带通滤波器

带通滤波器
带通滤波器

基于ADS软件的射频带通滤波器设计与仿真

摘要

微波滤波器在微波中继通信、卫星通信、雷达技术、电子对抗及微波测量仪器中都有广泛的应用。无论是发射机还是接收机,都需要选择特定频率的信号进行处理,滤除其他频率的干扰信号,这就需要使用滤波电路来分离有用信号和干扰信号。因此,高性能的滤波器对设计一个好的射频通信系统具有重要意义。近年来, 微波电路计算机辅助设计软件的应用越来越广泛, Agilent 公司的高级设计系统(Advanced DesignSystem———ADS)软件就是其中的佼佼者, 它也是国内各大学和研究所在微波电路和通信系统仿真方面使用最多的软件之一。本文借助ADS仿真软件,设计出了一种边缘耦合的平行耦合线带通滤波器,节省了设计时间, 提高了设计精度和设计效率。

关键字:ADS软件带通滤波器平行耦合微带线

Microwave filter have a wide range of applications in microwave relay communications, satellite communications, radar technology, electronic warfare, and microwave measurement instruments .Both the transmitter and receiver need select a specific frequency signal processing, filter out other frequencies of the interference signals, which need to use the filter circuit to separate the useful signal and interference signals. Therefore, high-performance RF filter design is very important in a good communications system. In recent years, microwave circuit computer-aided design software, is more and more widely, Agilent's Advanced Design System (Advanced DesignSystem --- ADS) software is one of the best, it is domestic universities and research institutes in the microwave circuits and communications system simulation. With the helps of ADS simulation software, designed a parallel coupled line edge coupled bandpass filter saves design time and improves the design precision and design efficiency.

Keywords:ADS bandpass filter Parallel coupled microstrip

滤波器的基础是谐振电路,它是一个二端口网络,对通带内的频率信号呈现匹配传输,对阻带频率信号失配而进行发射衰减,从而实现信号频谱过滤功能。微波带通滤波器在无线通信系统中起着至关重要的作用,尤其是在接收机前端。滤波器性能的优劣直接影响到整个接收机性能的好坏,它不仅起到频带和信道选择的作用,而且还能滤除谐波,抑制杂散。平行耦合微带线滤波器是一种分布参数滤波器,它是由微带线或耦合微带线组成,其具有重量轻、结构紧凑、价格低、可靠性高、性能稳定等优点,因此在微波集成电路中,它是一种被广为应用的带通滤波器。

带通滤波器的设计通常先把带通滤波器频率取归一化,参考频率一般取带通滤波器的频带宽度,从而寻找相应的低通模型设计出符合设计参数要求的低通滤波器,再进行频率和元件变换得到相应的带通滤波器。

在以往设计各种滤波器时,往往需要根据大量复杂的经验公式计算及查表来确定滤波器的各级参数,这样的方法不但复杂繁琐,而且所设计滤波器往往性能指标难以达到要求。本文将先进的微波电路仿真软件ADS2008与传统的设计方法相结合设计一个平行耦合微带线滤波器。

本文主要应用上述理论设计一个切比雪夫滤波器,其设计参数为:中心频率f0=6Ghz,相对带宽为5%,带内波纹参数0.5dB,在(6±1Ghz)的最小抑制度为45dB,微带线特征阻抗为50欧。设计中运用切比雪夫滤波器列线图结合归一化参数确定滤波器的阶数和元器件值,并根据奇偶模特征阻抗计算公式确定出微带线的几何尺寸,最后利用ADS软件进行仿真验证寻找优化方法,达成对射频带通滤波器的最佳设计。

第一章带通滤波器的设计方法与参数

设计带通滤波器的方法有很多种,但最为产检的是低通原型滤波器综合法和数值法,这两种方法与设计师多种可能解决方案之间的抉择紧密关联。计算机时代以前,传统设计方法为低通原型滤波器法,,尽管这种方法存在欠缺却一直很成功并且始终是绝大多数滤波器设计的基础。

通过低通滤波器综合进行滤波器设计主要包括以下步骤:

1)设计具有预期带通特性的原型低通滤波器;

2)根据指定中心频率和边缘频率特性将低通滤波器转化为带通滤波器;

3)计算出实际元件的参数值,并且用分布元件实现网络。【1】

传统方法设计滤波器时有许多现有的经验或参数表格、图形可供借鉴,大大的减少了设计过程中的运算量。这些表格、图形包括有滤波器列线图(如图一)、滤波器低通原型元件值表等。这些表格和图形的存在大大简化了滤波器设计的工作量。同时,这些经验参数经过数代工程师的修正和积累具有较高的可靠性。传统滤波器模型已经嵌入到许多工程软件当中,例如在MATLAB中,对相应的带通滤波器参数可以直接设计参数,十分方便。

本文中滤波器采用的是切比雪夫滤波器设计模型,相对与巴特沃兹滤波器,切比雪夫滤波器具有的较窄的过渡带,但这是以牺牲滤波器通带和阻带的波纹性换来的。

切比雪夫带通滤波器主要的技术指标有:

f:2.5GHz;

1)中心频率

2)带宽:需要通过频谱的宽度,50MHz

3)带内衰减: 小于10dB;

4)带内波动: 小于0.01dB;

5)带内输入输出端口反射系数: 小于- 15dB;

6)阻带耗损: 5GHz 以下及7GHz 以上, 衰减大于25dB。【2】

第二章 设计方法与步骤

一、将带通原型参数变换为低通原型参数;

由低通原型滤波器变换为带通滤波器的公式为:0010''f f w f w BW f f ??=-????

其中0f =

为带通滤波器中心频率,h f 、l f 分别为带通滤波器的上、下边界频率。BW 为滤波器的带宽BW=h f -l f 。

在本设计中0f =6Ghz ,f =7Ghz,带宽BW=0.3Ghz ,带入到0010''f f w f w BW f f ??=-????中得到谐振器数目为6.19。[3]微波固态电路设计

二、运用列线图确定滤波器的阶数

切比雪夫低通滤波器列线图是依据插入损耗、波纹、谐振器数目等设计参数的连线图,其图例如下图所示:

通过滤波器列线图依据插入损耗、波纹参数、谐振器数目可以确定滤波器的阶数为3阶。

三、依据切比雪夫低通滤波器原型的归一化元件值可得:波纹为0.5dB 的3阶低通滤波器元件值依次为:g0=1.0、g1=1.5963、g2=1.0967、g3=1.5963、g4=1.0。

四、去归一化和元件值转换及集总参数模型的仿真;

对于低通原型中串联电感和并联电容进行频率转换后有如下结果: 低通原型中电感转化为电感与电容的串联,串联转化值为:

02k k Z L g BW π=、2002k k BW C g Z πω=(串联调谐元件)

低通原型中电容转化为电感与电容的并联,并联转化值为:

0202k k BWZ L g πω=、0

2k k g C BWZ π=(并联调谐元件) 其中带入低通g0—g4的值到上式中得到:

L1=L3=0.0415nH

C1=C3=16.94pF

L2=29.09nH

C2=0.0242pF (以上结果0Z =50Ω)

转换后电路模型为:

转换后的集总电路模型

设置仿真控件:仿真频率范围为4~8Ghz ,步长20Khz ,点击工具栏上的仿真按钮得到集总参数设计的带通滤波器仿真图。效果如下图示:

集总电路仿真效果

图中显示,在5Ghz 和8Ghz 两个频点,衰减分别为57.74dB 和50.21dB ,中心频率为6Ghz ,波纹参数约为0.4dB 。集总模型理论上完全符合设计的要求。

五、分布参数模型的分析设计与电路几何尺寸的确定;

使用归一化设计参数g1-g4和归一化带宽BW 可以得到通带滤波器的设计参数

,101i i J Z +=

,101n n BW J Z π+=

由上式的通带电路设计参数可以得到奇模和偶模特征阻抗,其值为:

()2,100,10,1|1O i i i i i i Z Z Z J Z J +++??=-+??

()2,100,10,1|1E i i i i i i Z Z Z J Z J +++??=++??

式中0Z 为特征阻抗,取值为50Ω,

将g0=1.0、g1=1.5963、g2=1.0967、g3=1.5963、g4=1.0带入上述式中依次得到: 0,1J =0.0108、1,2J =0.0071、2,3J =0.0071、3,4J =0.0108

解出特征阻抗为:

奇模:0,1|O Z =37.85、1,2|O Z =38.60、2,3|O Z =38.60、3,4|O Z =37.85

偶模:0,1|E Z =91.58、1,2|E Z =74.13、2,3|E Z =74.13、3,4|E Z =91.58

六、利用ADS 软件设计带通滤波器电路板

微带线的集合尺寸可以查找耦合微带线特征阻抗图求得,但查找精度偏低,不利于电路图的实现设计。

带通带阻数字滤波器

以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半%即,f1,f3,fs1,fsh,的值小于Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs);

[bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h)); figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100; ff2=400; ff3=700; x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t); figure; subplot(211);plot(t,x); subplot(212);hua_fft(x,fs,1); % y=filter(bz1,az1,x); y=bandp(x,300,500,200,600,0.1,30,fs); figure; subplot(211);plot(t,y); subplot(212);hua_fft(y,fs,1); %调用到的hua_fft()函数代码如下 function hua_fft(y,fs,style,varargin) %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

基于MATLAB的IIR数字带通滤波器设计

1 绪论 (1) 1.1 数字滤波器的优点 (2) 1.2 数字滤波器的发展概况 (3) 1.3 开发工具 (4) 1.3.1 MATLAB软件简介 (4) 1.3.2 MATLAB特点 (5) 2 数字滤波器理论研究 (6) 2.1 滤波器的设计 (6) 2.2 数字滤波器的定义 (7) 2.3 滤波器的设计步骤 (8) 2.4 数字滤波器的类型 (8) 2.5 滤波器的选择 (9) 2.5.1 FIR和IIR数字滤波器的比较 (9) 2.5.2 FIR或IIR滤波器的选取原则 (10) 2.6 数字滤波器的实现方法 (10) 3 IIR滤波器的设计 (11) 3.1 数字滤波器 (11) 3.2 IIR数字滤波器设计方法 (12) 3.2.1用脉冲相应不变法设计IIR数字滤波器 (13) 3.2.2 用双线性变换法设计IIR数字滤波器 (15) 4 IIR数字带通滤波器设计过程 (18) 4.1 设计步骤: (18) 4.2 程序流程框图: (19) 4.3 MATLAB程序: (19) 结论 (21) 参考文献 (22) 致谢 (23)

基于MATLAB的IIR数字带通滤波器设计 1 绪论 凡是有能力进行信号处理的装置都可以称为滤波器。在近代电信设备和各类控制系统中,滤波器应用极为广泛;在所有的电子部件中,使用最多,技术最为复杂的要算滤波器了。滤波器的优劣直接决定产品的优劣,所以,对滤波器的研究和生产历来为各国所重视。 1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。20世纪50年代无源滤波器日趋成熟。自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展,到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。当然,对滤波器本身的研究仍在不断进行。 我国广泛使用滤波器是50年代后期的事,当时主要用于话路滤波和报路滤波。经过半个世纪的发展,我国滤波器在研制、生产和应用等方面已纳入国际发展步伐,但由于缺少专门研制机构,集成工艺和材料工业跟不上来,使得我国许多新型滤波器的研制应用与国际发展有一段距离。 目前数字滤波器的设计有许多现成的高级语言设计程序,但他们都存在设计效率较低,不具有可视图形,不便于修改参数等缺点,而Matlab为数字滤波的研究和应用提供了一个直观、高效、便捷的利器。他以矩阵运算为基础,把计算、可视化、程序设计融合到了一个交互式的工作环境中。尤其是Matlab工具箱使各个领域的研究人员可以直观方便地进行科学研究与工程应用。其中的信号处理工具箱、图像处理工具箱、小波工具箱等更是为数字滤波研究的蓬勃发展提供了可能。 1

matlab程序之——滤波器(带通-带阻)教学内容

m a t l a b程序之——滤波器(带通-带阻)

matlab程序之——滤波器(带通,带阻) 以下两个滤波器都是切比雪夫I型数字滤波器,不是巴特沃尔滤波器,请使用者注意! 1.带通滤波器 function y=bandp(x,f1,f3,fsl,fsh,rp,rs,Fs) %带通滤波 %使用注意事项:通带或阻带的截止频率与采样率的选取范围是不能超过采样率的一半 %即,f1,f3,fs1,fsh,的值小于 Fs/2 %x:需要带通滤波的序列 % f 1:通带左边界 % f 3:通带右边界 % fs1:衰减截止左边界 % fsh:衰变截止右边界 %rp:边带区衰减DB数设置 %rs:截止区衰减DB数设置 %FS:序列x的采样频率 % f1=300;f3=500;%通带截止频率上下限 % fsl=200;fsh=600;%阻带截止频率上下限 % rp=0.1;rs=30;%通带边衰减DB值和阻带边衰减DB值 % Fs=2000;%采样率 % wp1=2*pi*f1/Fs; wp3=2*pi*f3/Fs; wsl=2*pi*fsl/Fs; wsh=2*pi*fsh/Fs; wp=[wp1 wp3]; ws=[wsl wsh]; % % 设计切比雪夫滤波器; [n,wn]=cheb1ord(ws/pi,wp/pi,rp,rs); [bz1,az1]=cheby1(n,rp,wp/pi); %查看设计滤波器的曲线 [h,w]=freqz(bz1,az1,256,Fs); h=20*log10(abs(h));

figure;plot(w,h);title('所设计滤波器的通带曲线');grid on; y=filter(bz1,az1,x); end 带通滤波器使用例子 %-------------- %带通滤波器测试程序 fs=2000; t=(1:fs)/fs; ff1=100; ff2=400; ff3=700; x=sin(2*pi*ff1*t)+sin(2*pi*ff2*t)+sin(2*pi*ff3*t); figure; subplot(211);plot(t,x); subplot(212);hua_fft(x,fs,1); % y=filter(bz1,az1,x); y=bandp(x,300,500,200,600,0.1,30,fs); figure; subplot(211);plot(t,y); subplot(212);hua_fft(y,fs,1); %调用到的hua_fft()函数代码如下 function hua_fft(y,fs,style,varargin) %当style=1,画幅值谱;当style=2,画功率谱;当style=其他的,那么花幅值谱和功率谱 %当style=1时,还可以多输入2个可选参数 %可选输入参数是用来控制需要查看的频率段的 %第一个是需要查看的频率段起点 %第二个是需要查看的频率段的终点 %其他style不具备可选输入参数,如果输入发生位置错误 nfft= 2^nextpow2(length(y));%找出大于y的个数的最大的2的指数值(自动进算最佳FFT步长nfft) %nfft=1024;%人为设置FFT的步长nfft y=y-mean(y);%去除直流分量 y_ft=fft(y,nfft);%对y信号进行DFT,得到频率的幅值分布 y_p=y_ft.*conj(y_ft)/nfft;%conj()函数是求y函数的共轭复数,实数的共轭复数是他本身。

带通滤波器

有源模拟带通滤波器的设计 时间:2009-08-2110:51:10来源:电子科技作者:张亚黄克平 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 1滤波器的结构及分类 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。 文中结合实例,介绍了设计一个工作在低频段的二阶有源模拟带通滤波器应该注意的一些问题。 2二阶有源模拟带通滤波器的设计 2.1基本参数的设定 二阶有源模拟带通滤波器电路,如图1所示。图中R1、C2组成低通网络,R3、C1组成高通网络,A、Ra、Rb组成了同相比例放大电路,三者共同组成了具有放大作用的二阶有源模拟带通滤波器,以下均简称为二阶带通滤波器。 根据图l可导出带通滤波器的传递函数为

令s=jω,代入式(4),可得带通滤波器的频率响应特性为 波器的通频带宽度为BW0.7=ω0/(2πQ)=f0/Q,显然Q值越高,则通频带越窄。

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

带通滤波电路设计

带通滤波电路设计一.设计要求 (1)信号通过频率范围 f 在100 Hz至10 kHz之间; (2)滤波电路在 1 kHz 电路的幅频衰减应当在 的幅频响应必须在± 1 kHz 时值的± 3 dB 1 dB 范围内,而在 范围内; 100 Hz至10 kHz滤波 (3)在10 Hz时幅频衰减应为26 dB ,而在100 kHz时幅频衰减应至少为16 dB 。 二.电路组成原理 由图( 1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较, 不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率 W H大于高通电路的截止角频率 W L,两者覆盖的通带就提供了一个带通响应。 V I V O 低通高通 图( 1) 1 W H低通截止角频率 R1C1 1 W L高通截止角频率 R2C2 必须满足W L

│A│ O │A│ O │A│ O 低通 W w H 高通 W w L 带通 W W w L H 图( 2) 三.电路方案的选择 参照教材 10.3.3 有源带通滤波电路的设计。这是一个通带频率范围为100HZ-10KHZ的带通滤波电路,在通带内我们设计为单位增益。根据题意,在频率低端f=10HZ 时,幅频响应至少衰减 26dB。在频率高端 f=100KHZ 时,幅频响应要求衰减不小于16dB。因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ,有源器件仍选择运放 LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。 由教材巴特沃斯低通、高通电路阶数n 与增益的关系知 A vf1 =1.586 ,因此,由两级串联的带通滤波电路的通带电压增益(Avf1 ) 2=( 1.586 )2=2.515, 由于所需要的通带增益为0dB, 因此在低通滤波器输入部分加了一个由电阻R1、 R2组成的分压器。

数字信号综合设计matlab数字带通滤波器

数字信号处理综合设计 实验报告 一、实验目的: (1) 深刻理解滤波器的设计指标及根据指标进行数字滤波器设计的过程 (2) 了解滤波器在通信系统中的使用 二、实验步骤: 1.通过SYSTEMVIEW 规划整个系统,确定系统的采样频率、观测时间、细化并设计整个系统,仿真调整并不断改进达到正确调制、正确滤波、正确解调的目的。(参考文件zhan3.svu ) (1) 检查滤波器的波特图,看是否达到预定要求; (2) 检查幅度调制的波形以及相加后的信号的波形和频谱是否正常; (3) 检查解调后的的基带信号是否正常,分析波形变形的原因和解决措施; (4) 实验中必须体现带通滤波器的物理意义和在实际中的使用价值。 2.熟悉matlab 中的仿真系统; 3.将1.中设计的SYSTEMVIEW (如zhan3.svu )系统移植到matlab 中的仿真环境中,使其达到相同的效果; 4.或者不用仿真环境,编写程序实现该系统,并验证调制解调前后的信号是否一致。 实验总共提供三个单元的时间(6节课)给学生,由学生自行学习和自行设 sin ω2 基带信号2

计和移植 三、实验内容: 1.使用MATLAB软件中的图形化工具按照zhan3连接带通滤波器、低通滤波器等如下图: 2.其中各参数如下: (1)Plus Generator设置如下: 脉冲类型为Sample based,幅值1,周期100,脉冲宽度50,采样时间0.001s

(2)载波设置如下: 100HZ的载波:幅度为5,采样时间为0.001s 300HZ的载波:幅度为5,采样时间为0.001s

带通滤波器1:

数字带通滤波器

课程设计报告 专业班级 课程 题目 学号 学生姓名 指导教师 年月

一、设计题目:IIR 数字带通滤波器设计 二、设计目的 1、巩固所学理论知识。 2、提高综合运用所学理论知识独立分析和解决问题的能力。 3、更好地将理论与实践相结合。 4、掌握信号分析与处理的基本方法与实现。 5、熟练使用MATLAB 语言进行编程实现。 三、设计要求 采用适当方法基于MATLAB 设计一个IIR 带通滤波器,其中带通的中心频率为ωp0=0.5π,;通带截止频率ωp1=0.4π,ωp2=0.6π;通带最大衰减αp =3dB;阻带最小衰减αs =15dB;阻带截止频率ωs2=0.7π. 四、设计原理 1.用脉冲相应不变法设计IIR 数字滤波器 利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h (n )模仿模拟滤波器的冲激响应 h a (t ),即将h a (t )进行等间隔采样,使h (n )正好等于h a (t )的采样值,满足 h (n )=h a (nT ) 式中,T 是采样周期。 如果令H a (s )是h a(t )的拉普拉斯变换,H (z )为h (n )的Z 变换,利用采样序列的 Z 变换与模拟信号的拉普拉斯变换的关系得 (1-1) 则可看出,脉冲响应不变法将模拟滤波器的S 平面变换成数字滤波器的Z 平面,这个从s 到z 的变换z =e sT 是从S 平面变换到Z 平面的标准变换关系式。 ??? ?? -= Ω-= ∑∑ ∞ -∞=∞ -∞ ==k T j s X T jk s X T z X k a s k a e z sT π21 )(1) (

常见低通、高通、带通三种滤波器的工作原理

滤波器 滤波器是对波进行过滤的器件,是一种让某一频带内信号通过,同时又阻止这一频带外信号通过的电路。 滤波器主要有低通滤波器、高通滤波器和带通滤波器三种,按照电路工作原理又可分为无源和有源滤波器两大类。今天,小编主要对低通、高通还有带通三种滤波器做以下简单的介绍,希望电子爱好者的朋友们看完有一点小小的收获。 低通滤波器 电感阻止高频信号通过而允许低频信号通过,电容的特性却相反。信号能够通过电感的滤波器、或者通过电容连接到地的滤波器对于低频信号的衰减要比高频信号小,称为低通滤波器。 低通滤波器原理很简单,它就是利用电容通高频阻低频、电感通低频阻高频的原理。对于需要截止的高频,利用电容吸收电感、阻碍的方法不使它通过;对于需要放行的低频,利用电容高阻、电感低阻的特点让它通过。 最简单的低通滤波器由电阻和电容元件构成,如下图。该低通滤波器的作用是让低于转折频率f。的低频段信号通过,而将高于转折频率f。的信号去掉。 这一低通滤波器的工作原理是这样:当输入信号Vin中频率低于转折频率f。的信号加到电路中时,由于C的容抗很大而无分流作用,所以这一低频信号经R输出。当Vin中频率高于转折频率f。时,因C的容抗已很小,故通过R的高频信号由C分流到地而无输出,达到低通的目的。这一RC低通滤波器的转折频率f。由下式决定:

低通滤波器除这种RC电路外,还可以是LC等电路形式。 高通滤波器 最简单的高通滤波器是“一阶高通滤波器”,它的的特性一般用一阶线 性微分方程表示,它的左边与一阶低通滤波器完全相同,仅右边是激励源的 导数而不是激励源本身。当较低的频率通过该系统时,没有或几乎没有什么 输出,而当较高的频率通过该系统时,将会受到较小的衰减。 实际上,对于极高的频率而言,电容器相当于“短路”一样,这些频率,基本上都可以在电阻两端获得输出。换言之,这个系统适宜于通过高频率而 对低频率有较大的阻碍作用,是一个最简单的“高通滤波器”,如下图。 这一电路的工作原理是这样:当频率低于f。的信号输入这一滤波器时,由于C1的容抗很大而受到阻止,输出减小,且频率愈低输出愈小。当频率 高于f。的信号输入这一滤波器时,由于C1容抗已很小,故对信号无衰减作用,这样该滤波器具有让高频信号通过,阻止低频信号的作用。这一电路的 转折频率f。由下式决定: 高通滤波器除可以用元件外,还可以用LC构成。

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1理论分析 (3) 1.2电路组成 (4) 1.3一阶无源RC低通滤波电路性能测试 (5) 1.3.1正弦信号源仿真与实测 (5) 1.3.2三角信号源仿真与实测 (10) 1.3.3方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2电路组成 (22) 2.3二阶无源LC带通滤波电路性能测试 (23) 2.3.1正弦信号源仿真与实测 (23) 2.3.2三角信号源仿真与实测 (28)

2.3.3方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1结论 (39) 3.2误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

带通滤波器工作原理与带通滤波器原理图详解

带通滤波器工作原理与带通滤波器原理图详解 带通滤波器(band-pass filter)是一个允许特定频段的波通过同时屏蔽其他频段的设备。比如RLC振荡回路就是一个模拟带通滤波器。 带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。 工作原理 一个理想的带通滤波器应该有一个完全平坦的通带,在通带内没有放大或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。 实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度的dB数来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦,开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。 除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。 在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。 典型应用 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中

带通滤波器设计

LC椭圆函数带通滤波器设计 要求带通滤波器,在15kHz~ZOkHz的频率范围内,衰减最大变化1dB,低于14.06kHz和高于23kHz频率范围,最小衰减为50dB,Rs=RL=10kΩ。 ③运行Filter Solutions程序。点击“阻带频率”输人框,在“通带波纹(dB)”内输人0.18,在“通带频率”内输人1,在“阻带频率”内输人1.456,选中“频率单位-弧度”逻辑框。在“源阻抗”和“负载阻抗”内输人1。 ④点击“确定阶数”控制钮打开第二个面板。在“阻带衰减(dB)”内输人50,点击“设置最小阶数”按钮并点击“关闭”,主控制面板上形式出“6阶”,选中“偶次阶模式”逻辑框。 ⑤点击“电路”按钮。Filter s。lutions提供了两个电路图。选择“无源滤波器1”,如图1(a)所示。 ⑥这个滤波器必须变换为中心频率ω0=1的归一化带通滤波器。带通滤波器的Q 值为: 把所有的电感量和电容值都乘以Qbp°然后用电感并联每一个电容、用电容串联每一个电感使其谐振频率为ω0=1,该网络被变换为带通滤波器。使用的谐振元仵是原元件值的倒数,如图1(b)所示。 ⑦按照图1的方式转换Ⅱ型支路。

变换后的滤波器见图1(c)。在原理图下标出了以rad/s为单位的谐振频率。 ⑧用中心频率fo=17.32kHz和阻抗10kΩ对滤波器进行去归一化以完成设计。将所有的电感乘以Z/FSF,所有的电容除以z×FSF,其中z=104, FSF=2πfe=1.0882×105。最终的滤波器见图1(d)。图1(c)中的归一化谐振频率直接乘以几何中心频率fo=17.32kHz即可得到谐振频率。频率响应见图1(e)。

带通滤波器设计模拟电子技术课程设计报告大学论文

模拟电子技术课程设计报告带通滤波器设计 班级:自动化1202 姓名:杨益伟 学号:120900321 日期:2014年7月2日 信息科学与技术学院

目录 第一章设计任务及要求 1、1设计概述------------------------------------3 1、2设计任务及要求------------------------------3 第二章总体电路设计方案 2、1设计思想-----------------------------------4 2、2各功能的组成-------------------------------5 2、3总体工作过程及方案框图---------------------5 第三章单元电路设计与分析 3、1各单元电路的选择---------------------------6 3、2单元电路软件仿真---------------------------8 第四章总体电路工作原理图及电路仿真结果 4、1总体电路工作原理图及元件参数的确定---------9 4、2总体电路软件仿真---------------------------11 第五章电路的组构与调试 5、1使用的主要仪器、仪表-----------------------12 5、2测试的数据与波形---------------------------12 5、3组装与调试---------------------------------14 5、4调试出现的故障及解决方法-------------------14 第六章设计电路的特点及改进方向 6、1设计电路的特点及改进方向-------------------14 第七章电路元件参数列表 7、1 电路元件一览表---------------------------15 第八章结束语 8、1 对设计题目的结论性意见及改进的意向说明----16 8、2 总结设计的收获与体会----------------------16 附图(电路仿真总图、电路图) 参考文献

基于matlab的FIR低通高通带通带阻滤波器设计

基于matlab的FIR低通-高通-带通-带阻滤波器设计

————————————————————————————————作者:————————————————————————————————日期:

北京师范大学 课程设计报告 课程名称: DSP 设计名称:FIR 低通、高通带通和带阻数字滤波器的设计姓名: 学号: 班级: 指导教师: 起止日期: 课程设计任务书

学生班级: 学生姓名: 学号: 设计名称: FIR 低通、高通带通和带阻数字滤波器的设计 起止日期: 指导教师: 设计目标: 1、采用Kaiser 窗设计一个低通FIR 滤波器 要求: 采样频率为8kHz ; 通带:0Hz~1kHz ,带内波动小于5%; 阻带:1.5kHz ,带内最小衰减:Rs=40dB 。 2、采用hamming 窗设计一个高通FIR 滤波器 要求: 通带截至频率wp=rad π6.0, 阻带截止频率ws=rad π4.0, 通带最大衰减dB p 25.0=α,阻带最小衰减dB s 50=α 3、采用hamming 设计一个带通滤波器 低端阻带截止频率 wls = 0.2*pi ; 低端通带截止频率 wlp = 0.35*pi ; 高端通带截止频率 whp = 0.65*pi ; 高端阻带截止频率 whs = 0.8*pi ; 4、采用Hamming 窗设计一个带阻FIR 滤波器 要求: 通带:0.35pi~0.65pi ,带内最小衰减Rs=50dB ; 阻带:0~0.2pi 和0.8pi~pi ,带内最大衰减:Rp=1dB 。

FIR 低通、高通带通和带阻数字滤波器的设计 一、 设计目的和意义 1、熟练掌握使用窗函数的设计滤波器的方法,学会设计低通、带通、带阻滤波器。 2、通过对滤波器的设计,了解几种窗函数的性能,学会针对不同的指标选择不同的窗函数。 二、 设计原理 一般,设计线性相位FIR 数字滤波器采用窗函数法或频率抽样法,本设计采用窗函数法,分别采用海明窗和凯泽窗设计带通、带阻和低通。 如果所希望的滤波器的理想频率响应函数为)(jw d e H ,如理想的低通,由信号系统的知识知道,在时域系统的冲击响应h d (n)将是无限长的,如图2、图3所示。 H d (w) -w c w c 图2 图3 若时域响应是无限长的,则不可能实现,因此需要对其截断,即设计一个FIR 滤波器频率响应∑-=-=1 0)()(N n jwn jw e n h e H 来逼近)(jw d e H ,即用一个窗函数w(n)来 截断h d (n),如式3所示: )()()(n w n h n h d = (式1)。 最简单的截断方法是矩形窗,实际操作中,直接取h d (n)的主要数据即可。 )(n h 作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数为: ∑-=-=1 0)()(N n jwn jw e n h e H (式2) 令jw e z =,则 ∑-=-=1 0)()(N n n z n h z H (式3), 式中,N 为所选窗函数)(n w 的长度。

模拟带通滤波器

MATLAB设计模拟带通滤波器 参数自己改一下就可以了 cheb1 % wp1=0.45*pi;wp2=0.65*pi;ws1=0.3*pi;ws2=0.75*pi;Rp=1;Rs=40 % =============双线型变换法========================================= wp1=0.45*pi; wp2=0.65*pi; ws1=0.3*pi; ws2=0.75*pi; Rp=1; Rs=40; Wp1=tan(wp1/2); Wp2=tan(wp2/2); Ws1=tan(ws1/2); Ws2=tan(ws2/2); BW=Wp2-Wp1; W0=Wp1*Wp2; W00=sqrt(W0); WP=1; WS=WP*(W0^2-Ws1^2)/(Ws1*BW); [N,Wn]=cheb1ord(WP,WS,Rp,Rs,'s'); [B,A]=cheby1(N,Rp,Wn,'s'); [BT,AT]=lp2bp(B,A,W00,BW); [num,den]=bilinear(BT,AT,0.5); [h,omega]=freqz(num,den,64); subplot(2,2,1);stem(omega/pi,abs(h)); xlabel('\omega/\pi');ylabel('|H(z)|'); subplot(2,2,2);stem(omega/pi,20*log10(abs(h))); xlabel('\omega/\pi');ylabel('增益.dB'); % =============直接法================================= wp1=0.45*pi; wp2=0.65*pi; ws1=0.3*pi; ws2=0.75*pi; Rp=1; Rs=40; Wp=[wp1/pi,wp2/pi]; Ws=[ws1/pi,ws2/pi]; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs); [B,A]=cheby1(N,Rp,Wn); [h,omega]=freqz(B,A,64); subplot(2,2,3);stem(omega/pi,abs(h)); xlabel('\omega/\pi');ylabel('|H(z)|'); subplot(2,2,4);stem(omega/pi,20*log10(abs(h))); xlabel('\omega/\pi');ylabel('增益.dB'); %cheby2% % wp1=0.45*pi;wp2=0.65*pi;ws1=0.3*pi;ws2=0.75*pi;Rp=1;Rs=40 % =============双线型变换法========================================= wp1=0.45*pi; wp2=0.65*pi; ws1=0.3*pi; ws2=0.75*pi;

带通滤波器设计实验报告

电子系统设计实践 报告 实验项目带通功率放大器设计学校宁波大学科技学院 学院理工学院 班级12自动化2班 姓名woniudtk 学号12******** 指导老师李宏 时间2014-12-4

一、设计课题 设计并制作能输出0.5W功率的语音放大电路。该电路由带通滤波器和功率放大器构成。 二、设计要求 (1)电路采用不超过12V单(或双)电源供电; (2)带通滤波器:通带为300Hz~3.4kHz,滤波器阶数不限;增益为20dB; (3)最大输出额定功率不小于0.5W,失真度<10%(示波器观察无明显失真);负载(喇叭)额定阻抗为8?。 (4)功率放大器增益为26dB。 (5)功率放大部分允许采用集成功放电路。 三、电路测试要求 (1)测量滤波器的频率响应特性,给出上、下限截止频率、通带的增益; (2)在示波器观察无明显失真情况下,测量最大输出功率 (3)测量功率放大器的电压增益(负载:8?喇叭;信号频率:1kHz); 四、电路原理与设计制作过程 4.1 电路原理 带通功率放大器的原理图如下图1所示。电路有两部分构成,分别为带通滤波器和功率放大器。 图1 滤波器电路的设计选用LM358双运放设计电路。LM358是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。高输入阻抗使得运放的输入电流比较小,有利于增大放大电路对前级电路的索取信号的能力。在信号的输入的同时会不可避免的掺杂着噪声和温漂而影响信号的放大,因此高共模抑制比、低温漂的作用尤为重要。 带通滤波器的设计是由上限截止频率为3400HZ的低通滤波器和下限截止频率为300HZ 的高通滤波器级联而成,因此,设计该电路由低通滤波器和高通滤波器组合成二阶带通滤波器(巴特沃斯响应)。 功率放大电路运用LM386功放,该功放是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 4.2电路设计制作 4.2.1带通滤波电路设计 (1)根据设计要求,通带频率为300HZ~2.4KHZ,滤波器阶数不限,增益为 20dB,所以采取二阶高通和二阶低通联级的设计方案,选择低通放大十倍。高通不放大。

二阶带通滤波器的设计原理

实验二:Multisim仿真——带通滤波器的设计 一.实验目的 采用Multisim软件来设计带通滤波器电路,计算带通滤波器参数并对其仿真进行分析。 二.实验原理及计算: 2.1二阶有源滤波器数学模型如下: 采用节点法来计算其输出函数 ◆在节点1 有: U1?Ui Y1+U1?Uo Y4+U1?U2Y3+U1Y2=0① ◆在节点2 有: U2?U1Y3+U2?Uo Y5=0② 由虚短得到U2=0,代入②式得:U1=?Y5 Y3 Uo③ 将③代入①有: G s=Uo Ui = ?Y1Y3 Y5Y1+Y2+Y3+Y4+Y3Y4

又因为Y1=1R 1 ,Y2= 1R 1 ,Y1= 1R 2 ,Y3=sC3,Y4=sC4,Y5= 1R 5 得到: G s = ? s R 1C 4 S 2+R 5 sC 3+sC 4 s +sC 3sC 4R 5(R 1+R 2) 与二阶滤波器相应的标准表达式 11)(11 )(20 2 02++= +?+=O O O O O S Q S S Q A S Q S S Q A S A ωωωωωω 比较可得: Go =1 R 5 1+C 3 ω0= 1R 5C 3C 4(1R 1+1 R 2 ) Q = R 5(1 R 1 + 1R 2) C 4 + C 3 以上只有三个方程,却有5个未知数。可令C3=C4=C ,联立以上几个方程可得: R1=Q R2=Q 2Q 2?Go ω0C R5=2Q ω0C

2.2 在我们systemview试验一中有两个滤波器 现计算第一个滤波器的参数:中心频率为60khz,通频带为60khz。 由ω0=2π?60?e3,Q=1.2,Go=1,得: R1=3.18k?,R2=1.69k?,R5=6.37k?。 三.根据计算的参数在Multisim中搭建实验电路,完成仿真。 3.1 根据所计算的第一个带通滤波器的参数所得实验电路图如下: 采用一个交流电源作为输入,通过扫频仪观察响应的幅频特性。得到所设计的滤波器幅频特性图像:

基于MATLAB的IIR数字带通滤波器设计

基于MA TLAB的IIR数字带通滤波器设计 摘要 窗函数法在IIR 数字滤波器的设计中有着广泛的应用, 但这不是最优化的设计。介绍了一种基于等波纹切比雪夫逼近准则的IIR 数字滤波器的最优化设计方法,通过MA TLAB 的仿真实现, 证明了该方法是一种最优化的设计。传统的数字滤波器设计方法繁琐且结果不直观,本文利用MA TLAB具有强大的科学计算和图形显示这一优点,与窗函数法设计理论相结合共同设计IIR数字滤波器,不但使设计结果更加直观,而且提高了滤波器的设计精度,从而更好地达到预期效果。 关键词:IIR数字滤波器;窗函数,等波纹切比雪夫逼近,MA TLAB 仿真 ABSTRACT Window function method in the design of IIR digital filter has a wide range of applications, but this is not the most optimal design. Such as corrugated paper, a Chebyshev approximation for IIR digital filter criteria for the optimization design method to achieve through the MA TLAB simulation proved that the method is one of the most optimized design. Conventional digital filter design method is cumbersome and results are not intuitive, this paper, MA TLAB has a powerful scientific computing and graphics display the advantages, with the window function method combines design theory to design IIR digital filter design results not only more intuitive, but also improve the accuracy of the filter design to better achieve the desired results. KEY WORDS: IIR digital filters,window function,such as ripple Chebyshev approximation,MA TLAB simulation 目录 引言.............................................第页 第1 章数字滤波器................................第页 第2 章IIR数字滤波器设计方法......................第页 2.1用脉冲相应不变法设计IIR数字滤波器..........第页 2.2 脉冲响应不变法优缺点........................第页 2.3用双线性变换法设计IIR数字滤波器............第页 2.4双线性变换法优缺点..........................第页 第3章IIR数字带通滤波器设计过程...................第页 3.1设计步骤.....................................第页 3.2程序流程框图.................................第页 3.3 MA TLAB程序..................................第页 第四章结果及分析.................................第页 第五章总结.......................................第页 参考文献..........................................第页 致谢..............................................第页 附录..............................................第页

相关文档
最新文档