对并联混合有源滤波器的几点认识

对并联混合有源滤波器的几点认识
对并联混合有源滤波器的几点认识

对并联混合有源滤波器的几点认识

1、并联混合APF产生的缘由:在电力谐波综合治理技术的课程中,我们学习了关于谐波谐波抑制中常用的无源滤波和有源滤波技术,这些技术在谐波抑制中发挥着重要的作用,但是无源滤波器和有源滤波器也有自身的缺点。随着电力电子装置的大量使用,电力系统的谐波和不对称问题日益严重,由谐波引起的各种故障和事故也不断发生。因此,需要对电网谐波采取有效的抑制措施。目前,谐波抑制的一个重要趋势是采用有源电力滤波器( AcTIve PowerFilter,APF)。APF是一种可以动态地抑制谐波和补偿无功的电力电子装置,对大小和频率都变化的谐波和无功进行补偿,其应用可克服LC 滤波器等传统的谐波抑制和无功补偿方法的缺点。用于谐波治理的传统方式为并联无源LC滤波器。无源LC滤波器与负载并联接在电网母线上 ,选定 R ,L ,C 的参数 ,使滤波网络在一定的谐波信号频率处产生谐振。

◆无源滤波器的缺陷有:

灵活性差 ,一套 LC滤波器只能抑制某一次谐波 ,而谐波种类繁多 ,故一套LC滤波器的利用率较低。

体积大。

易与电网阻抗发生并联谐振 ,引起谐波注入 ,损坏设备。

◆有源滤波器的缺陷为:

单独使用的并联型有源滤波器可以通过不同的控制作用对谐波无功不平衡分量等进行动态补偿但由于直接与电网

相连只适合于低压系统的应用不宜于高压、大容量的谐波

补偿。

另外,目前纯有源滤波的成本高、功耗大,而且受到电力电子器件的容量制约,在目前的应用中具有一定的限制。

基于以上背景,无源和有源滤波器构成的混合型滤波器主要由无源滤波器滤除谐波电流,有源部分的作用是改善无源滤波器的性能,而且有源部分不直接承受电网基波电压,所以有源部分的容量小且适合高压系统的应用,所以HAPF应运而生。

2、APF工作原理

APF 系统的原理如图1 所示。ua是电压us中的a 相电压,负载为谐波源,产生谐波并消耗无功,Udc为APF 直流侧电容的电压,iL、is分别为负载侧、网侧的a 相待检测电流,ic为有源滤波器a相的补偿电流。

APF 检测补偿对象的电压和电流,计算出补放大,得出补偿电流,补偿电流与负载电流中要补偿的谐波电流抵消,最终得到期望的电源电流。

图1 并联型有源电力滤波器原理图

3、并联混合型APF 工作原理

单独使用的APF 由于容量小等原因,通常只应用在小容量非线性负载的场合,若在大容量场合应用则不太可行。

混合型APF 可以较好地解决单独使用APF存在的问题。在抑制谐波和补偿无功功率时,无源滤波器起主要作用,而有源滤波器主要

是改善无源滤波器的滤波特性,克服无源滤波器易受电网阻抗的影响等缺点。因此,有源滤波器可用相对低的容量应用于较大的大容量场合,相当于降低了有源滤波器的容量,提高了系统的性价比。并联混合型APF 如图2 所示,其具有一系列的优点,其中,有源滤波器的

容量约占补偿对象容量的2% ~ 5%。这与单独使用的并联型有源滤

波器相比,大量减少了它的容量。但这种并联混合型APF 中通常需

要一个高带宽的PWM 变流器作为有源滤波器的主电路,由此决定了

现有的混合型滤波器系统只适用于补偿中等功率以下的负载,一般为500 ~ 10 MW。对于功率大于10 MW的非线性负载,制作与其相对应的高宽带、大容量有源滤波器是困难的。因此,并联混合型APF 不

能用于抑制大功率非线性负载所产生的谐波。

图2 并联混合型APF 系统。

考虑到在实际应用中,大功率非线性负载在要求滤除谐波的同时,也要求混合型滤波系统具有无功补偿能力。但是在传统的并联混合型有源电力滤波系统中,大量的基波无功电流流入并联混合滤波系统的

有源部分,使有源滤波器的容量也相应较大。为进一步减少有源滤波器的容量,使并联混合APF 系统能够应用于大功率场合,采用了一种改进型的并联混合型APF 结构,如图3 所示。

图3 改进的混合型APF 系统。

图3 中APF 被控制为一个谐波电流源,La为阻抗值很小的附加电感。该改进型的并联混合型APF 与传统的并联混合型APF 相比,主要区别在于APF 被看作一个受控电流源。因此,基波无功电流被强迫流入附加电感La,APF 中只流过谐波电流。由于无源滤波器的存在,APF 不承受谐波电压,又由于La与无源滤波器相比基波阻抗很小,因此,APF 承受的电压也很低,从而APF 的容量也可做得很小。以上分析可知,改进型的并联混合型APF 可应用于较大容量的场合。另外,当APF 过电流或故障时,该系统可借助于快速熔断器,迅速脱离整个滤波系统,与此同时,无源滤波器和附加电感La组成的滤波系统还可正常工作,不至于对电网造成较大的冲击。这点在工程应用上非常重要,因此,这种改进型的并联混合型APF具有很强的实用性。

4、并联混合型APF 设计实现方法

图4并联型HAPF拓扑结构

单调谐PF滤波原理及特性

单调谐滤波器是指用于吸收单一次数谐波(如单独滤3、5、7次谐波)的滤波器。其物理本质是电工理论的LC串联谐振原理,即对h次谐波成分,当时,LC串联阻抗为0。

单调谐PF参数的设计

●电容的设计

由于电容器的费用占滤波回路的总投资的近60%所以电容器容量最小的设计方案一般就是投资费用最小的方案,所以单调谐PF先选取电容的容量。

按照电容器安装容量最小的原则,求得单调谐回路输出的无功功率为:

——加在n次谐波通道上的电网相电压有效值

——n次谐波通道流过的n次谐波电流有效值

——电网基波电流有效值

●电容的设计

在上式定义的无功功率条件下,电容器的安装容量将达到最小值。调谐回路的电容值可按下式选取:

——n次谐波通道的电容值

——n次谐波通道发出的基波无功功率

——基波角频率

——波器中电容器的增值系数,。

●电感的设计

确定了单调谐滤波通道中的电容器值后,就可以确定相应的电抗器值,调谐回路的电感值可按下式选取:

●电阻的设计

单调谐滤波器的品质因数Q一般取30~60范围之内,计算出根据品质因数Q值可以确定n次谐波通道的电阻值:

5、复合电流控制方法的仿真

图5并联混合APF仿真框图

复合控制是同时检测负载谐波电流和电网谐波电流的一种控制方

式。在这种控制方式中,指令电流信号主要来自负载电流,在它的作用下,可对负载中的谐波电流进行较好的补偿。而检测到的电网谐波电流的作用主要是抑制无源滤波器和电网阻抗之间的谐振。电源电流闭环不承担补偿谐波电流的主要任务,因此,放大倍数Ks不需要很大,这样可使系统有较好的稳定性。利用Matlab 对此进行仿真研究,系统框图如图5所示,仿真模型如图6 。

图6 仿真模型

6、对并联混合型有源滤波器的认识

并联型混合有源滤波作为一种新兴的滤波技术,相比于以前单一的无源和有源滤波技术有着不可比拟的优点,基于解决单一滤波方式的缺点和不足,混合滤波技术应运而生;在此基础上,并联混合滤波技术又很好的提高了混合滤波的效果,并且在提高滤波性能的同时有效的降低有源部分的容量,具有较高的使用价值。

以上只是我个人在电力谐波综合治理这门课中学到的只是结合

自己查阅相关资料的一些见解,电力谐波治理在合理利用电力资源,

降低电能损耗中一直占有重要地位,相信以后还会有更好的谐波治理方案和设备。

并联型混合有源滤波器的研究

并联混合型有源电力滤波器的研究随着电力电子装置的大量使用,电力系统的谐波和不对称问题日益严重,由谐波引起的各种故障和事故也不断发生。因此,需要对电网谐波采取有效的抑制措施。通常使用传统LC无源滤波器来控制电力系统中的谐波,但无源滤波器 有以下几个缺点:(1)电源及线路的阻抗影响补偿特性;(2)电源端的阻抗和无源滤波器会产生谐振,导致某些谐波放大;(3)只能补偿一定频率的谐波。电力有源滤波器可以减少上述缺点,但其初期投资运行费用较高,这主要由于它采用响应较快的PWM变流器。目前,谐波抑制的一个重要趋势是采用有源电力滤波器( Active PowerFilter,APF)。APF 是一种可以动态地抑制谐波和补偿无功的电力电子装置,对大小和频率都变化的谐波和无功进行补偿,其应用可克服LC 滤波器等传统的谐波抑制和无功补偿方法的缺点。 并联混合型有源电力滤波器(APF)由两大部分组成:指令电流运算电路和补偿电流发生电路。指令电流运算电路的核心是检测出补偿对象电流中的谐波电流分量,因此也可称为谐波电流检测电路。而补偿电流发生电路又包括电流跟踪电路、驱动电路和主电路三部分。并联混合型有源电力滤波器(APF)的基本原理是:由无源滤波器滤除负载中大部分的谐波,同时将负载和无源滤波器看成一个补偿对象,使用有源滤波器进行动态补偿,有源滤波器检测补偿对象的电压和电流。经指令电流运算电路计算得出指令电流的补偿信号,该信号经补偿电流发生电路放大,得出补偿电流。补偿电流与负载电流要补偿的谐波电流抵消,最终得到期望的电源电流。APF 系统的原理如图1 所示。ua是电压us中的a 相电压,负载为谐波源,产生谐波并消耗无功,Udc为APF 直流侧电容的电压,iL、is分别为负载侧、网侧的a 相待检测电流,ic为有源滤波器a相的补偿电流。 APF 检测补偿对象的电压和电流,计算出补放大,得出补偿电流,补偿电流与负载电流中要补偿的谐波电流抵消,最终得到期望的电源电流。

巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计 随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。 本篇论文重点研究了巴特沃斯滤波器的设计方法。巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。本文首先采用归一法推导出满足设计要求的巴特沃斯滤波器的传递函数,接着求出了各阶滤波器电容、电阻的参数。并采用级联法,将低滤波器连接成三阶滤波器以满足滤波要求,然后用Multisim电路仿真软件仿真出其电路图进行了验证。 关键词:有源;低通;滤波器;巴特沃斯;运算放大器 第一章引言 1.1 滤波器简介 滤波本质上是将原始信号所携带的信息从被噪声扭曲和污染的信号中提取出来的过程。滤波器是一种能使一定频率范围内的信号顺利通过,而使其他频率的信号受到较大的衰减的电路,主要用于滤除干扰信号。一般在微弱信号放大的同时附加滤波功能或在信号采样前使用滤波器。 在近现代的科技发展中,滤波器作为一种必不可少的组成成分,在仪器仪表、智能控制、计算机科学、通信技术、电子应用技术和现代信号处理等领域有着十分重要的作用。滤波器作为一门学科已经有了仅一百年的历史了,自从德国的Wagner和美国的Campbell在1915年提出了滤波器的概念至今,它经历了由简单到复杂,由分立器件到单片集成,由有源到无源,由模拟到数字的发展历程。

有源电力滤波器设计

1 引言 近年来,公用电网受到谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,谐波污染影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 滤波器在本质上是一种频率选择电路,通常用幅频响应和相位响应来表征一个滤波电路的特性。理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的相互位置不同,滤波器可分为低通、高通、带通、带阻、全通5类。有源滤波器采用有源器件需要使用电源,加上功耗较大且集成运放的带宽有限,因此目前有源滤波电路的工作频率难以做得很高,一般不能用于高频场合。但总的来讲有源滤波器在低频(低于1MHz)场合中使用有较无源滤波器更优的性能,因而目前在音频处理、工业测控等领域广泛应用。有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有以下几点突出的优点: (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

有源电力滤波器的应用及效果.

有源电力滤波器的应用 所在学院:信息科学与工程学院 专业班级: 学生姓名: 学生学号: 指导教师:

有源电力滤波器的应用 上学期我们学习了《电力电子技术》这门课,通过这门课的学习我了解到:以非线性负载为主产生的谐波会对电力系统形成很大的危害,而传统的电力电子装置本身就是产生谐波的主要污染源。要想抑制电力电子装置和其它谐波源造成的电力系统谐波,基本思路有两条:一是装设补偿装置,设法补偿其产生的谐波;而是对电力电子装置本身进行改进,使其不产生谐波,同时也不消耗无功功率,或者根据需要能对其功率因数进行控制,即采用高功率因数变流器。 装设LC 调谐滤波器是传统的补偿谐波的主要手段。LC 调谐滤波器虽然存在很多缺陷,但其结构简单,既可补偿谐波,又可补偿无功,一直被广泛应用与电力系统中谐波和无功功率补偿。目前的趋势是采用先进的电力电子装置进行谐波补偿,这就是有源电力滤波器(APF )。与LC 无源滤波器相比,有源滤波器具有明显的优越性能,能对变化的谐波进行迅速的动态跟踪补偿,而且补偿特性不受电网频率和阻抗的影响。有源电力滤波器的变流电路可以分为电压型和电流型。从与补偿对象的连接方式看,有源电力滤波器又可分为并联型和串联型。电压型和并联型在实际中应用较广。 本学期做了一个谐波的产生和抑制的实验,其中谐波是由三相桥式整流电路这一非线性负载产生的,在实验中采用了两种抑制谐波的方法,一种是并联无功补偿电容器和LC 滤波器,另一种是并联一个有源电力滤波器。目标是经过这两次滤波,使谐波电流的畸变率降到5%左右。 有源电力滤波器基本原理如下图1所示。设负载电流为l i ,谐波检测器从负载电流中检测出谐波电流h i ,令指令电流*c h i i =-,补偿电流控制算法控制逆变 器产生补偿电流*c c i i =,注入母线,抵消负载电流中的谐波,达到抑制谐波电流流向电源的目的。系统由四个主要部分组成有源滤波主电路、外围驱动板、谐波检测器 、DSP 器件。

APF有源电力滤波器

有源电力滤波器 有源电力滤波器(APF:Active power filter)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对不同大小和频率的谐波进行快速跟踪补偿,之所以称为有源,是相对于无源LC滤波器,只能被动吸收固定频率与大小的谐波而言,APF可以通过采样负载电流并进行各次谐波和无功的分离,控制并主动输出电流的大小、频率和相位,并且快速响应,抵销负载中相应电流,实现了动态跟踪补偿,而且可以既补谐波又补无功和不平衡。

1、概述 2、理论基础 3、工作原理 4、标准 5、三电平 ?技术优势 ?滤波器 ?基本应用 ?主要应用场合 ?其他 ?优势 6、性能说明 7、配件选型 1、概述 三相电路瞬时无功功率理论是APF发展的主要APF;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。 2、理论基础 有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!实际应用安全系数很低,国际普遍做法是以变压器升压,来保证可靠性,国家相关部

门也要求以变压器升压的形式和有源滤波器结合,治理高压谐波! 3、工作原理 Satons有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的 谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。 这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流

三相四线并联型有源电力滤波器的结构与工作原理

三相四线并联型有源电力滤波器的结构与工作原理 0 引言 并联有源电力滤波器是一种用于动态抑制谐波和补偿无功的新型电力电子装置,近年来,有源电力滤波器的理论研究和应用均取得了较大的成功。对其主电路(VSI)参数的设计也进行了许多探讨,但是,目前交流侧滤波电感还没有十分有效的设计方法,然而该电感对有源滤波器的补偿性能十分关键。本文通过分析有源电力滤波器的交流侧滤波电感对电流补偿性能的影响,在满足一定效率的条件下,探讨了该电感的优化设计方法,仿真和实验初步表明该方法是有效的。 1 三相四线并联型有源电力滤波器的结构与工作原理 图1为三相四线制并联型有源电力滤波器的结构。主电路采用电容中点式的电压型逆变器。电流跟踪控制方式采用滞环控制。 图1 三相四线制并联型有源滤波器的结构 以图2的单相控制为例,分析滞环控制PWM调制方式实现电流跟踪的原理。在该控制方式中,指令电流计算电路产生的指令信号ic*与实际的补偿电流信号ic进行比较,两者的偏差作为滞环比较器的输入,通过滞环比较器产生控制主电路的PWM的信号,此信号再通过死区和驱动控制电路,用于驱动相应桥臂的上、下两只功率器件,从而实现电流ic的控制。 图2 滞环控制PWM调制方式实现电流跟踪的原理图 以图3中A相半桥为例分析电路的工作过程。开关器件S1和S4组成A相的半桥变换器,电容C1和C2为储能元件。uc1和uc2为相应电容上的电压。为了能使半桥变换器正常跟踪指令电流,应使其电压uc1和uc2大于输入电压的峰值。 (a)ica>0,dica/dt>0(b)ica>0,dica/dt<0

(c)ica<0,dica/dt<0(d)ica<0,dica/dt>0 图3 电压型逆变器A相工作过程图 当电流ica>0时,若S1关断,S4导通,则电流流经S4使电容C2放电,如图3(a)所示,同时,由于uc2大于输入电压的峰值,故电流ica增大(dica/dt>0)。对应于图4中的t0~t1时间段。 当电流增大到ica*+δ时(其中ica*为指令电流,δ为滞环宽度),在如前所述的滞环控制方式下,使得电路状态转换到图3(b),即S4关断,电流流经S1的反并二极管给电容C1充电,同时电流ica下降(dica/dt<0)。相对应于图4中的t1~t2时间段。 图4 滞环控制PWM调制器的工作状态 同样的道理可以分析ica<0的情况。通过整个电路工作情况分析,得出在滞环PWM 调制电路的控制下,通过半桥变换器上下桥臂开关管的开通和关断,可使得其产生的电流在一个差带宽度为2δ的范围内跟踪指令电流的变化。 当有源滤波器的主电路采用电容中点式拓扑时,A,B,C三相的滞环控制脉冲是相对独立的。其他两相的工作情况与此相同。 2 滤波电感对补偿精度的影响 非线性负载为三相不控整流桥带电阻负载,非线性负载交流侧电流iLa及其基波分量如图5所示(以下单相分析均以A相为例)。指令电流和实际补偿电流如图6所示。当指令电流变化相对平缓时(如从π/2到5π/6段),电流跟踪效果好,此时,网侧电流波形较好。而当指令电流变化很快时(从π/6开始的一小段),电流跟踪误差很大;这样会造成补偿后网侧电流的尖刺。使网侧电流补偿精度较低。

【完整版毕业论文】巴特沃斯有源低通滤波器的设计

巴特沃斯有源低通滤波器的设计 摘要 随着社会科学技术的飞速发展,各种科技产品在人类社会中随处可见,极大的丰富了人们的日常生活。物联设备、可穿戴设备以及虚拟仪器产品在各种应用和消费场合变得极为普遍。就目前而言,在几乎所有的电子产品中,各种增益、带宽以及高性能的滤波器都发挥着至关重要的作用,例如可穿戴设备的语音信号输入系统中,运用高性能的低通滤波器进行语音信号的降噪、滤波、回声消除,来提高系统的音质和语音识别精准度等。 本论文通过对各种低通滤波器的通频带、增益和截止频率的分析,采用通频带最大扁平度技术(巴特沃斯技术)来设计实现四阶高性能低通滤波器,通过Multisum仿真软件,验证了设计的正确性。在这基础上,本文还对如何提高该滤波器的响应速度进行了研究,提出了一种有效的提高响应速度的方案,并通过仿真软件得以验证。这在低通滤波器的理论以及实际工程应用中,都具有非常重要的意义。 关键词:有源低通滤波器,巴特沃斯,运算放大器

Design of Butterworth Active Low Pass Filter ABSTRACT With the rapid development of social science and technology, various technological products can be seen everywhere in human society, which greatly enriches people's daily lives. IoT devices, wearable devices, and virtual instrument products have become extremely common in various applications and consumer occasions. For now, in almost all electronic products, various gains, bandwidths, and high-performance filters play a vital role. For example, in the voice signal input system of wearable devices, the use of high-performance low-pass The filter performs noise reduction, filtering, and echo cancellation of the speech signal to improve the sound quality of the system and the accuracy of speech recognition. In this paper, through the analysis of the passband, gain and cutoff frequency of various low-pass filters, the maximum flatness of the passband technology (Butterworth technology) is used to design and implement a fourth-order high-performance low-pass filter, through Multisum simulation software To verify the correctness of the design. On this basis, this paper also studies how to improve the response speed of the filter, and puts forward an effective scheme to improve the response speed, which is verified by simulation software. This is of great significance in the theory of low-pass filters and in practical engineering applications. KEYWORDS:active low-pass filter,butterworth,amplifier

有源电力滤波器品牌排行

有源电力滤波器(APF)品牌排行 当前,市场上生产有源电力滤波器的厂家很多,各个品牌参差不齐,且国家标准未正式出台,所以只能挑选出一些市场上一些主流的APF品牌,从质量、稳定性各方面介绍一下当前市场上主流有源电力滤波器品牌的市场情况: 合资主流品牌:霍尼韦尔、GE、诺基亚、ABB、施耐德、 传统的电气行业的几大合资品牌从稳定性、可靠性来说都依然是值得可靠信赖,但是技术参数比得上国内品牌,国内品牌因为竞争的缘故一味追求性能参数,产品稳定性大打折扣,合资品牌的价格都相对较高,一般市场标价达2000~4000元/A。传统的合资品牌西门子貌似还没有APF。 国产一线品牌:南京亚派麦克斯韦电气深圳盛弘上海思源赛博电气深圳英纳仕追日电气........数百家品牌 估计国内生产APF的厂家有上百家,以上品牌都是最近2年广告比较多的品牌,推广力度比较大而已。但是参差不齐。国产品牌的通病就是质量不稳定,国产品牌没有7年以上的应用案例,价格也不一定便宜,国产品牌的价格一般是合资的50%~100%。有源电力滤波器的核心器件比如IGBT、电容器、CPU等国内电子元件技术都不稳定,所以国内生产APF 的厂家大多依靠进口国外品牌的核心元器件,然后再在国内组装,所以成本总体也不低,主要是人工成本较低。另外国产有源电力滤波器的通病就是并联技术,IGBT并联技术还不过关。但是未来的趋势肯定是核心器件国产化后,国内APF厂家的价格也许才会真正降到很低。 另外,有源电力滤波器出来10年左右,市场上有部分打着国外欧美公司品牌(如意大利、美国)的旗号,游龙混杂,有些品牌名字看着大气,实际上是国内生产的,满足国内市场扬眉崇外的心理,所以要注意辨别。

有源低通滤波器设计

有源低通滤波器设计 ⒈设计一个截止频率fo为1000HZ的1阶有源低通滤波器(提示:集成运放使用 μА741、取电容C=0.01uf,其他元件参数自行考虑)。要求:①设计的电路、标明元 件参数;②在OrCAD/PSpice平台上完成上述设计及仿真,测试1阶电路对应的幅频 特性曲线。 ⒉设计一个截止频率fo为1000HZ的2阶有源低通滤波器(提示:集成运放使用 μА741、设计系数α=1.414,即Q=0.707、R1=R2=R,C1=C2=C,取电容C=0.01uf,其他 元件参数自行考虑)。要求:①设计的电路、标明元件参数;②在OrCAD/PSpice平台 上完成上述设计及仿真,测试2阶电路对应的幅频特性曲线。书写Pspice实践练习报 告(自行)。 (一)Pspice简介 Pspice是由SPICE(Simulation Program with Intergrated Circuit Emphasis)发展而来的用于微机系列的通用电路分析程序。Pspice软件是一个通用的电路分析程序,它可以仿真和计算电路的性能。由于该软件提供了丰富的元件库,使得各种常用元器件随手可得,在软件上我们可以搭接任何模拟和数字或者数模混合电路。该软件使用的编程语言简单易学,对电路的计算和仿真快速而准确,强大的图形后处理程序可以将电路中的各电量以图形的方式显示在计算机的屏幕上,就像一个多功能、多窗口的示波器一样。 PSPICE软件具有强大的电路图绘制功能、电路模拟仿真功能、图形后处理功能和元器件符号制作功能,以图形方式输入,自动进行电路检查,生成图表,模拟和计算电路。它的用途非常广泛,不仅可以用于电路分析和优化设计,还可用于电子线路、电路和信号与系统等课程的计算机辅助教学。与印制版设计软件配合使用,还可实现电子设计自动化。被公认是通用电路模拟程序中最优秀的软件,具有广阔的应用前景。这些特点使得PSPICE受到广大电子设计工作者、科研人员和高校师生的热烈欢迎,国内许多高校已将其列入电子类本科生和硕士生的辅修课程。 电路设计软件有很多,它们各有特色。如Protel和Tango,它对单层/双层电路板的原理图及PCB图的开发设计很适合,而对于布线复杂,元件较多的四层及六层板来说ORCAD 更有优势。但在电路系统仿真方面,PSPICE可以说独具特色,是其他软件无法比拟的,它是一个多功能的电路模拟试验平台,PSPICE软件由于收敛性好,适于做系统及电路级仿真,

串联和并联电力滤波器的基本原理

串联和并联电力滤波器的基本原理 谐波是交流系统中的概念,而纹波是针对直流系统来讲的,二者有区别,更有联系。交流滤波,是希望滤除工频(基波)分量以外的所有谐波分量,保证电源的正弦性。交流系统的电流畸变主要是由非线性负载引起的。而直流滤波,是希望滤除负载中直流分量以外的所有纹(谐)波分量,这些纹(谐)波分量主要是由直流电(压)源中的纹波电压分量在负载中引起的。直流系统中的纹波分量也是由各次谐波分量构成的。交流系统和直流系统中抑制谐波的目的是相同的:抑制不希望在电源或负载中出现的谐波分量。直流有源电力滤波器(DCAPF)与交流有源电力滤波器,都是采用主动的而不是被动的方法或手段去吸收或消除谐(纹)波。因而直流有源电力滤波器和交流有源电力滤波器的工作原理是相同或相近的。但是,由于作用的对象不同,直流有源电力滤波器也有自己的特点。与交流有源电力滤波器相似,按照其与直流负载的联结方式,直流有源电力滤波器也可分为串联直流有源电力滤波器和并联直流有源电力滤波器。串联直流有源电力滤波器的工作原理是:检测整流器经平波电抗器(无源滤波器)后的输出电压,通过低通滤波器将纹波电压分离出来,用此信号控制直流有源电力滤波器的输出电压,并使与的大小相等,相位相反,从而达到显著减小直流负载中纹波电流的目的。直流有源电力滤波器相当于电压控制电压源(VCVS)的逆变器。采用串联直流有源电力滤波器时,可以不必串联平波电抗器。并联直流有源电力滤波器的工作原理是:检测平波电抗器(无源滤波器)的输出电流Id+ih,通过低通

滤波器将纹波电流ih分离出来,用此信号控制直流有源电力滤波器的输出电流iah,使ih与iah的大小相等,相位相同,从而使直流负载上的纹波电流分流,达到减小直流负载中纹波电流的目的。直流有源电力滤波器相当于电流控制电流源(CCCS)的逆变器。也可以检测整流器经平波电抗器后的输出电压,通过低通滤波器将纹波电压分离出来,用此信号控制直流有源电力滤波器的输出电流iah,使直流负载上的纹波电流分流,同样可以达到降低直流负载中纹波电流的目的。虽然直流有源电力滤波器在理论上不能彻底消除负载端的纹波电流,但可以使其大幅度地衰减。这时,直流有源电力滤波器相当于电压控制电流源(VCCS)的逆变器。串联直流有源电力滤波器所抑制的是纹波电压,它通过全额负载电流。当负载电流较大时,直流有源电力滤波器必须采用多个器件并联运行,损耗也比较大,这是它的缺点。串联直流有源电力滤波器比较适合于对纹波电流要求低的电感量较小或纯阻性的直流负载。并联直流有源电力滤波器通过使谐波源产生的谐波电流分流达到抑制直流负载纹波的目的,它承受全额负载电压。而在稳定/脉冲直流电源中,这个电压不会太高,器件完全能够承受。当纹波电流比较低时,用较小的纹波电流来控制直流有源电力滤波器比较困难,可采用检测纹波电压来控制直流有源电力滤波器,使纹波电流分流。并联直流有源电力滤波器比较适合于电感量较大直流负载。

并联型有源电力滤波器的Matlab仿真

并联型有源电力滤波器的Matlab仿真 摘要:并联混合型有源电力滤波器能够很好地实现谐波抑制和无功补偿。给出了有源电力滤波器系统结构,建立了数学模型, 还给出了主电路直流侧电容电压值和交流侧电感值的选取方法,利用Matlab\simulink\PsB构建了仿真模型,得到了仿真结果。 关键词:有源电力滤波器;直流侧电容电压;交流测电感:Matlab/simulink Abstract :Shunt hybrid active power filter can commendably achieve hannonic suppression and reactive power compensation.In this paper,it shows the APF’s architecture and sets up amathematical model.And the way ofchoosing the value ofthe main circuit’s voltage ripple of DC side capacitor and the AC side inductance is proposed.MA TLAB\Simulink\PSB is used to build simulation model and then get the simulation results. Key words:APF;V oltage of DC side capacitor;AC side inductance;Matlab/Simulink 引言: 在谐波含量较高的配电网中,对无功功率补偿有着严格的要求。目前电力系统中无功补偿大都是采用机械开关控制的电容器投切,谐波补偿大多采用无源滤波装置,负序治理的工作尚未大范围开展。另外,无功补偿、负序电流补偿、谐波抑制是分别单独地进行的。由于不是按统一的数学模型综合地进行治理,常出现顾此失彼的情况,且响应速度慢、经济性差、安装维护工作量大,妨碍了电网污染治理工作的顺利进行。 1.有源滤波器的发展历史 有源滤波器的思想最早出现于1969年B.M.Bird和J.F.Marsh的论文中。文中描述了通过向交流电源注入三次谐波电流以减少电源中的谐波,改善电源电流波形的新方法。文中所述的方法认为是有源滤波器思想的诞生。1971年日本的H.Sasaki和T.Machida完整描述了有源电力滤波器的基本原理。1976年美国西屋电气公司的L.Gyugyi和E.C.Strycula提出了采用脉冲宽度调制控制的有源电力滤波器,确定了主电路的基本拓扑结构和控制方法,从原理上阐明了有源电力滤波器是一理想的谐波电流发生器,并讨论了实现方法和相应的控制原理,奠定了有源电力滤波器的基础。然而,在20世纪70年代由于缺少大功率可关断器件,有源电力滤波器除了少数的实验室研究外,几乎没有任何进展。进入20世纪80年代以来,新型半导体器件的出现,PWM技术的发展,尤其是1983年日本的H.Akagi等人提出了“三相电路瞬时无功功率理论”,以该理论为基础的谐波和无功电流检测方法在三相有源电力滤波器中得到了成功的应用,极大促进了有源电力滤波器的发展。 与无源滤波器相比,有源滤波器是一种主动型的补偿装置,具有较好的动态性能。有源电力滤波器是近年来电力电子领域的热门话题。目前,有源滤波技术已在日本、美国等少数工业发达国家得到应用,有工业装置投入运行,其装置容量最高可达60MV.A;国内对有源电力滤波器的研究尚处于起步阶段。 2、APF的基本工作原理 有源电力滤波器是一种用于动态抑制谐波、补偿无功的新型电力电子装置。它能对大小

有源滤波器的设计

课程设计报告 题目:有源滤波器的设计 院(系):南湖学院机电系 专业:电子信息工程 学生姓名:陈知 欧阳维俊 学号:24122201272 24122201254 指导教师:陈松 2014年4月22 日

目录 1设计任务 (2) 2 设计要求 (2) 3设计说明 (2) 4设计原理 (2) 5 制板及调试 (5) 5.1 DXP注意事项 (5) 5.2 制作pcb板的流程 (5) 5.3调试 (6) 6课程设计总结 (7) 附录 (9)

一、设计任务 1、设计一滤波; 2、已知某一信号含有两种成分:1000Hz、0.5V和10000Hz、5V两种正弦波信号由滤波器设计指标计算电路元件参数; 3、设计滤波器有效分离两种信号。 二、设计要求 1、设计1000Hz、0.5V和10000Hz、5V两个信号源; 2、设计一加法器,将产生的两个信号相加; 3、两信号源的误差不超过1%; 4、加法器输入端接地时,其输出噪声小于10mV; 5、最终分离的信号的幅度与原信号幅度之差不大于100mV。 三、设计说明 1、放大器可选用LM324、NE553 2、TL062\TL082等; 2、注意预留测试端子。 四、设计原理 有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。从功能来讲有源滤波器分为:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BEF)、全通滤波器(APF)。其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带

有源电力滤波器的要求及应用

有源电力滤波器通过电流互感器检测负载电流,并通过内部DSP计算,提取出负载电流中的谐波成分,然后通过PWM信号发送给内部IGBT,控制逆变器产生一个和负载谐波电流大小相等,方向相反的谐波电流注入到电网中,达到滤波的目的。 有源电力滤波器是现代化工业的主要副产品之一,随着工业现代化程度提高,谐波的问题日益严重。这主要是现代化工业的用电方式发生了巨大的变化。传统工业的主要电力负荷是电动机和电阻加热设备,这些设备是线性负载,不会产生谐波电流。而现代化工业的主要电力负荷是电流变换器,包括变频器、中频炉、直流电机驱动器等,这些负荷都是非线性负载,工作时产生严重的谐波。 另一方面,大部分配电系统,包括变压器、开关柜、继电保护器、无功补偿柜等,都是按照线性负荷设计的。当实际负荷为非线性负荷时,对配电系统造成严重的危害,轻则导致系统过热、不稳定,重则损坏配电设备。 解决这个问题的最好方法就是在非线性设备的电源输入端安装有源电力滤波器,将非线性负荷转变为线性负荷,谐波导致的各种问题便迎刃而解。这种安装在设备的电源输入端的谐波滤波器就是设备级谐波滤波器。 有源电力滤波器的特殊要求 设备级有源电力滤波器与母线级谐波滤波器有不同的要求。设备级有源电力滤波器与所配的设备一同构成一个完整的系统,谐波滤波器的作用是保证这个系统的谐波电流发射满足特定的标准,例如,GB17625标准。因此,设备级有源电力滤波器要满足一下四个方面的要求: 1)不与系统发生不良作用:配装了谐波滤波器的设备可能在任何系统中使用,而任何情况下都不允许与系统之间发生不良的相互作用,例如与系统发生谐振,放大谐波电流。 2)不会导致超前的功率因数:设备配装了滤波器,功率因数要达到0.98以上,不允许出现过大的感性无功功率和容性无功功率; 3)滤波效果确定:滤波器与特定设备组合起来后,谐波电流发射必须是确定的,与系统的参数无关,这样才能确保设备安装了滤波器后,满足特定的要求;

RC有源低通滤波器

模拟电子技术课程设计报告 课程名称模拟电子技术基础课程设计设计题目RC有源低通滤波器 所学专业名称自动化 班级105班 学号2010210441 学生姓名梅连新 指导教师赵俊梅 2011年12月31 日

通滤波器 1.设计指标及要求 二阶低通,带外衰减速率大于-30dB/10倍频,f H3dB=1kHz,通带增益>=2。2.设计方案 ⑴二阶有源低通滤波电路工作原理:根据电容的通高频阻低频的特点和运放的“虚短”和“虚断”,可以用它们来组成一个带有反馈网络的低通滤波电路!二阶有源低通滤波电路由两节RC滤波电路和同相比例放大电路组成,其特点是输入阻抗高,输出阻抗低。电路原理图由图1所示。

(2)主要参数设定 参考《电子线路设计 实验 测试》第二版,华中科技大学出版社,147-148 页二阶低通滤波器设计表(表5.6.2)。表1是表5.6.2的一部分,主要用来设计参数的值: 表1 电路原器件值 (3)设计步骤 ① 根据设计要求,二阶有源低通滤波电路的电路原理图如图2-1; ② 设计电路参数值,由f H3dB =1kHz 得,取C=0.02uF,对应参数K=5; ③ 从设计表2-1得到Av=2时电容C1=C2=0.02uF,K=1时电阻R1=1.126k Ω,R2=2.250K Ω,R3=R4=6.752K Ω。 ④ 将上述电阻值乘以参数k=5,得:R1=5.63K Ω,R2=11.25K Ω,R3=R4=33.76K Ω。 ⑤ 试验调整、测量滤波器的性能参数及幅频特性。 首先输入信号V i =100mV ,观测滤波器的止频率f H 及电压放大倍数A V ,测得f H =1.028KHz ,A V =2.06V ,滤波器的衰减速率为-38.23dB/10倍频。基本满足设计指标的要求。由于△R/R 、△C/C 对w c 的影响较大,所以实验参数与设计表中的关系式之间存较大的误差。 (4)所涉及的公式 ①这个电路的电压增益就是低通滤波器的通带电压增益,即:A0=A VF=1+R3/R4 ②电路的传递函数: 2 )()3(1)()()(sCR sCR Avf Avf s Vi s Vo s A +-+= = ③对于二阶低通滤波器有Q=0.707,截止频率f H ,选定的电容C 和K 值满足关系式: K=100/Cf H ○4根据以上公式可求得理论值:V Ao 276 .3376 .331=+=

并联型有源电力滤波器(APF)原理简介及仿真验证

并联型有源电力滤波器(APF)原理简介及仿真验证 概述: 有源电力滤波器(APF)是一种用于动态谐波抑制的新型电力电子装置,它能够对不同大小和频率的谐波进行快速跟踪补偿,之所以称为有源,是相对于无源滤波器(L、LC等)只能被动吸收固定频率与大小的谐波而言。APF 可以通过采样负载电流进行各次谐波的分离,控制输出电流的幅值、频率和相位,并且快速响应,抵消系统中的相应谐波电流,从而实现动态谐波治理。 APF的控制原理为采样负载电流(此电流包含基波与谐波),将此电流与锁相环输出的相位信号一起经过坐标变换后生成负载电流的直流分量,直流分量经过低通滤波器将谐波分量滤除成为基波信号,基波信号再与负载电流相减得到真正的谐波信号,再通过电流内环使APF的输出电流跟踪谐波信号,同时通过电压外环使直流侧电压稳定在给定值,进而生成APF所需要注入的谐波电流,该谐波电流与谐波源的电流相互抵消,从而保证电网侧的电流为纯净的基波电流信号,进而完成滤波任务。 正文: 1.电力系统中的谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶

级数分解,其余大于基波频率的电流产生的电量。电力系统中不存在绝对纯净的电流,一般都是基波+谐波,只是谐波的含量不同而已。 2.谐波治理装置一般包含无源滤波器与有源滤波器。无源滤波器指由R,L,C等无源元器件组成的滤波装置,这些滤波装置的优点在于简单易用,缺点在于效果一般,只能用于特定场合,有些无源装置甚至只能针对某一特定电站。有源滤波器一般指并联型有源电力滤波器(APF),这是一种近年来兴起的滤波装置,具备很多优点,例如快速,稳定,可适时补偿。其缺点也是显著的,例如电力电子器件的有限耐压等级与可承受电流等级低导致其容量无法满足大电站需求,另外成本也是制约其发展的一个瓶颈。 3.有源电力滤波器的原理:有源电力滤波器(APF)是一种用于动态抑制谐波的新型电力电子装置,它能对大小和频率都变化的谐波进行抑制,可以克服LC滤波器等传统的谐波抑制设备不能灵活调节的缺点。 基本原理:

模拟低通滤波器的设计

1 课程设计目的 1.掌握有源滤波器和无源滤波器设计方法和过程。 2.要求设计一个有源二阶的低通滤波器,其设计指标为:最高截止频率为2KHz ,通带电压放大倍数为2,在频率为10KHz 时,幅度衰减大于30dB 。 3.熟练运用仿真软件(workbench 或multisim )设计和仿真电路。 4.对其设计电路进行仿真并利用相应元件搭建电路。 5.结合现有仪器仪表进行系统调试。 6.掌握理论联系实践的方法。 2 课程设计实施 2.1 设计任务及要求 要求设计一个有源二阶的低通滤波器,其设计指标为:最高截止频率为2KHz ,通带电压放大倍数为2,在频率为10KHz 时,幅度衰减大于30dB 。 2.2 滤波器的设计原理及元器件的选择 2.2.1 滤波器介绍 滤波器是一种能使有用信号通过,滤除信号中的无用频率,即抑制无用信号的电子装置。有源滤波器实际上是一种具有特定频率响应的放大器。 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零,但实际滤波器不能达到理想要求。为了寻找最佳的近似理想特性,一般主要考虑滤波器的幅频响应,而不考虑相频响应,一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。 滤波器的阶数越高,幅频特性衰减的速率越快,但RC 网络节数越多,元件参数计算就会越繁琐,电路的调试越困难,任何高阶滤波器都可由一阶和二阶滤波器级联而成,而对于n 为偶数的高阶滤波器,可以由 2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1 n 节二阶滤波器和一节一阶滤波器级联而成,因此一阶滤波器和二阶滤波器是高阶滤波器的基础。 2.2.2 有源滤波器的设计 有源滤波器的设计,就是根据所给定的指标要求,确定滤波器的阶数n ,选择具体的电路形式,算出电路中各元件的具体数值,安装电路和调试,使设计的滤波器满足指标要求,具体步骤如下: (1)根据阻带衰减速率要求,确定滤波器的阶数n 。 (2)选择具体的电路形式。

有源电力滤波器的基本原理和分类

有源电力滤波器的基本原理和分类 1.有源电力滤波器的基本原理 有源电力滤波器系统主要由两大部分组成,即指令电流检测电路和补偿电流发生电路。 图1 有源滤波器示意图 指令电流检测电路的功能主要是从负载电流中分离出谐波电流分量和基波无功电流,然后将其反极性作用后发生补偿电流的指令信号。电流跟踪控制电路的功能是根据主电路产生的补偿电流,计算出主电路各开关器件的触发脉冲,此脉冲经驱动电路后作用于主电路。这样电源电流中只含有基波的有功分量,从而达到消除谐波与进行无功补偿的目的。根据同样的原理,电力有源滤波器还能对不对称三相电路的负序电流分量进行补偿。 有源电力滤波器的主电路一般由PWM逆变器构成。根据逆变器直流侧储能元件的不同,可分为电压型有源滤波器(储能元件为电容)和电流型有源滤波器(储能元件为电感)。电压型有源滤波器在工作时需对直流侧电容电压控制,使直流侧电压维持不变,因而逆变器交流侧输出为PWM电压波。而电流型有源滤波器在工作时需对直流侧电感电流进行控制,使直流侧电流维持不变,因而逆变器交流侧输出为PWM电流波。电压型有源滤波器的优点是损耗较少,效率高,是目前国外绝大多数有源滤波器采用的主电路结构。电流型有源滤波器由于电流侧电感上始终有电流流过,该电流在电感阻上将产生较大损耗,所以目前较少采用。 图2 电压型有源滤波器

图3 电流型有源滤波器 2.有源电力滤波器的分类 按电路拓朴结构分类,电力有源滤波器可分为并联型、串联型、串-并联型和混合型。 图4 并联型有源滤波器 图4所示为并联型有源滤波器的基本结构。它主要适用于电流源型非线性负载的谐波电流抵消、无功补偿以及平衡三相系统中的不平衡电流等。目前并联型有源滤波器在技术上已较成熟,它也是当前应用最为广泛的一种有源滤波器拓补结构。 图5 串联型有源滤波器 图5所示为串联型有源滤波器的基本结构。它通过一个匹配变压器将有源滤波器串联于电源和负载之间,以消除电压谐波,平衡或调整负载的端电压。与并联型有源滤波器相比,串联型有源滤波器损耗较大,且各种保护电路也较复杂,因此,很少研究单独使用的串联型有源滤波器,而大多数将它作为混合型有源滤波器的一部分予以研究。 图6 混合型有源滤波器 图6所示为混合型有源滤波器的基本结构。它是在串联型有源滤波器的基础上使用一些

相关文档
最新文档