垫板固定在地梁钢筋上,方向与锚孔方向一致,锚垫板与锚索垂直,再进行砼浇注、振

捣,在锚孔周围仔细振捣,保证质量。锚索孔预留排气管和补浆管。

孔内砂浆达到设计强度的80%后,进行锚索张拉,在锚索正式张拉前,取10%~20%的设计张拉荷载,对锚索张拉1~2次,使其各部位接触紧密,钢绞线完全平直。再分三级即设计荷载的50%、100%、120%进行逐级张拉,每次张拉间隔3~5天,每个循环均应对所有锚索张拉一次,且每孔锚索张拉间隔时间保持一致。锚索张拉中应对锚索伸长及受力作好记录,核实伸长与受力是否相符,然后锁定。

三维立体植被网、拱型骨架铺设好后,即向已铺设好的网垫内上撒草籽,撒播前先将种子与砂土混合,然后撒土进行覆盖,覆盖厚度以使网垫上面隆起的丝网微微露出为宜,再用土耙均匀拍实,最后用扫帚将网垫上的土扫平,并注意网垫下面要用填土充实,不能有空隙。定期洒水养护,在草发芽后及根系充分发达并完全固定于边坡土之前保证土体潮湿,确保成活率达90%以上。

四、高边坡监测技术

本工程根据现场实际情况及动态化设计和信息化施工的监测要求,主要采用坡顶水平位移和垂直位移监测、土体内部位移和垂直位移监测、支护结构变形监测、锚索监测和地表裂缝观测等措施进行监测。

(一)坡顶水平位移和垂直位移

在各级边坡顶部(平台)设置观测标,用精密水准仪配合水准尺进行沉降观测,用全站仪进行水平位移观测,通过观测各点的累积沉降量、沉降速率和累积位移量、位移速率变化来分析边坡顶部的变形情况。

1.监测网的布置

本边坡工程位移监测网分基准网、工作测点和监测点三级布设。基准网在远离边坡的稳定位置布设,用于检核工作测点的稳定性。工作测点在边坡体附近布设,用于观测边坡体各级坡面上的监测点。

2.监测点埋设与监测要求

(1)在堑顶及边坡平台按设计要求均匀布设位移(沉降)监测点,共布置23个测点。

(2)在开始监测前,用全站仪对各测点反复测量多次,待数值稳定后取平均值作为初始坐标值,以后每次测量时用全站仪强制对中测出各个观测点的即时坐标,记录在专用观测表内,与初始坐标相比,计算出累计位移量。前后两次累计位移量之差,即得前后两次的位移量。观测结果当天处理,根据实测结果及时提供边坡顶时间-水平位移曲线。

(3)在开始监测前,用高精度水准仪配合铟瓦尺,对各测点反复测量多次,待数值稳定后取平均值作为初始高程值,以后每次测量时用高精度水准仪配合铟瓦尺用观测高程的方法测出各个观测点的高程,记录在专用观测表内,与初始高程相比,计算出累计沉降量。前后两次累计沉降量之差,即得前后两次的沉降量。观测结果当天处理,根据实测结果及时提供坡顶时间-沉降曲线。

3.监测频率

观测时间应根据位移速率、施工现场情况、季节变化情况确定,原则上每月观测4次,雨季每10天观测2次,暴雨前后应增加观测次数,在沉降与位移加速期间和发现不良地质情况时逐日连续观测。

4.观测数据整理

每次外业观测结束后,整理并出检测成果资料。

(二)土体内部水平位移监测

主要为布设钻孔测斜仪,监测边坡岩体深部位移,孔深进入潜在滑动面以下3~5m。本工程边坡高度较大,地质情况较复杂,在各级边坡的平台上依据监控网的需要布置测斜孔,监控边坡的深层滑动。

1.测试仪器及测点埋设

测试仪器采用测斜仪和测斜管,测斜管埋设:直接在预埋位置钻孔,钻孔偏斜率不大于1%,钻孔深度以测斜管打入相对硬土层3m为控制标准(具体深度依据钻探资料中测斜管所在边坡横断面的潜在滑裂深度确定),测斜管的其中一组导槽应平行于边坡轴线方向。

2.测试方法及频次

测斜管应在正式测读5天以前安装完毕,并在3~5天内重复测量3次,以连续三次无明显差异的测试结果平均值作为初始值。测斜结果稳定之后,开始正常测量工作。测试时,将测斜仪探头放入测斜管(探头高轮指向边坡变形方向),测试从孔底开始,自上而下沿测斜管导槽滑移,每0.5m在读数仪显示屏上读得相应数据一次,至管顶后将测斜仪探头绕轴线在水平面内旋转180°(即探头高轮指向边坡变形的反方向),插入同一对导槽中再次从孔底开始测试,取相应深度处两次读数数值的平均值作为该次监测值。观测频次与地表位移同步。

3.资料整理提交

每次量测后,提交孔深~绝对位移曲线、孔深~相对位移曲线;与相近的坡面位移点的监测结果相对比,提高监测数据的合理性;根据相对位移曲线,对比分析潜在滑动面地的深度位置,较准确地判断边坡的稳定性。

(三)土体内部垂直位移监测

在坡面上钻孔埋设分层沉降磁环,通过观测各磁环的沉降速率和累积沉降量来分析边坡土体内部垂直变形情况。

(四)支护结构变形

在支护结构(锚固桩顶、框架梁)上布置监测点,用全站仪和水准仪分别测量各监测点的位移和沉降情况,进而分析支护结构的变形情况。

(五)预应力锚索应力监测

选择一些有代表性的锚索,在锚头安装锚索测力计,通过对张拉过程中以及张拉完成后锚索应力的变化监测,来分析张拉过程中以及张完成后的预应力变化规律,进而分析边坡稳定性情况。

1.测试仪器及测点埋设

测试仪器采用预应力锚索测力计,测点安装与监测方法:锚索测力计的安装是伴随锚索施工进行的,它包括钻孔、编锚索钢绞线、穿索、内锚段注浆和张拉等工序都应严格要求,锚索测力计安装在张拉端,安装时钢绞线锚索从测力计中心穿过,测力计处于钢垫座和工作锚之间,整个张拉过程采用油压表控制加载,分级张拉,拉力达到设计值时进行锁定。在分级张拉过程中应随时对锚索计进行现场监控,并从中间锚索开始想周围锚索逐步加载以免锚索计的偏心受力或过载。张拉完成后取下千斤顶,裁除多余的锚索、埋出监测电缆侧头后用混凝土封住锚头,继续进行读数监测,观测预应力锚索张拉后预应力长期变化情况,对边坡开挖的稳定性进行判断。

2.资料整理提交

把预应力锚索应力监测结果与深层水平位移、坡面位移监测结果联合分析,作应力与相近位移时的时程对比曲线。

(六)裂缝观测

裂缝观测以人员巡视为主,在有裂缝出现的断面作为重点观测断面,结合深层水平位移和坡面位移观测成果综合分析。

裂缝监测以人工巡视为主,对于坡面地表发现裂缝应分条进行编号,每条裂缝的两端、拐弯、中部和最宽处的两侧,应设立成观测标志,并编号;用钢尺测定成对标志间的距离,变换尺位两次读数,读至0.5mm,其差值不应大于1mm,裂缝的观测周期,视裂缝的发展情况而定,一般每月观测1次,当裂缝发展较快时,应增加观测次数。把观察到的裂缝的走向同位移监测成果相对比,对出现裂缝的断面要格外引起重视。

结束语:白腊寨站场高边坡的加固防护治理方案是安全、经济而有效的;同时对高边坡进行稳定性监测,实施动态设计、动态施工,确保安全、快速施工。

公路高边坡防护措施

公路高边坡防护措施 边坡是指线路近旁的天然斜坡或经过施工开挖形成的路堑斜坡、填筑形成的方坡等等。高边坡灾害是我们道路工程中危害较大的一个地方。 一、边坡的变形特征 1、公路边坡是将地质体的一部分改造成人为工程设施,因此其稳定性取决于自然山坡的稳定状况(稳定、不稳定、极限平衡)、地质条件(地层岩性、地质构造、坡体结构、岩体结构、水文地质条件、风化程度等)和人为改造的程度(开挖深度、坡形、坡率等)。 2、人工边坡是对自然坡体的改造,改变了自然坡体的应力状态和地下水的渗流条件,而且是在短短几个月内改造完成的。自然坡体的应力调整有一个过程,强度低的软弱岩层调整较快,常在施工期就发生变形;强度高的坚硬岩层调整较慢,或可自身稳定,或在1~3年后发生变形。只有当人工边坡对其改变不大时,才可保持稳定,否则就会发生失稳,甚至引起自然坡体的破坏。 3、自然山坡和人工边坡都处在各种自然营力的作用之下,如阳光照射、降雨冲刷和下渗、风化和地震等。但人工边坡所造成的自然状态的改变使这种作用更强烈,如开挖暴露风化加剧、破坏植被地表水容易下渗、坡体松弛、爆破震动等都使边坡更容易发生变形。 4、自然条件千差万别,所以边坡设计也变得十分复杂,每个高边坡工点都需单独分析和计算,这也是目前高边坡设计尚无规范可循的原因。 二、高边坡形成的原因分析 (一)主观原因:

1、公路选线时对地质工作重视不够,没有将“地质选线”落实到实处,对已经存在的古老滑坡和潜在滑坡认识不足,将线路布设在这些地段,甚至大填、大挖,造成老滑坡复活或新生滑坡。 2、对高边坡的危害认识不够,强调节约工程投资,本来可以内移作隧道或外移作桥或半路半桥的,为节省投资而造成大挖方,结果造成高边坡变形破坏,有时其治理费用比桥、隧还多。 (二)客观方面: 1.山区公路(特别是高等级公路)对线形和道路走向有特定的要求,也不可能一味强求优良的工程地质条件,而回避不良地质、高边坡等岩土工程问题,因此就不可避免的在近于极限平衡的天然山坡上或其内开拓修建。 2、自然陡边坡本应该作工点针对性勘察设计的,因工作量大、工期紧、勘察基础资料不足,设计依据不充分,因坡形坡率设计不符合场地岩土条件,或排水与加固工程不完善,不足以保证稳定,造成挖方坡口不断向山体移动,形成高边坡。 3、不科学的施工方法也是造成边坡失稳变形的重要原因,如雨季大开挖,而不及防护造成大量雨水渗入坡体,软化坡体岩土;大爆破施工破坏岩体完整性;开挖后长期暴露而不防护和加固,甚至一挖到底不加固等。 三、高边坡的勘察设计 (一)基础资料收集: 防治方案的选择建立在详实的基础资料之上。必须对该段高边坡进行详细勘察。 查明该路段的地层、岩性、产状、风化程度、强度特征,不同地层在边坡上的分布位置,有无软弱夹层或接触面,其产状与边坡开挖

公路工程高边坡防护技术与施工分析 周峰

公路工程高边坡防护技术与施工分析周峰 发表时间:2018-10-29T13:41:55.640Z 来源:《防护工程》2018年第13期作者:周峰[导读] 中国公路建设速度的不断加快使得施工单位对公路质量的要求不断提高,我国很多公路建设地段地质条件复杂 周峰 中交二公局萌兴工程有限公司陕西西安 710119 摘要:中国公路建设速度的不断加快使得施工单位对公路质量的要求不断提高,我国很多公路建设地段地质条件复杂,周围环境不稳定,在进行公路建设高边坡施工过程中很容易出现滑坡和坍塌等自然灾害。自然灾害往往会影响施工队伍正常施工,拖慢工程进度,造成工程延期。除此之外,坍塌和滑坡现象很容易对人们的生命财产安全带来巨大损失。本文主要从公路工程高边坡防护技术及施工进行详细 分析。 关键词:公路工程;高边坡;防护措施 保证工程质量的关键性因素就是公路施工过程中的高边坡防护技术与施工。防护工程施工主要针对的是外部质量工程防护,防护措施相对复杂,高边坡施工过程中分为不同技术工艺,对施工质量造成的影响较为多样。对施工技术进行控制需要一定的针对性要求。 1 了解高边坡技术 1.1高边坡概念及防护方式 土质边坡高度若大于15米,岩质边坡高度若大于30米则称为高边坡。高边坡容易受到各种不稳定因素的影响,造成山体滑坡、山体崩塌等自然地质灾害,高边坡是工程施工过程中最容易发生事故的地段之一。混凝土护面墙、拱架式、窗孔式、喷锚防护、锚杆、植物防护等都是较为常见的防护方式。 1.2高边坡防护技术特点分析 高边坡防护施工工作量较大,形式较多样,工程程序较复杂,施工过程中涉及多种专业技术,工种类型较多,多种专业及工种经常进行交叉作业,高边坡作业属于高危作业,危险系数较大,对工程进行安全防护工作的难度较大。高边坡技术施工管理需要对施工场地进行布置、加强职工安全工作管理、控制工程质量、把握施工工序等都是工程施工的关键点。施工过程中山体遭到遇水、扰动后会呈沙砾状,大大降低其自身强度,抗冲刷能力变弱,需要对其进行有效防护。高边坡施工工程若单一从地形外观或地貌类型观察,很难判断其稳定性。高边坡经常出现不可预料的突发事故,使得施工质量较难控制,出现突发事故之后很难对其及时采取相关安全措施。 2 影响高边坡稳定性的因素 2.1地质构造及地层岩性 高边坡物质基础为地层岩性及地层岩性组合,抗风化能力、岩石强度及结构和能够保持的边坡高度都是由岩性决定的。节理裂缝性质及其发育状况、岩层产状都是由地质构造所决定的,岩性相关决定因素和地质构造决定因素决定着岩体结构。顺层与反倾高边坡在相同条件下稳定性差异大。岩石软弱使得地质构造造成严重破碎,若其有软弱夹层时,很容易在陡度、高度超过临界点的情况下发生严重的失稳现象。 2.2施工地段水文条件及气候条件 边坡失去稳定性的重要原因之一为水。水的类型分为地下水及地表水,能够使得岩体软化、对岩体造成冲刷、产生静水及动水压力作用、产生静水及动水浮力作用。水对岩石的冲刷使得坡脚、滑动面临空,为滑坡创造条件。 2.3边坡岩体风化 边坡岩体风化很容易对岩体完整性造成破坏,岩石组成结构发生变化,使得物理力学发生根本性改变,对岩石的构造及强度产生影响,近而对边坡稳定性带来严重威胁。岩体风化一般分为未风化、微风化、中风化、强风化、全风化五种风化类型,破碎程度会依次递增,岩体风化稳定性差异代表着不同风化类型的产生。 2.4路堑边坡设计及施工方法分析 公路工程建设需要保证其经济合理性和安全性。对边坡进行开挖时要注意开挖陡峭程度,需要根据实际情况决定。坡脚不能大于岩土体自身稳定角度,通常来讲,边坡越陡越能节约成本,施工过程中控制安全事故的发生,若出现安全事故就会增加维护成本、时间成本的浪费。由此得出,高边坡设计方案必须对实际工程进行勘察,对工程地质做出详细评价,选择适合的施工技术及施工方案,避免高边坡的变形失稳。 2.5其他影响因素 上文对影响高边坡稳定性因素进行了详细讨论,除上文谈到的因素之外施工过程中极易出现某些不确定的外在因素。例如植被状况、特殊外部负荷、地震、断裂带等外力作用也会使得高边坡施工的威胁性加大。 3 高边坡防护技术研究 3.1立体柔性及喷锚防护技术 喷锚主要针对岩层风化破碎严重问题、破碎岩层较厚、出现节理发育等现象。该技术有较高的轻度和较好的抗裂性,能够使得破碎岩层得以加强,使其承受相对小的侧压力。挂网锚喷技术则针对于石质坚硬但稳定性能较差及软质岩石边坡,在边坡上铺设钢筋网或塑料网是挂网喷锚的基本方式,需要对破体打入锚杆,将混凝土向网上喷射,对边坡进行封闭防护。边坡柔性防护系统主要以钢丝绳为主要材料,面对坡面地质灾害或物体坠落时主要通过拦截和覆盖两种基本形式进行防治。若想为草坪植物健康生长提供相关条件,就需要加强土工格室的利用,把土工格室与挂网相结合,从而避免飞石对其造成危害。此类施工方式能够保证边坡美观性,将喷锚技术和立体柔性防护结合充分发挥两者优势,对工程防护和环境因素进行合理、有效解决,加速植被生长率,确定边坡稳定,从而达到边坡和环境相结合的施工效果。 3.2支挡工程防护

边坡防护工程脚手架方案设计

实用文档 G352长坪(湘黔界)至松桃公路改扩建工 程 K28+600-K28+970 右侧边坡防护 脚手架施工方案 编制: 审核: 审批: 贵州建工集团

实用文档 月十九日二О一六年 十

目录 第一章 编制依据 (17) 第二章 工程概况 . (18) 1 、施工安排 第五章 材料选择 . (22) 1 、钢管 . ................................... 2 、扣件 . ................................... 第六章 脚手架搭设 . (23) 第七章 安全保证措施 . (25) 第八章 脚手架的检查与验收 (29) 第九章 外脚手架搭设的安全技术措施 (29) 第三章 施工进度计划 (18) 第四章 方案选择 . ............................... 1、边坡治理工程对脚手架的要求 2、边坡治理工程中脚手架的结构特点 3、脚手架的结构设计 .......... 4、脚手架搭设方案 (19) (19) (19) (20) (20) 22 22 第十章 外脚手架拆除的安全技术措施 (30) 第十一章 工程应急救援预案 (31) 附件 扣件式落地架计算书 (34)

附件1:脚手架搭设专项施工方案 第一章编制依据 为保证本工程脚手架搭设的施工安全,脚手架搭设系统的设计、施工和验收 应满足但不限于下列文件、规范、标准和国家、企业的相关规定要求: 1、G352长坪(湘黔界)至松桃公路改扩建工程K28+600-K28+970右侧 边坡防护工程施工图。 2、中国建筑工业出版社出版的《建筑施工手册》 第二章工程概况 预应力锚钉布置于G352 长坪(黔湘界)至松桃公路改扩建工程K28+600-K28+970段右侧边坡坡面上。

变形监测实习总结

变形监测测量实习总结 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小、及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。 变形监测工作的意义主要表现在两个方面:首先是掌握各种工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。 我们本次变形监测共进行了三项内容:位移观测、倾斜观测和沉降观测。 《变形监测》是工程测量专业重要的课程内容之一,按照培养目标和教学大纲的要求,我们进行了为期一周的课程实习。旨在通过本次课程实习来加深对变形监测的的基础理论、测量原理及方法的理解和掌握程度,切实提高我们的实践技能,初步掌握位移监测、倾斜监测和沉降监测的基本方法,熟练使用作业各工序的仪器设备及作业过程等。

对于本次实习,老师和同学们都非常的重视,在第一天的实习动员会上,李老师就本次实习的意义、实习中的注意事项等方面做了明确的阐述,同时,也就本次实习内容和实习步骤做了详细的说明,并给同学们准备了相关的规范和资料,使同学们能够更好的完成本次实习任务。在其后的实习过程中,同学们实习目的明确、积极主动、不怕吃苦、勇于承担重担,在老师的指导下,顺利的完成了大坝位移监测、土木系实训楼倾斜监测和八号实验楼沉降监测等实习内容。通过本次实习,不仅使我们的理论知识得到巩固、操作能力得到加强,同时也使我们运用所学知识的解决实际问题的能力得到了提高。 对于大坝的位移监测,我们首先在面板堆石坝模型的坝体上选择了三个观测点,然后在其旁边的坚固水泥地上定了两个钢钉作为观测点,通过多次量距后,我们选择了假设坐标作为本次观测的已知数据,对坝体上的三个观测点进行了三天的前方交会法位移监测,并采用全圆观测法每次观测各六个测回,期间严格按照规范的相关要求,力求数据的精确、实用。经观测,大坝的位移量极小,非常稳固,可以安心使用。 对于土木系实训大楼的倾斜监测,我们选择了大楼的东南角,并在其南边和东边各1.5倍楼高的地方选择了坚固地面上的钢钉作为观测点,采用的是垂直投影的观测方

高边坡防护专项施工方案

高边坡防护专项施工方案 一、工程概况 二、总体施工方案 根据公路路基开挖的岩土特征,风化破碎情况以及边坡高度等,综合分析影响边坡稳定的不利因素,在确保边坡自然稳定的前提下,主要采用以绿色防护、柔性防护为主、工程防护为辅的防护措施,并在边坡绿化中尽量做到草、灌混播。对土质、全风化呈土状岩质边坡采用放缓坡率,三维网喷播植草防护为主;对岩质边坡根据岩性、坡率等确定防护形式,可采用客土喷播、厚层基材喷播,对于局部段落,依据地质资料,决定是否采用柔性网、锚杆、锚索框架防护,对岩质好,完整性好的局部坡体,可采用开挖的自然边坡,不设置防护。 本标段边坡采用较缓坡率,有利于边坡稳定与绿化。坡面绿化前培清表耕植土10~20㎝。 护坡道及碎落台均培土以植草和栽植花卉、当地矮竹等防护。石质挖方段先培土20㎝,再植草和栽植花卉。 挖方深度H大于10m时,每隔6m设置一2m宽平台,若挖方深度H较大,需要设置锚杆锚索框架防护时,每隔8m设置一2m宽平台,岩体较好路段,深度H大于12m时,每隔8m设置一2m宽平台,平台上设置截水沟,截水沟尺寸为30×30㎝,外侧沟壁垂直,内侧同路堑边坡率,平台反挖40㎝后设置种植槽,复填有机土(清淤、清表土方),上栽植攀爬植物、常绿灌木、垂吊花卉进行绿化。先培土40㎝后,再植草皮花卉和矮灌木。同一级挖方坡率不相同时,设渐变段,其最小长度不要小于15米。以使路容美观、协

调。 路堑边坡开挖质量是边坡防护设计成败的重要因素,不恰当开挖甚至会影响整个坡体的稳定。由于本工程坡面防护以绿色防护为主,故对坡面开挖要求十分严格,必须按设计要求开挖。石质挖方,对硬质岩必须采用预裂爆破或小药量微差爆破技术施工,对节理、裂隙发育软岩必须采用预裂爆破技术施工。施工时根据具体情况,选择合适布孔方式,合理穿孔参数,适当的线装药密度、装药结构和正确的起爆次序。不恰当开挖将引起坡面稳定与设计防护方案无法实施。坡面开挖时必须保证其平整,绝不允许放炮影响边坡稳定的施工方法施工。路基边坡防护工程主要有锚杆格子梁护坡、喷播植草拱形护坡、。其总体施工方案如下: 基材施工 (1)边坡清理:尽可能将坡面平整,以利于客土喷播施工。清理对象为 岩面碎石、松散层等。对于光滑岩面需要通过加密锚杆或挖掘横沟等措施进行加糙处理,以免客土下滑。 (2)测量放样:清坡施工后,进行测量放样,确定挂网范围及主、次 锚杆的钻孔位置。 (3)处理坡面排水:对坡面径流、涌水进行处理,通过设置泄水管将 涌水引至坡脚,设置好平台排水措施,使平台从坡面两头排出并引至坡底。 (4)锚杆施工:锚杆的主要作用时有效地固定用于厚层基材喷射的镀 锌铁丝网,使基材紧贴岩面;同时与镀锌网一起对岩面进行加固,防止边坡面局部崩塌。根据岩面强度和坡比不同确定主、次锚杆直径、

高边坡的防治

边坡是指线路近旁的天然斜坡或经过施工开挖形成的路堑斜坡、填筑形成的方坡等等。 一、边坡的变形特征 1、公路边坡是将地质体的一部分改造成人为工程设施,因此其稳定性取决于自然山坡的稳定状况(稳定、不稳定、极限平衡)、地质条件(地层岩性、地质构造、坡体结构、岩体结构、水文地质条件、风化程度等)和人为改造的程度(开挖深度、坡形、坡率等)。 2、人工边坡是对自然坡体的改造,改变了自然坡体的应力状态和地下水的渗流条件,而且是在短短几个月内改造完成的。自然坡体的应力调整有一个过程,强度低的软弱岩层调整较快,常在施工期就发生变形;强度高的坚硬岩层调整较慢,或可自身稳定,或在1~3年后发生变形。只有当人工边坡对其改变不大时,才可保持稳定,否则就会发生失稳,甚至引起自然坡体的破坏。 3、自然山坡和人工边坡都处在各种自然营力的作用之下,如阳光照射、降雨冲刷和下渗、风化和地震等。但人工边坡所造成的自然状态的改变使这种作用更强烈,如开挖暴露风化加剧、破坏植被地表水容易下渗、坡体松弛、爆破震动等都使边坡更容易发生变形。 4、自然条件千差万别,所以边坡设计也变得十分复杂,每个高边坡工点都需单独分析和计算,这也是目前高边坡设计尚无规范可循的原因。 二、高边坡形成的原因分析 (一)主观原因: 1、公路选线时对地质工作重视不够,没有将“地质选线”落实到实处,对已经存在的古老滑坡和潜在滑坡认识不足,将线路布设在这些地段,甚至大填、大挖,造成老滑坡复活或新生滑坡。 2、对高边坡的危害认识不够,强调节约工程投资,本来可以内移作隧道或外移作桥或半路半桥的,为节省投资而造成大挖方,结果造成高边坡变形破坏,有时其治理费用比桥、隧还多。 (二)客观方面: 1.山区公路(特别是高等级公路)对线形和道路走向有特定的要求,也不可能一味强求优良的工程地质条件,而回避不良地质、高边坡等岩土工程问题,因此就不可避免的在近于极限平衡的天然山坡上或其内开拓修建。

2. 沉降变形观测工作总结报告

新建九景衢铁路 I I标段一分部 沉降变形观测工作总结报告 (DK264+909.71~DK165+187.50段) 中铁四局集团九景衢铁路II标段一工区 2015年9月

线下工程沉降变形观测工作报告 (DK264+909.71~DK265+187.50段) 一、工程概况 九景衢铁路II标段一分部承建的九景衢铁路DK264+909.71~DK265+187.50段,全长0.277公里,位于浙江省衢州市常山县,管段主要工程项目为桥梁1座、路基277m、涵洞1座。 二.程地质及水文地质概况 1、地形地貌:本路基段地势为多山,中间为沟壑地形。 2、地层岩性: (1):粉质粘土,褐黄色,硬塑,厚0.5~3.1m,σ0=180kPa,III; (2)-1:角砾凝灰熔岩,全风化,褐灰色,厚0.5~3.2m,σ0=200kPa,III; (2)-2:角砾凝灰熔岩,强风化,灰褐色,节理裂隙发育,岩体破碎,厚7.5~13.3m,σ0=500kPa,Ⅳ (2)-3:较砾凝灰熔岩,强风化,褐灰色,节理裂隙发育,岩体破碎,厚>5.0m,σ0=800kPa,Ⅴ。 3、水文地质条件:地下水为空隙潜水及基岩裂隙水,不发育,测时水位深0~3.3m。 4、物理地质:地震动峰值加速度为0.05g。 三.设计依据 1、路段稳定安全系数:考虑列车荷载时Kmin≥1.25,预压荷载条件下Kmin≥1.15,架桥荷载条件下Kmin≥1.15。 2、路基工后沉降标准:工后沉降一般不应超过15mm;路桥交界处的差异沉降不应大于5mm。 3、敬沉降计算分析,桥头工后沉降不满足控制标准,采用预压处理。计算分析采用指标:填土:γ=20kN/m3,Cu=10kPa,Φu=30° (1)层:ω=25.8%,γ=17.5kN/ m3,e=0.97,Cu=74.25kPa,ΦCu=11.45°,Es=8.56MPa,Ps=2.02MPa; (2)-1层:Es=15.0MPa。 4、路堤边坡高小于3m时,边坡采用混凝土空心砖内培土撒草籽、种灌木防护;路堤边坡搞大于等于3m时,采用M7.5浆砌片石拱型截水骨架,内培土撒草籽、种灌木防护,并在填筑过程中边坡3.0m宽度范围内铺设一层双向土工格栅,层间距0.5m。

边坡防护措施

高边坡防护措施根据高边坡现状,将需要加固防护的边坡分喷锚挂网防护和素喷混凝土防护两种类型;对边坡较高、坡面松散破碎严重,且破碎岩层较厚的地方采用喷锚网防护,而对那些边坡较低,只有少量裂缝,破碎不严重的地方则采用素喷混凝土防炉。一、设计方案 (1)喷射混凝土厚度采用10 cm,喷射混凝土标号为C20细石混凝土。 (2)锚杆采用Φ22钢筋;锚固深度视边坡岩层的破碎程度及破碎层的厚度而走,一般取3.5m(为防止锚杆滑出,锚杆必须置于较好的岩层面以下一定深度);锚杆孔的深度应大于锚固深度20cm,并用1:3~l:4 的水泥砂浆固结;锚杆间距采用2.0m×2.0m,梅花型布置。 (3)钢筋网的孔眼尺寸采用20cm×20cm的方孔,钢筋网采用φ6 圆钢。二、材料选择要求 (1)水泥:应优先选用P.O42.5普通硅酸盐水泥;也可选用矿渣硅酸盐水泥或火山灰质硅酸盐水泥,水泥标号不得低于32.5#,性能符合现行水泥标准。 (2)砂:应采用坚硬耐久的中粗砂,细度模数宜大于2.5,含水率直控制在5%~7%。 (3)骨料:应采用坚硬耐久的碎石或卵石,粒径不宜大于15 mm;当采用碱性速凝剂时,不得使用含有活性二氧化硅的石材。 (4)外加剂:应选用符合质量要求的速凝剂,掺速凝剂后的喷射混凝土性能必须满足设计要求。 (5)水:混合水中不应含有影响水泥正常凝结与硬化的有害物质,不得使用污水以及pH值小于4的酸性水和含硫酸盐量按SO 计算超过水重1%的水。 三、混合料的配合比设计 (1)水泥与砂石之重量比为1:2:2 ~1:2:3;

(2)砂率宜为45%~55%; (3)水灰比宜为0.4~0.45; (4)速凝剂掺量应通过试验确定。 四、施工方法及技术措施 喷锚网支护的施工程序是:搭设脚手→整修边坡→制作安装设施排水孔→第一次喷射混凝土→锚杆钻孔、注浆→挂网→第二次喷射混凝土→养护→拆除脚手架。现把各工序的施工方法及技术措施简述如下: 1、搭设脚手架 脚手架搭设前必须先对现有边坡的稳定情况进行观察,确定安全后再搭设脚手架。钢管支架立柱应置于坚硬稳定的岩石上,不得置于浮渣上;立柱间距1.5m。架子宽度1.2~1.5 m;横杆高度1.8m,以满足施工操作;搭设管扣要牢固和稳定;钢架与壁面之间必须楔紧,相邻钢架之间应连接牢靠,以确保施工安全。 2、坡面整修 由于现有的岩石边坡破碎松散且不平整,故必须将松散的浮石和岩渣清除干净。处理好光滑岩面;拆除障碍物;用石块补砌空洞;用高压水冲洗受喷面;对边坡局部不稳定处进行清刷或支补加固;对较大的裂缝进行灌浆或勾缝处理;在边坡松散空洞处和坡脚处设置一定数量的泄水孔,预留的长度根据现场确定布设。 3 喷射混凝土作业 (1)喷射作业前必须对机械设备,风、水管路和电线等进行全面检查及试运转。 (2)喷射混凝土之前,用清水将坡面冲刷干净,湿润岩层表面,以确保一层后才进行定位;采用气腿式凿岩机钻孔,孔径50mm;根据现场的情况确定锚杆深度一般为2.5~3.5m,钻孔要垂直边坡面。锚杆采用Φ22 钢筋,间排距200×200cm,梅花型布置。 (3)如遇岩石过于坚硬须采取加水的方式钻孔,钻孔时必须随机钻速度钻进,

高边坡防护施工组织设计(范例)

天津至汕尾国家重点公路干线 福建省浦城(闽浙界)至南平高速公路C合同段 ZK189+360~ZK189+419右侧高边坡防护 工程施工组织设计 中铁十八局集团有限公司 二O0六年六月

a、编制依据 1、编制依据 (1)蒲城至南平高速公路C3标段两阶段施工图第一册、第二册(下册:《路堑高边坡设计图》)。 (2)浦城至南平高速公路施工合同文件相关规定。 (3)《公路路基施工技术规范》(JTJ 033-95)、《公路工程技术标准》(JTG B01-2003)、《公路桥涵施工技术规范》(JTJ041-2000)、《公路工程施工安全技术规程》(JTJ 076-95)、《公路工程质量评定标准》(JTG F80/1-2004)等相关的规范标准。 (4)《福建省高速公路路基施工指南》及其他福建省有关高速公路建设的相关技术资料和技术质量要求。 (5)路基高边坡防护工程施工经验和现有机械设备的性能、施工能力等。 (6)、施工地区的地材情况、气候情况、水文情况等。 2、编制原则 (1)、根据工程实际情况,合理安排施工方案与施工顺序。 (2)、制定切实可行的施工方案,采取新工艺、新材料、新技术、新设备,确保工程质量。 (3)、因地制宜,合理布臵施工场地,尽量减少工程消耗,降低生产成本。 (4)、采用平行流水作业及均衡施工方法,运用网络计划技术控制施工进度,确保施工工期。

(5)、施工过程中,针对出现的问题,统筹考虑,保证工程施工的整体进度不受影响。

b、工程概况、工程部位、工程数量、工程特点 1、工程概况 浦城至南平高速公路C合同段第3标段路线总体走向从东向西,起点位于建瓯市建安办事处东门村,起点桩号为K185+700;终点位于建瓯市通济办事处南门村,终点桩号为YK192+050。标段线路全长6.35公里。按双向四车道高速公路标准设计,计算行车速度为80km/h。 本标段桥隧结构物较多,占线路长度的53.2%,主要施工项目和工程量如下: 路基土方40.8万方,石方为11.6万方;桥梁五座,总长为1497m,其中大桥三座,分别是建瓯大桥,桥长898m,大水坑1#大桥,桥长191.5m,大水坑2#大桥,桥长238m。隧道两座,总长1770.75m,其中新厂隧道长1533m,九曲隧道长237.5m;分离式立交中桥一座,长82m;通道涵洞8道以及沿线的排水防护等附属工程。 本标段工程质量目标为工程质量达到合同要求的优良目标。 2、工程部位 ZK189+360~ZK189+419路基右侧高边坡为新厂隧道左线进口右边坡,自然坡上陡下缓,为二元构造边坡;上部坡积粘土厚度为4~11m,砂土状强风化云母石英片岩,厚度约6米;其下为碎块状强风化云母石英片岩,厚约2~4米;下伏风化云母石英片岩。岩体节理裂隙发育,呈角碎状松散结构,层面倾向临空30°因坡体地形差,如采用常规刷坡,坡高可达50米以上,且上部为“剥山皮”式刷方,

基坑监测总结报告15195

*********商业楼基础开挖基坑监测技 术总结报告 2017年7月

*******商业楼基础开挖基坑监测技术总结报告 编写: 审核: 审定: 2017年7月

目录 1工程概况 (1) 1.1简况 (1) 1.2周边环境 (1) 1.3地质概述 (1) 1.4基坑围护 (1) 2监测依据 (1) 3 工程地质概要 (1) 3.1本基坑地下水埋藏较深,不考虑地下水变化监测。 (1) 4、监测内容: (2) 5、基准点、监测点的布设 (2) 5.1.2 基准点的埋设和观测 (2) 5.1.3监测点的布设 (3) 5.2监测方法 (3) 5.2.1垂直位移监测 (3) 5.2.2水平位移监测 (3) 6监测周期及频率 (4) 7监测仪器设备及检定要求 (5) 7.1监测仪器设备 (5) 7.2仪器检定 (5) 9 结论与建议 (6)

1工程概况 1.1简况 *************大街东段南侧,东侧与京港澳高速公路相望,西侧接近南联路,地势平坦。基坑东西宽约55米,南北长为56.5米,开挖面积约4.68亩。开挖深度在5.0~7.7米。 1.2周边环境 本工程基坑3倍基坑深度范围内地上无建筑物、构筑物,地下无管线等。1.3地质概述 详见本工程《岩土工程勘察报告》。 1.4基坑围护 本基坑根据周边环境、开挖深度及土层情况,选用土钉墙挂网锚喷的支护形式。 2监测依据 1)《国家一、二等水准测量规范》GB/T 12897-2006 2)《建筑变形测量规范》JGJ 8-2007 4)《建筑基坑工程变形技术规范》(GB50497-2009) 5)《精密水准测量规范》(GB/T15314-940) 6)《工程测量规范》(GB 50026-93) 7)《建筑边坡工程技术规范》(GB50330-2007) 8)本工程地质勘察报告、基坑围护设计方案、保护对象权属部门对监测 的技术要求等。 9)同类工程实践经验。

边坡稳定防护措施方案

鄂尔多斯市区酸刺沟煤矿有限责任公司 边坡稳定防护措施 编制单位:鄂尔多斯市酸刺沟煤矿有限责任公司编制人:林春 负责人:庚 日期:二0一二年三月十日

边坡稳定防护措施 露天矿的开采破坏了稳定状态,使边坡岩体发生变形破坏,边坡破坏的方式主要有崩落、散落、倾倒坍塌和滑动等。要加强边坡整治和检测。通过调整和台阶盘宽度、控制边坡角的大小等于段预防边坡进一步破坏。台阶高度3-6m,台阶坡面角不大于26°,最终边坡角不大于22°。 根据有关资料及临近矿区经验,本矿区矿岩属坚硬稳固矿岩,无地下水、降水量也很小。但有断层、裂隙、古溶洞穴等,必须加强监控边坡的稳定性工作,雨天要停止作业,防止降水对边坡稳定造成影响而产生滑坡。本矿制定如下措施: 一、边坡下滑防护措施 1、滑坡清理 当边坡出现断层或裂隙发育时,对滑体上部或中上部进行削坡,减小边坡角,从而减小下滑力。 2、减重压坡角 对边坡出现裂隙时,对滑体上部削减,使下滑力减小,同时将土岩堆积在滑体下部抗滑部位,使抗滑力增大。 3、预裂爆破 为维持到界边坡的岩体强度不致因爆破而降低,用预裂爆破法减少爆破时对岩体的破坏。 4、挡墙 在边坡出现严重下滑趋势时,在滑体下部修筑挡墙,以增大抗滑力。 5、建立岩层稳定永久观测线,定期观测,对观测结果分析和评价。 6、采场最终边坡应遵守以下规定: (1)按设计进行,坡度不得超挖。

(2)临近到界台阶时,采用控制爆破,不得超钻并采取减震措施。 7、随着排土场边坡的形成和发展,必须进行边坡稳定分析,如有不稳定因素应修改排土场参数或采用防治措施。 8、定期巡视采场及排土边坡,发现有滑坡征兆时,必须设明显标志牌。 二、边坡事故的防护 1、制定严格的边坡安全管理制度,正确选择台阶坡面角和最终边坡角。 2、制定合理的开采顺序和推进方向,杜绝在作业台阶底部进行掏底开采,一般尾部选用从上盘向下盘的采剥推进方向,做到有计划,有条理的开采。 3、合理进行炸破作业,减少炸破震动对边坡的影响,由于炸破产生的震动可以使岩体的节理展开,因此在接近到界边坡地段尽量不采用大规模齐发爆破,并严格控制同时炸破的炸药量。 4、矿上派技术人员或有经验的工人专门负责边坡的管理工作,及时清除隐患,发现边坡塌滑征兆时,有权制止采剥作业,并向矿长报告。 5、对于边坡有滑动倾向的矿山,必须采取有效的安全措施,并设立专门观测点,定期观测记录。 三、滑坡防护工作的一般程序 露天矿滑坡防治工作应立足于防,治次之。它贯穿于露天矿设计、施工、生产各个阶段,滑坡防治工作应按一定程序进行,它反映了各项防治措施的轻重缓急次序。这一程序是: 1)进行有关滑坡原因的工程地质、水文地质的勘探工作; 2)截集并排出流入滑坡区的地表水; 3)疏干滑坡区或附近的地下水,或降低地下水位; 4)削坡减载,反压坡脚或清除滑体,爆破减震等;

梯形路基面边坡防护工程施工技术交底

梯形路基面边坡防护工程施工技术交底 一、设计说明 设计无砟轨道路基面形状为梯形,双线标准路基面宽度13.6米,基床表层厚0.4m,基床底层厚2.3m。基床以下及基床底层均采用B组细圆砾土填筑,路堤两侧边坡坡率1:1.5,两侧坡脚设宽2m,高1.5m护道。 护道以上边坡设置带截水槽的拱型骨架护坡防护,拱型骨架肋柱、拱部及镶边均采用M10砂浆片石砌筑(桥台锥体坡面铺砌采用M20砂浆片石砌筑)。拱圈内镶六边形空心砖;护道及以下边坡采用浆砌片石满铺;脚墙采用C20片石混凝土现场浇筑.沿线路方向每隔15.02m(一联四拱),设一道伸缩缝,缝宽0.02m,缝内用沥青木板填塞。各部位尺寸见《路基通用参考图-乌兰二线甘青施路05》。 路基边坡防护断面图

二、施工工艺 施工工艺流程:测量放样→脚墙基础开挖→C20片石砼护道脚墙基础、护坡脚墙基础→护道及以下浆砌片石护面→骨架基础开挖→浆砌片石主骨架→浆砌片石拱形骨架→养护→空心砖砌筑。 施工工艺流程框图 1、施工准备 根据设计纵断面及标准横断面图,确定相应段落的路肩标高、宽度及边坡坡率,对已成型的路基进行刷坡、修整。 2、测量放样 由架子队测量组施放路基设计边线,骨架柱肋、脚墙基础的开挖边线和宽度,以及确定顶面的标高线;固定桩位,在施工场地的适合位置布置控制桩及护桩。 由于主骨架及护道以下护面与脚墙基础相连,脚墙基础的位置正确与否,将直接影响主骨架及护面的整体线性和外观效果,故测量放样时,务必做到精准无误。另对地形变化处放样点适当加密,确保脚墙连续、圆顺。 3、开挖 ⑴脚墙基础开挖 根据测量放样后的基坑宽度,洒出石灰线,采用50型小挖机开挖,按设计值预留20cm由人工修整;开挖土方直接装车,由自卸车运至附近弃土场。脚墙基础的开挖顺序是:护道脚墙→坡脚脚墙。 漫流区排洪涵两端各20m范围及桥台相邻20m范围内路基,脚墙基础加深至涵洞底板顶面下0.5m,且最小高度不小于1.5m。 ⑵骨架基础开挖 待护道脚墙、坡脚脚墙、护道及以下完成施工后,挖掘机位于基床底层顶面路肩处,自下向上开挖,其顺序为:肋柱→护脚墙→拱部。机械开挖后,按设计

高边坡防护技术交底

高边坡防护技术交底 一、适用范围 路基高边坡防护工程施工 二、工程概况 K173+560-K173+780段左侧四级高边坡,开挖后存在掉块和楔形体破坏问题,经现场调查分析,原设计防护方案难以保证边坡和上部水池的安全,原设计:边坡坡比1:0.5,高度51m,一级边坡自然裸露,二级及以上采用GAR2型SNS主动网防止落石。坡面溶洞空腔采用片块石填充后,用M7.5浆砌片石封面处理。分级平台设M7.5浆砌片石截水沟,截引雨水至坡体外侧。变更设计:将原设计中第三、四级边坡防护方案由原来的SNS防护网变更为锚杆肋梁结合浆砌片石封闭,其余不变。 三、施工工艺 (1)锚索(杆)施工的内容包括施工准备、造孔、锚杆制作与安装、注浆、锚杆拉拔力检测、肋梁施工、验收等7个环节。 (2)工艺流程:施工准备(场地整理、搭设工作平台)测量定位安装钻机成孔 清孔锚杆制作与安装注浆锚杆拉拔力检测肋梁施工检查验收 1、施工准备 1)设计锚固工程坡面开挖成形并经验收合格后,应尽快布置锚固工程施工作业,待锚固工程施工完毕并产生加固作用后,方可进行下级边坡开挖与防护。 2)施工的场地整理及搭设工作平台时,施工方需对已施工完成的坡面依据设计图纸进行测量确定锚杆的位置;钻机安装时,按照施工设计图采用全站仪进行测量放线确定孔位以及锚孔方位角(或拉线尺量配合测角仪定位),并作出标记。 2、造孔 1)锚孔测放:根据设计图将锚孔位置准确测放在坡面上。如遇既有坡面不平顺或特殊困难场地,需经设计监理单位认可,在确保坡体稳定和结构安全的前提下,适当放宽定位精度或调整锚孔定位。 2)钻孔设备:根据锚固地层类型、锚孔孔径、深度及施工场地条件等选择钻孔设备。锚孔钻造应采用潜孔钻机或锚杆钻机冲击成孔,未经设计允许不得采用地质钻机成孔。对易于塌缩孔或卡钻埋钻地层中应采用跟管钻进技术。 3)钻机就位:钻进施工搭设施工平台需满足承载能力和稳固条件要求,准确安装固定钻机。锚孔开钻就位纵横误差≤±50mm,高程误差≤±100mm ,钻孔倾角和方向符合设计要求,倾角误差≤±1.0°,方位误差≤±2.0°。

浅谈农村公路路基边坡防护技术

浅谈农村公路路基边坡防护技术 【摘要】近年来,农村公路“乡乡通”“村村通”工程建设发展很快,道路路基施工工艺和技术进步也大有发展,对道路路基工程施工质量也逐步有所重视。本文介绍了农村公路土方路基边坡防护技术。 【关键词】农村公路;路基边坡;防护技术;分析 公路路基是路面的基础,是公路工程的重要组成部分。路基承受着本身岩土自重和路面重量,以及由路面传递而来的行车荷载,是公路的承重主体。必须具有足够的强度、稳定性和耐久性。 根据地形的不同,公路路基一般采用路堤和路堑两种形式。当路基顶面高于天然地面时,路基以填筑的方式构成,这种路基称为路堤。路堤通常由路床、边坡、边沟组成。而当路基顶面低于天然地面时,路基则以开挖的方式构成,这种路基称为路堑。路堑通常由路床、边沟、边坡、截水沟组成。根据填筑材料的不同,路基又分为土方路基和石方路基。 1.农村公路路基边坡防护技术 调查中发现,大部分农村公路,尤其是低等级以及存在受限路段的公路,路基防护技术简单,防护设施数量少,类型单一;我们知道,现有的路基防护技术不仅从理论上或是实践中,都是丰富多样的。考虑各地的农村公路的技术等级、建设现状以及气候植被特点,本着技术可靠、结构简单、经济合理、尽量利用当地材料的原则,在填方高度大于6m(含6m)的一般路堤、高路堤(土质填方高度大于18m,石质填方高度大于20m)、浸水路堤、路堑、半填半挖路基部应该设置防护设施。边坡坡面防护,主要是保护路基边坡表面免受雨水冲刷,减缓温差及湿度变化的影响,防止和延缓软弱岩土表面的风化、碎裂、剥蚀演变进程,从而保护路基边坡的整体稳定性,在一定程度上还可兼顾路基美化和协调自然环境。坡面防护技术一般可分为植物防护技术、工程防护( 圬工防护)技术以及综合防护技术。 根据气候植被特点及当地材料、经济状况,农村公路路基边坡防护技术和结构形式推荐见表1。 1.1植物防护技术 (1)种草。选用的草籽必须适应我省的土壤和气候条件通常应选择生长快、根系发达、叶茎低矮、枝叶茂密或有匍匐茎的多年生草种(三叶草、抓根草)。当边坡土质不宜草类生长时,可以在坡面培腐植土促进草类生长。 (2)铺草皮。草皮要选用根系发达、茎矮叶茂、生长繁殖迅速、易成活、便于种植的草皮;干枯腐朽及喜水的草皮不宜使用,严禁用泥沼地区的草皮。如边坡土不宜草皮生长,应先铺一层厚10~20cm的黏性土,当边坡坡度陡于1∶2时,铺黏土前应将边坡先挖成台阶或沟槽。铺草皮可与其他防护措施结合使用。如片(卵)石方格草皮,由片石在边坡上形成骨架,中间铺草皮,可防止边坡表面滑塌、草皮脱落。草皮还可以铺于窗孔式护面墙、框格防护等开孔或格内,形成综合防护。 (3)植树。植树防护的边坡应较缓,最好是1∶1.5或更缓的边坡。树种宜选用与我省当地土壤、气候条件相适应、根系发达、枝叶茂密、生长速度快的品种。对常浸水的农村公路,应选用喜水、耐水的乔木和灌木,适合我省优先选用杨树、柳树; 路堑路面及路肩边缘外0.8~1.0m范围内的路堤边坡上下不宜种植乔木。

基坑监测总结报告

变形监测总结报告河南省XXXXXX有限公司

变形监测总结报告批准: 审核: 编制: 河南省XXXX有限公司 编制日期:2015年7月

目录 1 工程概况 2 监测目的和依据 2.1 监测目的 2.2 监测依据 3 监测内容及项目 4 基准点、监测点的布设与保护 4.1 基准点的布设 4.2 监测点的布设 5 监测方法及精度 5.1 竖直位移及沉降 5.2 坡顶部水平位移监测 5.3 巡视监测 6 水平位移数据曲线 6.1 水平位移过程线 7 竖向位移数据曲线 7.1 竖向位移过程线 8 数据结果分析 8.1 沉降位移和水平位移结果分析 9 结论及建议 10 监测点位布置图 11 附件:公司资质 (1)营业执照 (2)资质证书 (3)税务登记证 (4)安全许可证

1 工程概况 。 2 监测目的和依据 2.1 监测目的 在基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。 基坑监测的目的如下: (1)以变形指标指导基坑开挖和支护结构的施工。 (2)确保基坑支护结构和相邻建筑物的安全。 (3)积累工作经验,为提高基坑支护工程的设计和施工的整体水平提供依据。 2.2 编制依据 (1) GB50497-2009 《建筑基坑工程监测技术规范》 (2) GB50026-2007 《工程测量规范》 (3) JGJ8-2007 《建筑变形测量规范》 (4) GB50007-2002 《建筑地基基础设计规范》 (5) JGJ120-99 《建筑基坑支护技术规程》 3 监测内容及项目 根据GB50497-2009《建筑基坑工程监测技术规范》等现行规范规定,结合基坑支护设计文件和现行有关规范要求及工程具体条件,确定施工中的监测内容包括: (1)基坑周边环境监测:基坑坡顶沉降观测点40个,编号采用C1-C40;周边建筑物上沉降观测点8个,编号采用C41-C48。 (2)水平位移:基坑坡顶水平位移观测点40个,编号采用S1-S40;周边建筑物上水平位移观测点8个,编号采用S41-S48。 各测点具体布设位置详见附图

高边坡安全防护方案

目录 一、编制依据 (2) 二、编制说明 (2) 三、工程概况 (2) 四、高边坡施工规定 (3) 五、边坡施工 (4) 六、危险源的控制 (5) 七、安全预防措施 (5) 八、边坡安全监测 (7)

高边坡安全防护方案 一、编制依据 1、《中华人民共和国安全生产法》(中华人民共和国主席令70号) 2、《建设工程安全生产管理条例》(中华人民共和国国务院令第393号令) 3、《市政工程施工安全技术标准》 4、《爆破安全规程》(GB722-2003) 5、现场调查的地质、地形、水文及气候等资料 6、我公司历年来对同类似工程的施工经验 二、编制说明 为规范高边坡安全施工,切实保障施工人员及设备安全,防止事故发生。根据《建设工程安全生产管理条例》的规定,结合本工程特点,制定高边坡安全专项施工方案。 三、工程概况 1、主要工程概况: 本工程线路起于罗汉坪水库(J1段),止于中坪隧道(J4段)管道全长37.0km,供绥江县城镇居民生活用水。全程采用焊接钢管Q235B及球墨铸铁管道C30。钢管径分别为D337~D720,球墨铸铁管径DN600。部分地质较硬,陡坡,悬崖较多。特别是J1段,J4段地形地质结构复杂尤为突出。 2、线路路径: 本工程管道自罗汉坪水库,向绥江县城自来水厂方向经罗坪村、关口村、桂花村至中坪等地。线路全长37.0km。区间穿过5个隧道(漆树湾隧道、红岩顶隧道、兴隆埂隧道、煤炭湾隧道、中坪隧道)及一个渡槽、一个倒虹吸。 3、沿线地形地貌: 沿线海拔高程在1850~2010之间,J1段~J4尾相对高差达160m左右。其中部分地势低洼,陡坡、悬崖较为突出。

变形监测心得

自动化变形监测系统培训心得 沈阳分公司 测量应用与系统集成部工程师 左文博南下的列车,带着舒缓的音乐,穿越在青山绿水间,就这样我和杜立辉满怀信心开启了广州培训之旅。此次去广州培训是沈阳南方经理王刚本着分公司未来发展趋势,迎合市场需求,拓展新业务领域所做的安排。 此次培训以自动化变形监测的概念和意义为基础明确学习内容、以变形监测的特点和周期为基础明确学习方法,以变形监测技术发展为基础明确学习方向。 自动化变形监测系统是利用测量机器人和变形监测方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变体形的形状、大小、及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。变形监测工作的意义主要表现在两个方面:首先是掌握各种工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。 变形监测与常规测量工作相比较,它们既有相同点,又有各自不同的特点和要求。具体来说变形监测具有周期性重复观测、精度要求高、多种观测技术的综合应用和监测网着重于研究点位的变化等特点。 变形监测的周期指的是在一定的时间内完成一个周期的测量工作。观测周期于工程的大小、测点所在位置的重要性、观测目的以及观测一次所需时间的长短有关。变形监测的周期应以能反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界影响因素确定。对于特级和特一级变形观测,还宜固定观测人员、选择最佳观测时段、在基本相同的环境和条件下观测。 由于变形监测的特殊要求,一般不允许监测系统中断,这就要求安全监测系统能精确、稳定、可靠、长期而又实时地采集数据,所以现在的变形监测工作以自动化监测技术为主流发展方向,包括CT技术、光纤传感检测技术、GPS技术、激光技术、测量机器人技术以及三维激光扫描仪技术等。 此次培训分为室内培训和室外培训。室内培训主要给我们演示测量机器人、水位计、轴

相关文档
最新文档