第六章 定积分的应用 单元测试

第六章 定积分的应用 单元测试
第六章 定积分的应用 单元测试

第六章、定积分的应用 单元测试题

(一)选择题(每小题4分,共40分)

1. 曲线r ae θ

=及直线θπ=-,θπ=所围图形的面积为( ) A.22012a e d πθ

θ? B. 22202

a e d πθθ? C.

22a e

d π

θ

πθ-

? D. 222

a e d π

θ

π

θ-?

2. 心形线4(1cos )r θ=+,直线0θ=,2

π

θ=

所围图形绕极轴旋转而成旋转体的体积为

( )

A. 220

16(1cos )d π

πθθ+?

B. 2220

16(1cos )sin d π

πθθθ+?

C. 2220

16(1cos )sin [4(1cos )cos ]d π

πθθθθ++?

D.

0222

16(1cos )sin [4(1cos )cos ]d π

πθθθθ++?

3. 横断面积为s 、深为h 的水池中装满了水,把池中的水全部抽到距地面高为H 的水塔中

所作的功W =( ) A.

()h

s H h y dy ++?

B. 0

()H

s H h y dy +-?

C.

()h

s H y dy +?

D. 0

()h H

s H h y dy ++-?

4. 曲线(0)r ae λθ

λ=>,从0θ=到θα=一段的弧长s =( )

A.

a

ae

λθ

θ?

B. 0θ?

C.

θ?

D. 0

θ?

5. 矩形闸门的一边恰与水面相齐,且此闸门垂直于水面,过闸门的中心作水平线将矩形分

为面积相等的上、下两部分,设上部所受的压力为1P (吨),下部所受压力为2P (吨),则

1

2

P P =( ) A.

12 B.1 C.13 D.23

6. 曲线1

y x

=,y x =,2x =所围成的图形面积为A ,则A =( )

A.

2

1

1()x dx x -?

B. 211

()x dx x

-?

C.

2

11

01

(2)(2)dy y dy y

-+-?

? D. 22111(2)(2)dx x dx x -+-??

7. 曲线2

2

x y =在[0,1]之间的一段绕x 轴旋转一周所得旋转曲面的面积为( )

A. 1

2? B. 1

202x dx π?

C.

1

2x π?

D. 10

x π?

8. 设(),()f x g x 在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),则曲线()y g x =,

()y f x =,x a =及x b =所围平面图形绕直线y m =旋转而成的旋转体积为( )

A.

[2()()][()()]b

a

m f x g x f x g x dx π-+-?

B. [2()()][()()]b

a

m f x g x f x g x dx π---?

C. [()()][()()]b

a

m f x g x f x g x dx π-+-?

D.

[()()][()()]b

a

m f x g x f x g x dx π---?

9. 设在区间[,]a b 上,()0f x >,()0f x '<,()0f x ''>,令1()b

a

S f x dx =

?

2()()S f b b a =-,31

[()()]()2

S f b f a b a =+-,则

A. 123S S S <<

B. 213S S S <<

C. 312S S S <<

D. 231S S S << 10. 两个半径为a 的直交圆柱体公共部分的体积V =( ) A. 22

4

()a

a x dx -?

B. 220

8()a

a x dx -?

C. 22

16

()a

a x dx -?

D. 220

2()a

a x dx -?

(二)填空题(每小题4分,共60分)

1. 抛物线()(0)y x x a a =->与直线y x =所围图形的面积为__。

2. 已知1

()(1||)(1)x

f x t dt x -=

-≥-?

,则曲线()y f x =与x 轴所围图形的面积为__。

3. 曲线(0)x

y e x =<,0x =,0y =所围图形绕Ox 轴旋转一周所得旋转体的体积为__。

4. 摆线(sin )

(1cos )

x a t t y a t =-??

=-?的一拱与x 轴所围图形的面积为__。

5. 曲线y =

?的全长为__。

6. 星形线3

3

cos (0)sin x a t

a y a t

?=?>?=??绕Ox 轴旋转所得旋转曲面的面积为__。

7. 曲线r θ=

与2cos 2r θ=所围图形的公共部分的面积S =__。

8. 正椭圆锥的高为h ,底面边界是椭圆22

221x y a b

+=,则此正椭圆锥的体积为__。

9. 双纽线22cos2(0)r a a θ=>所围图形的面积为__。

10. 设()V a 是由曲线x y xe -=,0x ≥,0y =,x a =所围图形绕Ox 轴旋转一周的立体的

体积,则lim ()a V a →+∞

=__。

11. 曲线3cos r θ=,1cos r θ=+所围图形的公共部分面积A =__。 12. 曲线(cos sin )

(sin cos )

x a t t t y a t t t =+??

=-?从0t =到t π=一段弧长s =__。

13. 由曲线1

y x x

=+

,2x =及2y =所围图形的面积A =__。

14. 函数2

y =

在区间1[2上的平均值为__。 15.曲线3

sin

3

r a θ

=在03θπ≤≤一段的弧长s =__。

第六章 定积分的应用

第六章 定积分的应用 第一节 定积分的元素法 教学目的:理解和掌握用定积分去解决实际问题的思想方法即定积分的元素法 教学重点:元素法的思想 教学难点:元素法的正确运用 教学内容: 一、 再论曲边梯形面积计算 设 f x ()在区间],[b a 上连续,且0)(≥x f ,求以曲线y f x =()为曲边,底为] ,[b a 的曲边梯形的面积A 。 1.化整为零 用任意一组分点 b x x x x x a n i i =<<<<<<=- 110 将区间分成 n 个小区间[,]x x i i -1,其长度为 ),,2,1(1n i x x x i i i =-=?- 并记 },,,m ax {21n x x x ???= λ 相应地,曲边梯形被划分成 n 个窄曲边梯形,第 i 个窄曲边梯形的面积记为 n i A i ,,2,1, =?。 于是 ∑=?= n i i A A 1 2.以不变高代替变高,以矩形代替曲边梯形,给出“零”的近似值

),,2,1(],[)(1n i x x x f A i i i i i i =∈??≈?-ξξ 3.积零为整,给出“整”的近似值 ∑=?≈ n i i i x f A 1 )(ξ 4.取极限,使近似值向精确值转化 ?∑=?==→b a n i i i dx x f x f A )()(lim 1 ξλ 上述做法蕴含有如下两个实质性的问题: (1)若将],[b a 分成部分区间),,2,1(],[1n i x x i i =-,则 A 相应地分成部分量 ),,2,1(n i A i =?,而 ∑=?=n i i A A 1 这表明:所求量A 对于区间],[b a 具有可加性。 (2)用i i x f ?)(ξ近似i A ?,误差应是i x ?的高阶无穷小。 只有这样,和式 ∑=?n i i i x f 1 )(ξ的极限方才是精确值A 。故关键是确定 ))()(()(i i i i i i i x o x f A x f A ?=?-??≈?ξξ 通过对求曲边梯形面积问题的回顾、分析、提炼, 我们可以给出用定积分计算某个量的条件与步骤。 二、元素法 1.能用定积分计算的量U ,应满足下列三个条件 (1) U 与变量x 的变化区间],[b a 有关; (2) U 对于区间],[b a 具有可加性; (3) U 部分量i U ?可近似地表示成i i x f ??)(ξ。 2.写出计算U 的定积分表达式步骤

不定积分单元测试题

不定积分单元测试题https://www.360docs.net/doc/8f10205512.html,work Information Technology Company.2020YEAR

不定积分单元测试题 一、选择题(本大题共 10 小题,每小题2分,总计 20 分 ) 1、设12(),()F x F x 是区间I 内连续函数()f x 的两个不同的原函数,且()0f x ≠,则在区间I 内必有( ) (A )12()()F x F x C -=; (B )12()()F x F x C ?=; (C )12()()F x CF x =; (D )12()()F x F x C += 2、若()(),F x f x '=则()dF x ?=( ) (A )()f x ; (B )()F x ; (C )()f x C +; (D )()F x C + 3、()f x 在某区间内具备了条件( )就可保证它的原函数一定存在 (A )有极限存在; (B )连续; (C )有界; (D )有有限个间断点 4、函数2()(||)f x x x =+的一个原函数()F x = ( ) (A )343 x ; (B )243x x ; (C)222()3x x x +; (D )22()3 x x x + 5、已知一个函数的导数为2y x '=,12x y ==且时,这个函数是( ) (A )2;y x C =+ (B )2 1;y x =+ (C )2 2x y C =+; (D )1y x =+. 6、下列积分能用初等函数表出的是( ) (A ) 2x e dx -?; (B ) (C )1ln dx x ?; (D )ln x dx x ?. 7、2ln x dx x =?( ) (A )11ln x C x x ++; (B )11ln x C x x --+;

第五章定积分及其应用

第五章 定积分 【考试要求】 1.理解定积分的概念和几何意义,了解可积的条件. 2.掌握定积分的基本性质. 3.理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法. 4.掌握牛顿——莱布尼茨公式. 5.掌握定积分的换元积分法与分部积分法. 6.理解无穷区间广义积分的概念,掌握其计算方法. 7.掌握直角坐标系下用定积分计算平面图形的面积. 【考试内容】 一、定积分的相关概念 1.定积分的定义 设函数 ()f x 在[,]a b 上有界,在[,]a b 中任意插入若干个分点 0121n n a x x x x x b -=<<<<<=L , 把区间[,]a b 分成n 个小区间01[,]x x ,12[,]x x ,L ,1[,]n n x x -, 各个小区间的长度依次为1 10x x x ?=-,221x x x ?=-,L ,1n n n x x x -?=-.在 每个小区间1[,]i i x x -上任取一点i ξ (1i i i x x ξ-≤≤) ,作函数值()i f ξ与小区间长度i x ?的乘积()i i f x ξ? (1,2,,i n =L ) ,并作出和1 ()n i i i S f x ξ==?∑. 记 12max{,,,}n x x x λ=???L ,如果不论对[,]a b 怎样划分,也不论在小区间 1[,]i i x x -上点i ξ怎样选取,只要当0λ→时,和S 总趋于确定的极限I ,那么称这个极 限I 为函数 ()f x 在区间[,]a b 上的定积分(简称积分),记作 ()b a f x dx ?,即

1 ()lim ()n b i i a i f x dx I f x λξ→===?∑? , 其中 ()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限, b 叫做积分上限,[,]a b 叫做积分区间. 说明:定积分的值只与被积函数及积分区间有关,而与积分变量的记法无关,也就是说 ()()()b b b a a a f x dx f t dt f u du ==? ??. 2.定积分存在的充分条件(可积的条件) (1)设 ()f x 在区间[,]a b 上连续,则()f x 在[,]a b 上可积. (2)设 ()f x 在区间[,]a b 上有界,且只有有限个间断点,则()f x 在区间[,]a b 上可积. 说明:由以上两个充分条件可知,函数()f x 在区间[,]a b 上连续,则()f x 在[,]a b 上 一定可积;若 ()f x 在[,]a b 上可积,则()f x 在区间[,]a b 上不一定连续,故函数() f x 在区间[,]a b 上连续是 ()f x 在[,]a b 上可积的充分非必要条件. 3.定积分的几何意义 在区间[,]a b 上函数 ()0f x ≥时,定积分()b a f x dx ?在几何上表示由曲线 ()y f x =、两条直线x a =、x b =与x 轴所围成的曲边梯形的面积. 在区间[,]a b 上 ()0f x ≤时,由曲线()y f x =、两条直线x a =、x b =与x 轴 所围成的曲边梯形位于x 轴的下方,定积分()b a f x dx ? 在几何上表示上述曲边梯形面积的 负值. 在区间[,]a b 上 ()f x 既取得正值又取得负值时,函数()f x 的图形某些部分在x 轴 的上方,而其他部分在x 轴的下方,此时定积分 ()b a f x dx ? 表示x 轴上方图形的面积减去 x 轴下方面积所得之差. 二、定积分的性质

定积分在经济学中的应用

定积分在经济学中的应用 摘要:定积分是微积分中重要内容,它是解决许多实际问题的重要工具,在经济学中有着广泛的应用,而且内容十分丰富。文中通过具体事例研究了定积分在经济学中的应用,如求总量生产函数、投资决策、消费者剩余和生产者剩余等方面的应用。 关键词:定积分;原函数;边际函数;最大值最小值;总量生产函数;投资;剩余 引言 积分学是微分学和积分学的总称。由于函数概念的产生和应用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的。可以说是继欧氏几何后,全部数学中最大的一个创造。微积分是与应用联系着并发展起来的。定积分推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展。本文将重点介绍定积分在经济学中的应用。

1 利用定积分求原经济函数问题 在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。可以求总需求函数,总成本函数, 总收入函数以及总利润函数。 设经济应用函数u( x ) 的边际函数为)(x u ' ,则有 dx x u u x u x )()0()(0?'+= 例1 生产某产品的边际成本函数为100143)(2+-='x x x c , 固定成本 C (0) =10000, 求出生产x 个产品的总成本函数。 解 总成本函数 dx x c c x c x ?'+='0)()0()( =dx x x x )100143(1000002+-+? =x x x x 02_3|]1007[10000++ =x x x 10071000023+-+ 2 利用定积分由变化率求总量问题 如果求总函数在某个范围的改变量, 则直接采用定积分来解决。 例2 已知某产品总产量的变化率为t t Q 1240)(+=' ( 件/天) , 求从第5 天到第10 天产品的总产量。 解 所求的总产量为 dt t Q Q ?'=0 5)( 650)150200()600400(|)640()1220(10 5210 5=+-+=+=+=?t t dt t (件) 3 利用定积分求经济函数的最大值和最小值 例3 设生产x 个产品的边际成本C = 100+ 2x , 其固定成本为

定积分的应用教案

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体 积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知 的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6. 1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) (是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以 [a,b]为积分区间的定积分: ?=b a dx x f A) (. 一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得 ?=b a dx x f U) (.用这一方法求一量的值的方法称为微元法(或元素法).

§6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图. (2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分 31]3132[)(10323102=-=-=?x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图. (2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,2 1)(2+==y y y y 右左??. (4)计算积分 ?--+=422)2 14(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+b y a x 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ?=a ydx S 04. 椭圆的参数方程为: x =a cos t , y =b sin t , 于是 ?=a ydx S 04?=0 )cos (sin 4πt a td b

(完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试 (一) 时间:120分钟 总分:150分 一、选择题(每小题5分,共60分) 1.函数f (x )=x ·sin x 的导数为( ) A .f ′(x )=2x ·sin x +x ·cos x B .f ′(x )=2x ·sin x -x ·cos x C .f ′(x )=sin x 2x +x ·cos x D .f ′(x )=sin x 2x -x ·cos x 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e C.ln22 D .ln2 4.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2 5.图中由函数y =f (x )的图象与x 轴围成的 阴影部分的面积,用定积分可表示为( ) A. ???-3 3f (x )d x B.??13f (x )d x +??1-3f (x )d x C. ???-31f (x )d x D. ???-3 1f (x )d x -??13f (x )d x 6.如图是函数y =f (x )的导函数的图象,给出下面四个判断:

①f(x)在区间[-2,-1]上是增函数; ②x=-1是f(x)的极小值点; ③f(x)在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x=2是f(x)的极小值点. 其中,所有正确判断的序号是() A.①②B.②③C.③④D.①②③④ 7.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是() A.0≤a≤21 B.a=0或a=7 C.a<0或a>21 D.a=0或a=21 8.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q=8 300-170P-P2,则最大毛利润为(毛利润=销售收入-进货支出)() A.30元B.60元C.28 000元D.23 000元 9.函数f(x)=-x e x(a

(完整版)定积分在经济中的应用

定积分在经济中的应用 一、由经济函数的边际,求经济函数在区间上的增量 根据边际成本,边际收入,边际利润以及产量x 的变动区间[,]a b 上的改变量(增量)就等于它们各自边际在区间[,]a b 上的定积分: ()()()b a R b R a R x dx '-=? (1) ()()()b a C b C a C x dx '-=? (2) ()()()b a L b L a L x dx '-=? (3) 例1 已知某商品边际收入为0.0825x -+(万元/t ),边际成本为5(万元/t ),求产量x 从250t 增加到300t 时销售收入()R x ,总成本C ()x ,利润 ()I x 的改变量(增量) 。 解 首先求边际利润 ()()()0.082550.0820L x R x C x x x '''=-=-+-=-+ 所以根据式(1)、式(2)、式(3),依次求出: 300 250 (300)(250)()R R R x dx '-=?300250(0.0825)x dx =-+?=150万元 300300250250(300)(250)()C C C x dx dx '-==? ?=250万元 300 300250250(300)(250)()(0.0820)L L L x dx x dx '-==-+??=-100万元 二、由经济函数的变化率,求经济函数在区间上的平均变化率 设某经济函数的变化率为()f t ,则称 2 121 ()t t f t dt t t -? 为该经济函数在时间间隔21[,]t t 内的平均变化率。 例2 某银行的利息连续计算,利息率是时间t (单位:年)的函数:

高等数学11-1第二次单元测验试卷答案201212

重庆大学 高等数学Ⅱ-1-2 课程试卷 juan 2012 ~2013 学年 第 1学期 开课学院: 数学 课程号: 10019565 考试日期: 20121215 考试方式: 考试时间: 120 分钟 一、单项选择题(每小题3分,共15分) 1.若lim ()x f x k →∞ '=,则lim[()()]x f x a f a →∞ +-为【A 】 A .ka B .k C .a D .不存在 2.若()x f x e -=,则(ln ) f x dx x '=? 【A 】 A .1c x + B .1 c x -+ C .x c + D .x c -+ 3.曲线221 x x y x +=-渐近线的条数为【C 】 A .0 B .1 C .2 D .3 4.极限2 lim ln ()() x x x x a x b →+∞=-+【C 】 A . 0 B .1 C .a b - D .b a - 5.设曲线2 x y e -=,则其拐点的个数为【B 】 A .1 B .2 C .3 D .4 二、填空题(每小题3分,共15分) 1.设ln sin y x =,在5[ ,]66 ππ 上满足罗尔中值定理中的ξ= 2 π 2. = ln(x c ++ 3.若()f x 的一个原函数为 tan x x ,则()xf x dx '=? 2 2t a n s e c x x c x -+ 4.极限011lim ln(1)x x x →??-=? ?+? ? 1 2 5.曲线2 ()sin()f x x =,则(6) (0)f = 120- 解法1:2()sin(),(0)0f x x f == 2()2cos(),(0)0f x x x f ''== 22222()2cos 4sin 2cos 4(),(0)2f x x x x x x f x f ''''=-=-= 222()4sin 8()4()12()4(),(0)0f x x x xf x x f x xf x x f x f ''''''''=---=--= (4)2()12()12()8()4()f x f x xf x xf x x f x ''''=---- 212()20()4()f x xf x x f x '''=--- (5)2()12()20()20()8()4()f x f x f x xf x xf x x f x '''''''''=----- 232()28()4()f x xf x x f x ''''''=--- (6)2(4)()32()28()28()8()4()f x f x f x xf x xf x x f x ''''''''''=----- 2(4)60()36()4()f x xf x x f x '''''=--- .(6) (0)120f =- 解法2:35 11sin 3!5!x x x x =- ++ 2261011 ()sin 3!5! f x x x x x ==-++ (6)1 (0)6!1203! f =-?=- 三、计算题(一)(每小题8分,共24分) 命 题人: 组 题人: 审题人: 命题时间: 教 务处制 学院 专业、班 年级 学号 姓名 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密

微积分 经管类 第四版 吴赣昌 习题全解 第六章定积分的应用

第六章定积分的应用

课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:???<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

定积分在生活中的应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 孙天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

高中数学选修第一章导数测试题

高中数学选修第一章导 数测试题 Document number:PBGCG-0857-BTDO-0089-PTT1998

选修2-2第一章单元测试 (一) 时间:120分钟 总分:150分 一、选择题(每小题5分,共60分) 1.函数f (x )=x ·sin x 的导数为( ) A .f ′(x )=2x ·sin x +x ·cos x B .f ′(x )=2x ·sin x -x ·cos x C .f ′(x )=sin x 2x +x ·cos x D .f ′(x )=sin x 2x -x ·cos x 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e D .ln2 4.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2 5.图中由函数y =f (x )的图象与x 轴围成的阴影部分的面积,用定积分可表示为( ) A. ???-33 f (x )d x f (x )d x +??1-3f (x )d x C. ???-31f (x )d x D. ???-3 1f (x )d x -??13f (x )d x 6.如图是函数y =f (x )的导函数的图象,给出下面四个判断:

①f (x )在区间[-2,-1]上是增函数; ②x =-1是f (x )的极小值点; ③f (x )在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x =2是f (x )的极小值点. 其中,所有正确判断的序号是( ) A .①② B .②③ C .③④ D .①②③④ 7.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A .0≤a ≤21 B .a =0或a =7 C .a <0或a >21 D .a =0或a =21 8.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P 元,销售量为Q ,则销量Q (单位:件)与零售价P (单位:元)有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元 D .23 000元 9.函数f (x )=-x e x (a f (b ) D .f (a ),f (b )大小关系不能确定 10.函数f (x )=-x 3+x 2+x -2的零点个数及分布情况为( ) A .一个零点,在? ? ???-∞,-13内

导数与定积分单元测试

导数与定积分测试卷 一、 选择题(共10小题,每小题5分,共50分) 1.曲线2)(3 -+=x x x f 在点P 处的切线平行于直线14-=x y ,则点P 的坐标为( ) )0,1.(A )8,2.(B )0,1.(C 和)4,1(-- )8,2.(D 和)4,1(-- 2.若2)(0'-=x f ,则=--+→h h x f h x f h ) ()(000 lim ( ) 2.-A 4.-B 6.-C 8.-D 3.函数13)(3 +-=x x x f 在]0,3[-上的最大、最小值分别是( ) 1,1.-A 17,1.-B 17,3.-C 19,3.-D 4.若函数b bx x x f 33)(3 +-=在)1,0(内有极小值,则b 的取值范围是( ) 10.<b C 2 1.< b D 5.由曲线x x f = )(和3 )(x x g =所围成图形的面积可用定积分表示为( ) dx x dx x A ? ? + 1 3 1 . dx x dx x B ? ?- 1 1 03 . dx x dx x C ? ? - - 1 1 3 . dx x dx x D ? ? - 1 3 1 . 6.设))(()(),...,()(),()(,sin )('1'12'010N n x f x f x f x f x f x f x x f n n ∈====+,则=)(2011x f ( ) x A sin . x B sin .- x C cos . x D cos .- 7.设653 1)(2 3+++= x ax x x f 在区间]3,1[上为单调函数,则实数a 的取值范围为( ) ),5.[+∞- A ]3,.(--∞ B ),5[]3,.(+∞- ?--∞C ]5, 5.[- D 8.已知函数2 2 3 )(a bx ax x x f +++=在1=x 处有极值10,则b a +的值为( ) 07.或-A 16-.或B 0.C 7.-D 9.设)100)...(3)(2)(1()(----=x x x x x f ,则=)1(' f ( ) 99.-A ! 100.-B ! 100.C ! 0.D 10.由曲线1,2,===y x e y x 围成的区域的面积为( ) e e A -2 . 1.2 --e e B 3.2 -e C e D -3.

定积分单元测试题

定积分单元测试题 一、填空题 1、 dx x ? +4 1 1=___________。 2、广义积分43 x dx - +∞ =? 3、________1 1 02=+?dx x x 。 4、()________1202 =-?dx x 。 5、设 ()32 1 2-=? -x dt t f x ,则()=2f 。6、=+? 3 1 ln 1e x x dx 。 7、()=?? ????++++??-dx x x x x x π πcos 113sin 222 4 。8、x dt t x x ?→0 20cos lim =____________ 9、12 12|| 1x x dx x -+=+? 。 10、= -?dx x 201. 11、2 22sin 1cos x x dx xdx π π-+=+? 12、已知()2 cos ,x F x t dt =?则()F x '= 13、已知()2 x t x F x te dt -=?,则()F x '= 二、单项选择 1、若连续函数 ()x f 满足关系式()2ln 220+?? ? ??=?x dt t f x f ,则()x f 等于( )。 (A )2ln x e ; (B ) 2ln 2x e ; (C ) 2ln +x e ; (D ) 2ln 2+x e 。 2、设 )(x f 连续,则=-?x dt t x tf dx d 0 22)(( ) (A ))(2x xf ; (B ))(2x xf -; (C ))(22x xf ; (D ))(22x xf -。 3、设 )(x f 是连续函数,且?+=10 )(2)(dt t f x x f ,则)(x f =( ) (A )1-x ; (B )1+x ; (C)1+-x ; (D )1--x 。 4、设()()x a x F x f t dt x a = -?,其中()f x 为连续函数,则lim ()x a F x →=( ) (A )a (B ))(a af (C ))(a f (D )0 5、 =?dt e dx d b x t 2( ) (A)2x e (B)2x e - (C)22x b e e - (D)2 2x xe - 6、=-+?→x dt t x x cos 1)1ln(lim 2sin 0 ( ) (A)8 (B)4 (C)2 (D)1 7、反常积分收敛的是( )

高等数学单元测试6——定积分及应用

精品文档 高等数学单元测试6——定积分及应用 第一卷 基础练习 一、选择题(每小题3分,共30分) 1、 函数在上可积的必要条件是在上 A 有界 B 无界 C 单调 D 连续 2、 设()x f 在[]b a ,上可积,下列各式中不正确的是 A ()()dt t f dx x f b a b a ?? = B ()()dx x f dx x f a a b a ?? = C ()()dx x f dx x f a a b b ??= D ()()dt t f dx x f a b b a ??-= 3、下列积分中可以用牛顿—莱布尼兹公式计算的是 A dx x x ?+5 023 1 B dx x x ? --1 1 2 1 C dx x x ? -4 2 2 3) 5( D dx x x e e ?1ln 1 4、设 ()x x a dt t f 20 =?,则()x f 等于A x a 22 B a a x ln 2 C 122-x xa D a a x ln 22 5、积分上限函数 ()dt t f x a ?是 A 常数 B 函数()x f C ()x f 的一个原函数 D ()x f 的全体原函数 6、设()x f 为连续函数,则积分dt t t f t n n ?? ? ??+??? ? ?- ?11112等于 A 0 B 1 C n D n 1 7、=? 1 arccos x dx A ?0 2 πx dx B ?2 sin π dx x x C dx x x ?0 2 sin π D ?2 cos π dx x x 8、设()x f '在[]2,1上可积,且()11=f ,()12=f , ()12 1 -=?dx x f ,则()='?dx x f x 2 1 A 2 B 1 C 0 D -1 9、设函数()x f '在[]b a ,上连续,则曲线()x f y =与直线0,,===y b x a x 所围成的平面图形的面积等于 A ()dx x f b a ? B ()?b a dx x f C ()dx x f b a ? D {}()()b a a b f <<-'ξξ 10、广义积分 ?∞ -0 dx e kx 收敛,则k A 0>k B 0≥k C 0

第五章 定积分及其应用

第五章 定积分及其应用 定积分及其应用是微积分的主要内容之一,是微积分的精华,在《高等数学》中占有重要的地位 ,也是各类《高等数学》研究生入学考试的必考的重要内容之一。复习这部份内容,考生应着重掌握定积分的定义、性质及其计算方法,掌握“微元法”这一定积分应用的重要数学思想方法。 一、知识网络 定积分??? ???? ?? ? ???? ????????Γ?????-函数审敛法和计算 定义广义各分分步积分法换元积分法莱公式牛积分的计算可变上限的定积分定积分的性质定积分的定义、 定积分的应用?????????) (变力作功等其它弧长体积 面积 微元法 二、典型例题 例1 . 求极限 x x dt xt x x 2sin )sin(lim 2302 ?→。 [分析] 遇到极限中有可变上限有定积分,一般情况下可考虑应用洛必达法则,但由于现在 被积函数中含有变量x ,因此先应将x 从被积函数中分离出来,对此题可用变量代换;另外,在求极限的过程中如能恰当地应用等价无穷小代换,可简化求极限的过程。 [解] 对定积分作变换 xt u =,由于x 2sin 2 ?2 )2(x ,4 sin x ?4 x ,)0(→x ,因此再 利用洛必达法则有 原式=230 20 )2(sin 1lim 2 x x dx u x x x ? →=54060 2024sin 2lim 4sin lim 2x x x x du u x x x →→=? =12 1 12lim 440=→x x x 例2. 求极限 n n n n n n )2()2)(1(1lim ???++∞→. [分析] 利用定积分的定义求极限,是一种常见的考研题型,难点在于如何将n x 变型成和

高中数学选修2-2导数及其应用单元测试卷

章末检测 一、选择题 1.设f (x )为可导函数,且满足lim x → f (1)-f (1-2x ) 2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线 斜率为( ) A.2 B.-1 C.1 D.-2 答案 B 解析 lim x → f (1)-f (1-2x )2x =lim x →0 f (1-2x )-f (1) -2x =-1,即y ′|x =1=-1,则y =f (x )在点(1,f (1)) 处的切线斜率为-1. 2.函数y =x 4-2x 2+5的单调减区间为( ) A.(-∞,-1)和(0,1) B.(-1,0)和(1,+∞) C.(-1,1) D.(-∞,-1)和(1,+∞) 答案 A 解析 y ′=4x 3-4x =4x (x 2-1),令y ′<0得x 的范围为(-∞,-1)∪(0,1),故选A. 3.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向做直线运动,则由x =1运动到x =2时F (x )做的功为( ) A. 3 J B.23 3 J C.43 3 J D.2 3 J 答案 C 解析 由于F (x )与位移方向成30°角.如图:F 在位移方向上的分力F ′=F ·cos 30°,W =??1 2(5 -x 2 )·cos 30°d x =32??1 2(5-x 2)d x =32 ?? ??5x -13x 3??? 2 1 = 32×83=43 3 (J). 4.若f (x )=x 2+2??01f (x )d x ,则??0 1f (x )d x 等于( ) A.-1 B.-1 3

(完整word版)§定积分的应用习题与答案

第六章 定积分的应用 (A ) 1、求由下列各曲线所围成的图形的面积 1)2 2 1x y =与822=+y x (两部分都要计算) 2)x y 1 =与直线x y =及2=x 3)x e y =,x e y -=与直线1=x 4)θρcos 2a = 5)t a x 3 cos =,t a y 3 sin = 1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的 面积 2、求对数螺线θ ρae =()πθπ≤≤-及射线πθ=所围成的图形的面积

3、求由曲线x y sin =和它在2 π= x 处的切线以及直线π=x 所围成的图形的面积和它绕 x 轴旋转而成的旋转体的体积 4、由3 x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体 的体积 5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形 的立体体积 6、计算曲线()x y -=33 3 上对应于31≤≤x 的一段弧的长度 7、计算星形线t a x 3 cos =,t a y 3 sin =的全长 8、由实验知道,弹簧在拉伸过程中,需要的力→ F (单位:N )与伸长量S (单位:cm )

成正比,即:kS =→ F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功 9、一物体按规律3 ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0 =x 移到a x =时,克服介质阻力所作的功 10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功? 11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与 水面相齐,计算闸门的一侧所受的水压力 12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力 (B) 1、设由抛物线()022 >=p px y 与直线p y x 2 3 = + 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积

相关文档
最新文档