全国数学建模竞赛易拉罐形状和尺寸的最优设计模型全国一等奖

全国数学建模竞赛易拉罐形状和尺寸的最优设计模型全国一等奖
全国数学建模竞赛易拉罐形状和尺寸的最优设计模型全国一等奖

全国数学建模竞赛易拉罐形状和尺寸的最优设计模型全国一等奖

IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

易拉罐形状和尺寸的最优设计模型

(2006年获全国一等奖)

摘 要:本文主要考虑当容积一定时,如何设计易拉罐的形状和尺寸,使得所用材料最省。首先对易拉罐进行测量,对问题二、问题三、问题四建立数学模型,并利用LINGO 软件结合所测的数据进行计算,得出最优易拉罐模型的设计。

模型一,对正圆柱体形状的易拉罐,当容积一定时,以材料体积最小为目标,建立材料体积的函数关系式,并通过求二元函数条件极值得知,当圆柱高为直径两倍时,最经济,并用容积为360 ml 进行验算,算得mm H 63.122=,mm R 58.30=与市场上净含量为355ml 的测得的数据基本接近。

模型二,对上面部分为正圆台、下面部分为正圆柱的易拉罐同样在容积量一定时,考虑所用材料最省,建立优化模型,并通过LINGO 软件仍用容积为360 ml 进行验算,算得mm R 58.30=,mm r 33.291=,mm h 94.81=,mm h 8.1112=,高之和约为直径的两倍。

模型三,考虑到罐底承受的压力,根据力学上横梁支点的受力与拱桥设计的原理,设计底部支架(环形)与一定弧度的拱面,同时利用黄金分割,将直径与高之比设为,建立容积量一定时材料最省的优化模型,再将有关数据代入计算,得到结论,现行易拉罐的设计从某种意义上不乏是最优设计。

关键词:优化模型 易拉罐 非线性规划 正圆柱 正圆台

一、问题重述

销量很大的饮料容器(即易拉罐)的形状和尺寸几乎都是一样的。这应该是某种意义下的最优设计,而不是偶然。当然,对于单个的易拉罐来说,这种最优设计可以节

省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。

现针对以下问题,研究易拉罐的形状和尺寸的最优设计问题。

问题一:取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是测量得到的,那么必须注明出处。

问题二:设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说

明所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。问题三:设易拉罐的中心纵断面如图1所示,即上面部分是一个正圆台,下面部分是一个正圆柱。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。

问题四:利用所测量的易拉罐的洞察和想象力,做出关于易拉罐形状和尺寸的最优设计。

同时,以做本题以及以前学习和实践数学建模的亲身体验,写一篇短文(不超过1000字,论文中必须包括这篇短文),阐述什么图1

是数学建模、它的关键步骤,以及难点。

二、问题分析

在易拉罐设计的实际情况中,我们必须保证罐内体积大于饮料的净含量,同时考虑到饮料对罐体各部分的应力,需确定罐盖、罐底和罐壁的厚度,在此情况下的最优是使得容积一定时,所用的材料最省。

在问题一中对于各个部分的数据可以直接测量,利用千分卡对易拉罐进行测量;问题二是对正圆柱体的易拉罐在容积一定时,以半径和高之比为衡量最优设计的标准;问题三中,对比问题一中所测得的数据,发现易拉罐罐盖、罐底的厚度是罐壁的两倍,因此我们在解决此问题时可以假设罐盖、罐底的厚度是罐壁的两倍,再利用规划方法求解由圆台和圆柱体组成的易拉罐的最优设计。在问题四中根据问题二、三的模型所求得的数据与测量的数据进行比较,以及观察市场上正规厂家生产的碳酸和非碳酸饮料易拉罐的异同之处,作出关于易拉罐形状和尺寸的最优模型。

三、模型假设

1、根据薄壁圆筒的应力分析,假设易拉罐罐盖、罐底的厚度是罐壁的两倍。

2、易拉罐各接口处的材料忽略不计。

3、易拉罐各部分所用的材料相同。

4、单位体积材料的价格一定。

5、相同类型易拉罐的容积相同。

四、模型建立与求解

目前市场上大部分的易拉罐形状可以分成两类:一类主体部分是正圆柱体,正圆柱体上面部分是正圆台(如图2所示);另一类主体部分是正圆柱体,正圆柱体上面部分与下面部分都是正圆台(如图3所示)。

如图2 如图3

我们用千分卡尺对杭州中萃食品有限公司生产的可口可乐易拉罐进行了测量,分别测量数据如下表。(单位;mm)

由上表可知:罐底与罐盖的厚度大约是柱壁厚度的2倍;高大约为正圆柱直径的2倍。

易拉罐形状和尺寸的最优设计就是确保盛放饮料时容器不变形、放置稳定、运输安全的前提下,如何设计形状与尺寸才能使一定容积量的易拉罐所用的材料最省,为此我们分别对问题二、问题三、问题四建立模型如下:

模型一:正圆柱体模型

假设易拉罐是一个正圆柱体,罐内半径为R ,罐内高为H ,罐壁厚为b ,根据假设1可知,罐底与罐盖厚为b 2,所以制作材料的体积为:

=32224842b R b R b Hb RbH πππππ++++

因为R b <<,故项34b π可以忽略不计。因而

于是,问题就是求目标函数)842(),(2bR R Hb RH b H R s +++=π在条件

H R V 2π=下的最优解。即

min )842(),(2bR R Hb RH b H R s +++=π

.???>>=0

,02H R H R V π

利用Lagrange 乘子法求解,作函数

消去λ得:R H 4=,34πV R =,344π

V H ?=。唯一的驻点就是问题的极值点,也是此问题的最优解。由上述可知,当罐高为罐内直径的两倍时,正圆柱体的易拉罐所用的材料最省。这与我们目前市场上的可口可乐易拉罐的形状大致相同。

若用ml V 360=代入计算得,mm H 392.122=,mm R 598.30=,这与我们所测净含量为ml 355的易拉罐高mm 与罐体半径mm 还是比较接近的(饮料罐不能装满饮料,必须留有一定的空间余量)。

但也看出两组数据之间也存在一定差异,这是因为我们所测量的易拉罐下底并非是一个圆面,而是一个向上凸的拱面,接近上、下底部分是两个正圆台。

模型二:主体为正圆柱体,上面部分为正圆台模型

当易拉罐的上面部分是一个正圆台,下面部分是正圆

柱体时(如图4),假设正圆柱体部分的罐内半径为R ,罐内

高为2h ,罐壁厚为b ;正圆台部分上底内半径为1r ,正圆台内

高为1h 。根据假设1可知,易拉罐罐底与罐盖的厚度均为b 2,仍以制作易拉罐的材料最省作为最优设计。由于考虑到易拉罐各部分材料的厚度不同,因此采用易拉罐所需的材料等于外径体积减去内径体积进行计算。

易拉罐正圆台部分所用的材料体积:

图4

因为R b <<,故32b π可以忽略,则易拉罐正圆台部分的材料体积为:

易拉罐正圆柱部分的材料体积:

因为R b <<,故32b π可以忽略。则易拉罐正圆柱所用的材料体积:

所以,易拉罐的总材料体积为:

要使生产易拉罐的费用最省,同理可建立优化模型: .???

????>≥+++=0,,,3)(2

1112112122h h r R r R r Rr R h h R V ππ 利用LINGO 软件(附录一)计算得出1r R ==mm ,93.1181=h mm ,mm h 48.32=;显然,易拉罐的形状是正圆柱体。也就是说在容积相同的情况下,正圆柱体形的易拉罐要比上面部分是正圆台、下面部分是正圆柱体的易拉罐省材,但是问题要求设计的上面部分是正圆台的易拉罐,因此需要进一步改进。

根据所测易拉罐的数据分析,假设易拉罐的正圆台高为正圆柱高的8%,正圆台的上内径为正圆柱内径95%。

?????????>====+++=0

,,,0135.0,3605.12,95.03)(2111212112122h h r R b V h h r R r Rr R h h R v ππ 利用LINGO 软件进行求解(附录二),分别得出:R =mm ,1r =mm ,

,94.81mm h =mm h h H mm h 74.120,8.111212=+==,这与我们所测得数据比较接近。

模型三:易拉罐的最优设计模型

对于盛装碳酸饮料的容器,不仅要考虑省材,还要考虑盛放与搬运中的安全、方便、实用。如果把易拉罐设计成球体,在一定容量的情况下材料最省,但对于放置、储存等会带来诸多的不便(球与球之间的空隙大)。根据几何原理,罐底为平面放置最稳,主体为正圆柱体最优。但考虑到碳酸饮料的压力等因素,罐底与罐盖要考虑牢固性,根据横梁受力的原理:当梁的支座从两端往中间移时,其载荷将会提高。 根

据此原理,我们在易拉罐的底部设计了一个底轨(环形),并使其向量移动,这样既可以提高易拉罐底的载荷,也可以使其摆放平衡。底轨的厚度为两个底厚加上它们之间的空隙,约为6b 。

因此在罐底的底轨与正圆柱的连接处就形成了一个正圆台,与此对应,我们在正圆柱的上面也设计了一个正圆台,进而从美学的角度考虑,根据黄金分割点将将直径与高的比设为,同时在罐口设计了一个圆槽,使其内径略大于底轨外径,当两罐饮料叠放时,上面一罐饮料的底部可以嵌入下面一罐饮料的罐盖的圆槽,便于放置。

在罐底部分,根据拱桥的原理:桥面设计成一定的

拱形时,它的受力比一般平面桥要大得多。因此我们把罐

底底轨内的部分设计成具有一定弧度的拱面,使其能够更

好的承受罐内液体的压力。

综上所述,可将易拉罐罐体设计成三部分:上部为

正圆台,高为1h ,上圆台罐口内半径为1r ;中部为正圆

柱,高为2h ,罐体正圆柱内半径为R ;下部为正圆台,高为3h ,罐底内半径为2r ,罐底拱高为d (如图5所示)。又设罐体壁厚为b ,罐底、罐盖厚为b 2,对各部分进行材料体积计算。

易拉罐上正圆台部分的材料体积: 图5

因为R b <<,故32b π可以忽略,则易拉罐正圆台部分的材料为:

易拉罐正圆柱部分的材料体积:

因为R b <<,故32b π可以忽略,则易拉罐正圆柱部分的材料体积:

易拉罐下正圆台侧面部分的材料:

=)(3r R b b h ++π

易拉罐底部材料的体积:)(底2

2222),(r d r d S +=π

所以,易拉罐所用的总材料体积为:

当易拉罐所需的总材料最少,则生产该易拉罐的费用最省,建立优化模型如下:

?????>+-++++++=0,,,,6)3(3)(3)(2121222222222112122h h r r R d r d r Rr R h r Rr R h h R V ππππ 当23121215.02,6,8.0h h h b r r R r ===-=,)(618.02321h h h R ++=,

7,135.0,360000===d b V 时,利用LINGO (附录三)解得:mm R 3.28=,

mm r 667.222=,mm r 48.231=,1h =mm ,mm h 61.53=,,85.742mm h =,

mm H 69.91=,这样设计出来的易拉罐取材省,外观美丽。

五、模型评价与改进

此模型通过实际数据,将理论分析和实际状况进行比较,有较强的现实意义。能兼顾安全、实用、方便、美观、经济,理论引用可信度较高。但在模型中没有考虑接口处的材料,由于时间关系,对罐底、罐盖与罐壁的厚度等对比没有作深入的研究。期望能在此方面加以改革,以达到最经济的效果。

六、建模体会

数学建模是一项以培养青年学生创新思维、团结协作、综合应用能力、提高学生素质为目的的活动、深受青年学生的青睐,我们是这项活动的喜爱者、参与者、受益者。

通过数学建模的学习与实践,我们懂得了数学建模就是把现实世界中的实际问题加以提炼。用数学语言符号描述问题的内在联系,然后用适当的数学工具建立相应的数学模型,进而用数学知识、数学软件等求出模型的解,并验证模型的合理性。用该数学模型解释现实问题,甚至解决一些当前生产、生活中的技术难关,并将部分模型

应用于实际生产中,给社会带来巨大的经济效益。数学建模的关键步骤可以归纳为:模型准备、模型假设、模型建立、模型求解、模型检验及模型应用等。对于我们来说,如何解读实际问题,掌握各种信息与数据,抓住其本质,再用所学的数学知识建立模型是难点。

就易拉罐的形状和尺寸的最优设计而言,考虑了易拉罐罐底为何设计成呈弧形的拱面,这样设计对易拉罐有何作用,如何设计易拉罐各部分材料的厚度以及形状,并证明所需要的材料是最省的,即对产家而言所需的费用是最省的,然而在此基础上还需考虑到罐内气体对易拉罐各部分的应力以及易拉罐的承受能力,并用数学的方式进行表达和证明,说明我们所设计的易拉罐是合理的,这是问题的关键所在,也是本模型的最大难点,而数学建模的最大难点也在于如何建立数学模型将理论转化为实际问题。

通过数学建模活动使我们真正懂得了数学的魅力,它的应用十分广泛,可以渗透到工程、生物、经济、环境、能源等各个邻域,也使我们学会了学习,学会了合作,学会了利用网络及我们所学的知识去解决问题的思想。这对我们今后的学生时代及走上岗位后的职业生涯会终身受益。

参考文献

[1] 刘鸿文,《材料力学》,人民教育出版社,. (第154页)

[2] 吴建国,《数学建模案例精编》,北京市三里河路6号:中国水利水电出版社,.(第89页)

[3] 《数学手册》编写组,《数学手册》,北京印刷二厂:人民教育出版社,1979 (第81页)

[4] 姜启源谢金星叶俊,《数学模型第三版》,北京市西城区德外大街4号:高等教育出版社,

[5]admin,铝制易拉罐成形工艺及模具,,2006.9.15

[6]刘代祥,饮料包装研究,,2006.9.15

附录

附录一

model:

b=;v=360000;

min=*b*h1*(R+r1+b)+2**b^2*(R+r1)+2**b*(R^2+R*r1+r1^2)/3+2**b*R^2+*b*2*R* h2+*b^2*(4*R+h2);

*R^2*(h2+h1/3)+*h1*r1^2/+*h1*R*r1/=v;

R>=r1;

end

Local optimal solution found at iteration: 130

Objective value:

Variable Value Reduced Cost

B

V

H1

R

R1

H2

Row Slack or Surplus Dual Price

1

2

3

4

5

附录二

model:

b=;v=360000;

min=*b*h1*(R+r1+b)+2**b^2*(R+r1)+2**b*(R^2+R*r1+r1^2)/3+2**b*R^2+*b*2*R* h2+*b^2*(4*R+h2);

*R^2*(h2+h1/3)+*h1*r1^2/+*h1*R*r1/=v;

R>r1;

r1>=*R;

h1>=*h2;

Local optimal solution found at iteration: 131

Objective value:

Variable Value Reduced Cost

B

V

H1

R

R1

H2

Row Slack or Surplus Dual Price

1

2

3

4

5

6

7

附录三

model:

b=;v=360000;d=7;

min=*b*h1*(R+r1+b)+2**b^2*(R+r1)+*b/3*(R^2+R*r1+r1^2)+*b*R^2+*b*R*h2+* (4*b^2*R+b^2*h2)+b**h3*(b+R+r2)+*(d+2*r2^2);

*R^2*h2+*h1*(R^2+r*r1+r1^2)/3+*h2*(R^2+R*r2+r2^2)/*d*(3*r2^2+d^2)/6=v; r2=*R;

r1-r2=6*b;

h1=2*h3;

h1=*h2;

2*R=*(h1+h2+h3);

End

Local optimal solution found at iteration: 8

Objective value:

Variable Value Reduced Cost

B

V

D

H1

R

R1

H2

H3

R2

Row Slack or Surplus Dual Price

1

2

3

4

5

6

7

8

9

10

11

数学模型课程设计一

课程设计名称: 设计一:MATLAB 软件入门 指导教师: 张莉 课程设计时数: 8 课程设计设备:安装了Matlab 、C ++软件的计算机 课程设计日期: 实验地点: 第五教学楼北902 课程设计目的: 1. 熟悉MA TLAB 软件的用户环境; 2. 了解MA TLAB 软件的一般目的命令; 3. 掌握MA TLAB 数组操作与运算函数; 4. 掌握MATLAB 软件的基本绘图命令; 4. 掌握MA TLAB 语言的几种循环、条件和开关选择结构。 课程设计准备: 1. 在开始本实验之前,请回顾相关内容; 2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。 课程设计内容及要求 要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。 1. 采用向量构造符得到向量[1,4,7,,31] 。 //a=[1:3:31] 2. 随机产生一向量x ,求向量x 的最大值。 // a=rand(1,6) max(a) 3. 利用列向量(1,2,3,,6)T 建立一个范德蒙矩阵A ,并利用位于矩阵A 的奇数行偶数列的元素建立一个新的矩阵B ,须保持这些元素的相对位置不变。 4. 按水平和竖直方向分别合并下述两个矩阵: 100234110,5670018910A B ????????==???????????? 5. 当100n =时,求1121n i y i ==-∑的值。 6. 一个三位整数各位数字的立方和等于该数本身则称该数为水仙花数。输出全部水仙花数。 7. 求[1000,2000]之间第一个被17整除的整数。 8. 用MATLAB 绘制两条曲线,[0,2]x π∈,以10 π为步长,一条是正弦曲线,一条是余弦曲线,线宽为6个象素,正弦曲线为绿色,余弦曲线为红色,线型分别为实线和虚线,并给所绘的两条曲线增添图例,分别为“正弦曲线”和“余弦曲线”。

易拉罐的设计

易拉罐形状和尺寸的最优设计 一.问题重述 我们只要稍加留意就会发现销量很大的饮料 (例如饮料量为355毫升的可口可乐、青岛啤酒等)的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。 现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务: 1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。 2.设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。 3.设易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸 4.利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。 二、问题分析 在易拉罐设计的实际情况中,问题分析 在易拉罐设计的实际情况中,我们必须保证罐内的体积大于饮料的净含量(我们通常饮料的净含量为355ml而它实际的体积大约为365ml),同时考虑饮料对罐体各部分的应力,需确定罐盖、罐底和罐壁的厚度,在此情况下的最优是使得容积一定时,所用的材料最省(我们用所用材料的体积来衡量)。

在问题一中对于各个部分的数据可以直接测量测量如下数据如下表: 罐高123.7 罐柱内径61.29 上圆台高13.5 下圆台高7.7 罐盖内径58.17 罐底厚度0.29 罐盖厚度0.29 罐底拱高10.11 圆柱体高102.5 罐壁厚度0.135 问题二是对正圆柱体的易拉罐在容积一定时,以半径和高之比为衡量最优设计的标准; 问题三中,对比问题一中所测的数据,发现易拉罐罐盖、罐底的厚度是罐壁的2倍,因此我们在解决此问题是可以假设罐盖、罐底的两倍,再利用规划方法所求得的数据与测量数据进行比较,以及观察市场上正规厂家生产的碳酸和非碳酸饮料易拉罐的异同之处,做出关于易拉罐形状和尺寸的最优模型。 三、模型假设 (1)、根据薄壁圆筒的应力分析,假设易拉罐罐盖﹑罐底的厚度是罐壁的两倍; (2)、易拉罐的各接口处的材料忽略不计; (3)、易拉罐各部分所用的材料相同; (4)、单位体积材料的价格一定;

全国数学建模竞赛易拉罐形状和尺寸的最优设计模型全国一等奖

易拉罐形状和尺寸的最优设计模型 (2006年获全国一等奖) 摘 要:本文主要考虑当容积一定时,如何设计易拉罐的形状和尺寸,使得所用材料最 省。首先对易拉罐进行测量,对问题二、问题三、问题四建立数学模型,并利用LINGO 软件结合所测的数据进行计算,得出最优易拉罐模型的设计。 模型一,对正圆柱体形状的易拉罐,当容积一定时,以材料体积最小为目标,建立 材料体积的函数关系式,并通过求二元函数条件极值得知,当圆柱高为直径两倍时,最 经济,并用容积为360 ml 进行验算,算得mm H 63.122=,mm R 58.30=与市场上净含量 为355ml 的测得的数据基本接近。 模型二,对上面部分为正圆台、下面部分为正圆柱的易拉罐同样在容积量一定时, 考虑所用材料最省,建立优化模型,并通过LINGO 软件仍用容积为360 ml 进行验算,算 得mm R 58.30=,mm r 33.291=,mm h 94.81=,mm h 8.1112=,高之和约为直径的两倍。 模型三,考虑到罐底承受的压力,根据力学上横梁支点的受力与拱桥设计的原理, 设计底部支架(环形)与一定弧度的拱面,同时利用黄金分割,将直径与高之比设为, 建立容积量一定时材料最省的优化模型,再将有关数据代入计算,得到结论,现行易拉 罐的设计从某种意义上不乏是最优设计。 关键词:优化模型 易拉罐 非线性规划 正圆柱 正圆台 一、问题重述 销量很大的饮料容器(即易拉罐)的形状和尺寸几乎都是一样的。这应该是某种意义 下的最优设计,而不是偶然。当然,对于单个的易拉罐来说,这种最优设计可以节省的 钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就 很可观了。 现针对以下问题,研究易拉罐的形状和尺寸的最优设计问题。 问题一:取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验 证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说 明;如果数据不是测量得到的,那么必须注明出处。 问题二:设易拉罐是一个正圆柱体。什么是它的最优设计其结果是否可以合理地说明所 测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。 问题三:设易拉罐的中心纵断面如图1所示,即上面部分是一个正圆 台,下面部分是一个正圆柱。什么是它的最优设计其结果是否可以合理 地说明你们所测量的易拉罐的形状和尺寸。 问题四:利用所测量的易拉罐的洞察和想象力,做出关于易拉罐形状和 尺寸的最优设计。 同时,以做本题以及以前学习和实践数学建模的亲身体验,写一篇 短文(不超过1000字,论文中必须包括这篇短文),阐述什么图1 是数学建模、它的关键步骤,以及难点。 二、问题分析

最新易拉罐的优化设计知识分享

易拉罐形状和尺寸的最优设计 组员:邢登峰,张娜,刘梦云 摘要 研究易拉罐形状和尺寸的最优设计可以节约的资源是很可观的。 问题一,我们通过实际测量得出(355ml )易拉罐各部分的数据。 问题二,在假设易拉罐盖口厚度与其他部分厚度之比为3:1的条件下,建立易拉罐用料模型2()2(2)v s r rd r r ππ=+,由微积分方法求最优解, 结论:易拉罐高与直径之比2:1,用料最省; 在假定易拉罐高与直径2:1的条件下,将易拉罐材料设想为外体积减内体积,得用料模型: 2min (,) (,)0.0 0s r h g r h r h v s t r h π?=-=?>??>? 用微积分方法得最优解:易拉罐盖子厚度与其他部分厚度为3:1。

问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下,将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分一定而研究此正圆台的用料优化设计。 模型 圆台面积 2 ()(s r r R r ππ=++用数学软件求得最优解r=1.467, h=1.93时,s=45.07最小。 结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实际比较分析了各种原因。 问题四,从重视外观美学要求(黄金分割),认为高与直径之比1:0.4更别致、美观。对这种比例的正圆柱体易拉罐作了实际优化分析。 另从美学及经济学的角度提出正四面柱体易拉罐的创新设想,分析了这样易拉罐的优缺点和尺寸优化设计。 最后写出了我们对数学建模的体会文章。

关键词:易拉罐最优设计数学建模 问题重述 在生活中我们会发现销量很大的饮料(例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。 现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务: 1.取一个净含量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。

易拉罐形状和尺寸的最优设计

淮海工学院 毕业论文 题目:易拉罐形状和尺寸的最优设计 作者:吴杰学号:0903102228 系(院):数理科学系 专业班级:信息与计算科学032 指导者:谭飞(高等数学教研室主任)评阅者: 2007年5月连云港

毕业论文中文摘要

毕业论文文摘要

目录 1 引言 (1) 1.1易拉罐的发展和前景 (1) 1.2 实际调研 (2) 1.3基本设计方案 (2) 2可口可乐易拉罐的优化设计 (3) 2.1模型的假设 (4) 2.2数据测量 (4) 2.3符号说明 (5) 2.4 模型的建立与求解 (5) 2.4.1 模型一的建立与求解 (5) 2.4.2 模型二的建立与求解 (7) 2.4.3 模型三的建立与求解 (9) 2.5 模型的评价与推广 (11) 结论 (13) 致谢 (14) 参考文献 (15) 图1 罐体主要尺寸图 (4) 图2 圆柱罐体剖面图 (5) 图3 柱台罐体剖面图 (7) 图 4 罐体受压性能图 (10) 表 1 罐体主要尺寸 (4) 表 2 罐体物理性能 (10)

1 引言 1.1易拉罐的发展和前景 铝质易拉罐具有许多优点,如重量轻、密闭性好、不易破碎等,被大量用作啤酒、碳酸类饮料、果汁等食品的包装材料。1963 年,易拉罐在美国得以发明,它继承了以往罐形的造型设计特点,在顶部设计了易拉环。这是一次开启方式的革命,给人们带来了极大的方便和享受,因而很快得到普遍应用。到了1980年,欧美市场基本上全都采用了这种铝罐作为啤酒和碳酸饮料的包装形式。经过30多年来的发展已在全球形成庞大的生产规模,供求关系已出现严重的失衡。即使是易拉罐技术发展最快,消费水平最高的美国,近年来罐厂生产能力的提高比消费需求增长快,生产能力年增2%,而需求量年增1%,同样出现年生产能力超过需求10亿只的局面。随着设计和生产技术的进步,铝罐趋向轻量化,从最初的60克降到了1970年的21~15克左右。 国内的易拉罐业始于80年代,当时年产仅24亿只,随着原罐厂进行重大技术改造的完成以及国外罐业投资者的资本输入,到目前全国易拉罐年生产能力超过100亿只。 近年来,我国铝质易拉罐产量逐年增长,年消耗量约为60~70亿只。据业内专家预测,到2010年,全国易拉罐用铝将达到29万吨。据中国饮料协会预测,到2010年,碳酸饮料产量将达到800万吨,如果罐装率按20%计算,易拉罐用量将达到124亿只。尽管国内易拉罐需求量逐年上升,但供求关系严重失衡已是不可回避的事实。 为了生存,罐厂每年都出现“内耗”式的压价销售,这一方面导致罐厂本身处于亏损运营状态,另一方面阻碍了中国罐业向前发展。竞争的结果,表面上看饮料、啤酒厂是受益者,但从长远看包装品制造商因无力进行技改大幅度降低成本,而作为使用包装品的饮料、啤酒业也难以使自己产品的包装成本降低下来因而阻碍了消费,最终也是受害者。 国外罐业者在降低成本方面主要有二条途径,一是规模经济。国外罐业经过三十多年的发展,生产已形成集团化,具有相当大规模,在这样的基础上不断增置设备或提高生产速度再扩大规模是轻而易举的事。而国内罐厂的规模与国外相比都较小,又由于近年来大多数罐厂处于亏损运营,因而再花费一大笔资金去再引进技术和设备扩大规模是较为困难。此外在目前这种供求严重失衡的状况再扩大规模,无疑将需求关系进一步恶化。显然,靠这一途径降低成本不适合国内现状。 其次是降低原辅材料的成本。依靠科技进步降成本可以达到事半功倍。罐业是集冶金、化工、机械、电子等行业科技于一体,降低原辅材料成本就是依靠这些行业的科技进步。(1)减薄铝板材厚度。(2)改变罐形。根据国外某材料厂家报告,在美国的罐厂用铝板材料厚度每减薄0.01mm,每千罐可节省约0.22美元,易开盖口颈从404规格缩小至401规格可节省材料12.5%,罐从206口颈缩为204全套可节约材料用量6.7%,再降至202又可节约13.6%,最好水平到19.4%。为了确保罐原有的各项性能指标要求,相应采用许多新工艺,诸如采用罐底二次成型技术,可使罐底耐压力提高26%。在国外有许多罐业服务的专业性厂家,从铝板材、模具、电子化工设备等制造行业形成一条龙,每当罐业提出某

创新设计方案

创新设计方案 一、设计名称:可以关闭的易拉罐 二、设计目的(设计背景): 大多数人们在外面玩的时候口渴了都会想到要买水喝,但很多又不愿意一瓶喝完,就出现了易拉罐比较少量的瓶子,但易拉罐有一个最不方便的地方就是喝不完也关不上,很多人不喜欢手上拿着就喜欢放在包里方便,渴的时候再拿出来,然后我们就想到为了大家方便,想要设计出可以打开后还可以关闭的易拉罐瓶子。 三、设计原理: 现在的大多数人追求的生活品质越来越高,人们对这些消费品的要求也越来越多样化。易拉罐在人们的生活中随处可见,最初的易拉罐设计是将一个拉环固定在事先划好的开盖带上,利用杠杆作用和刻划痕迹,罐头先在开口上方打开,进一步拉开的动作将金属片拉离罐头顶部,铝片沿着刻划的痕迹撕开,留下来的开口从罐子边缘延伸到(或超过)罐子中心,这样在打开罐子饮用或倾倒饮料时,空气能由开口进入罐内,让饮料轻松地流出。易拉罐拉环独特的设计一方面结束了钥匙型开罐器的时代,另一方面也将在罐顶上打两个不同三角形切口的开罐动作减少为一个拉的轻松动作。半开半闭式的易拉罐更容易引进市场,通过在罐顶下安装旋转装置,让喝不完的水放在任何一个地方不易溢出,会给更多的人带来方便。四、作用与功能: 方便人们的生活,受各大消费群众的需求,方便携带和饮用。拉环式易盖有两种形式:一种是小口式,拉环拉起时罐盖开启一小口,由此小口可以吸出或倒也流体内装物,比如汽水类易拉罐就属于小口式;另一种是大口式,拉环拉起时几乎整个罐盖都被揭开,以便取出固体 五、设计结构与简图:

设计结构:采用普通的易拉罐瓶子,在开口处设计可以旋转开关的开口。 六、设计说明: 这次我们设计的是一个可开关的易拉罐,这个易拉罐跟平时我们看到的普通易拉罐没有什么区别,只是在拉罐开口处做了一些轻微的调整,普通的拉罐拉开过后就不可以再关闭,使消费者买了打开了以后就必须要喝完,然而一些消费者一次喝不完这么多放在那里就只有浪费。我们这次设计的这个易拉罐开口就设计成为了可开关的,当消费者打开后喝不完还可以将瓶口关上,这样方便了二次饮用,不会造成了浪费,也方便携带。做成这个易拉罐的技术条件也非常简单,只需要在现有的易拉罐制作工艺上,将易拉罐瓶口配上一个可旋转的开关,开关可以由简单的铝片制成,在消费者第一次将易拉罐打开后,旋转铝片就可将开口处密封。 七、制造用料: 普通的易拉罐一个,少许铝片 八、可行性分析: 在该易拉鑵项目可行性研究中,从节约资源和保护环境的角度出发,遵循“创新、先进、可靠、实用、效益”的指导方针,严格按照技术先进、低能耗、 低污染、控制投资的要求,确保该易拉鑵项目技术先进、质量优良、保证进度、

2006-全国数学建模C题易拉罐形状和尺寸的最优设计.

2006-全国数学建模C题易拉罐形状和尺寸的最优设计.

易拉罐形状和尺寸的最优设计 摘要 本题在建立数学模型的基础上,用LINGO实证分析了各种标准下易拉罐的优化设计问题,并将实测数据和模型摸拟结果进行了对比分析。结论表明,易拉罐的设计不但要考虑材料成本(造价),还要满足结构稳定、美观、方便使用等方面的要求。 在第二个问题中,易拉罐被假定为圆柱体,针对材料最省的标准,得到了不同顶部、底部与侧面材料厚度比时的最优设计方案。针对材料厚度的不同,建立两个模型:模型一,设易拉罐各个部分厚度和材料单价完全相同,最优设计方案为半径与高的比:1:2 R H=(H为圆柱的高,R为圆柱的半径);模型二,设易拉罐顶盖、底部厚度是罐身的3倍,通过计算得到半径与高:1:6 R H=时,表面积最小。一般情况下,当顶盖、底部厚度是罐身的b倍时,最优设计方案为:2 =。 R H b 在第三问中,针对圆柱加圆台的罐体,本文也建立了两个模型:模型三,设易拉罐整体厚度相同,利用LINGO软件对模型进行分析,得出当24 +==(h为 H h R r 圆台的高,r为圆台上盖的半径)时,设计最优;模型四,假设罐顶盖、底部的厚度是罐身的3倍,同样利用软件LINGO对其进行分析,得出 4.5 r→时 H h R +≈,0 材料最省,即顶部为圆锥时材料最省,模型的结果在理论上成立,但与实际数据不符。原因是厂商在制作易拉罐时,不仅要考虑材料最省,还要考虑开盖时所受到的压力、制造工艺、外形美观、坚固耐用等因素。 在第四问中,本文根据第三问中模型最优设计结果与实测数据的误差,调整了的设计标准,在材料最省的基础上,加入了方便使用,物理结构更稳定等标准。通过比较发现,前面四个模型中,模型二和模型四体现了硬度方面的要求。进一步对模型二、四进行比较,发现模型四的结论更优。为此,将模型四结论中的底部也设计为圆锥。此时,材料最省。但是,两端都设计为圆锥时,无法使用。因此,将项部和底部设计为圆台,并考虑拉环长度和手指厚度(易于拉动拉环)时,得到圆台顶端和底部半径都为2.7。此时,易拉罐形状和尺寸最优。如果设计为旋转式拉环,====时,可以得到优于现实中易拉罐的设计方案。 r h R H 2.2,0.75, 3.93, 6.86 最后,本文总结了此次数学建模中有益的经验--在数学建模过程必须灵活应用从简到繁、由易到难不断扩展的研究方法,并且要充分发挥数学软件在优化设计中无可比拟的优势;同时,通过此次数学建模比赛深刻体会到了数学工具在生产实践中的重要作用。

易拉罐设计数学模型

2006高教社杯全国大学生数学建模竞赛山西赛区吕梁高等专科学校 第五队 参赛队员:1. 张晶晶 2. 刘美琴 3. 王超鹏 指导教师:王亮亮 2006 年 9 月 18 日

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): C 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):吕梁高等专科学校 参赛队员(打印并签名) :1. 张晶晶 2. 刘美琴 3. 王超鹏 指导教师或指导教师组负责人(打印并签名):王亮亮 日期: 2006 年 9 月 18 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

易拉罐形状和尺寸的设计 摘要 本文研究易拉罐的形状和尺寸的设计问题。 体积给定的圆柱体,其表面积最小的尺寸(半径和高)为多少?从纯数学的观念出发,这个尺寸(半径和高)为1:2。也就是说,对于易拉罐而言,当高是半径的2倍时,其表面积最小。即易拉罐设计成等边圆柱时,消耗的材料较少,生产成本较低。但在实际生活中,我们所看到的易拉罐不是等边圆柱的,有的长些,有的短些,生活中(市场上)的易拉罐为什么会是这样呢? 经过我们调查测量,也发现销量很大的饮料的饮料罐(即易拉罐)的形状和尺寸几乎是一样的。经过测量生活中(市场上)饮料罐胖的部分的直径和高的比为6.4/10.3=0.621,非常接近黄金分割比0.618。这是巧合,还是这样的比例看起来最舒服,最美?看来,这样并非偶然,这应该是某种意义下的最优设计。 事实上,体积一定的易拉罐的形状和尺寸的设计问题,不仅与表面积的大小有关,而且还与易拉罐的上、下底面和侧面所用材料的价格有关,也与制造过程中焊接口的工作量的多少和焊缝长短有关。此时,易拉罐就不再是等边圆柱了。 在本文讨论中,我们假设1、不考虑制造过程中焊接口的工作量的多少和焊缝长短问题,只考虑了表面积和所用材料的问题;2、不考虑易拉罐底部上拱问题,模型中模型的底部以平底处理;3、不考虑易拉罐的拉环。在以上假设的基础之上我们以355ml 的可口可乐饮料罐的形状和尺寸为例进行讨论,应用层次分析法逐步建立了四个模型。应用初等数学的知识算出了各个模型中的高和半径的比值、表面积和成本,最终讨论计算结果认为当高与半径之比4.68827时,模型基本上与市场上的易拉罐形状和尺寸相同。然后我们对生活中355ml的可口可乐饮料罐给出了我们自己的关于易拉罐的形状和尺寸的设计。 关键词:等边圆柱易拉罐 注:本文中提到的等边圆柱是指:圆柱的高与圆柱的底面直径之比为1:1的圆柱体。

易拉罐形状和尺寸的最优设计

2006高教社杯全国大学生数学建模竞赛题目 (请先阅读“对论文格式的统一要求”) C题: 易拉罐形状和尺寸的最优设计 我们只要稍加留意就会发现销量很大的饮料(例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。 现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务: 1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。 2.设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。 3.设易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。 什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。 4.利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。 5.用你们做本题以及以前学习和实践数学建模的亲身体验,写一篇短文(不超过1000字,你们的论文中必须包括这篇短文),阐述什么是数学建模、它的关键步骤,以及难点。

易拉罐形状和尺寸的最优设计 摘要 本题在建立数学模型的基础上,用LINGO 实证分析了各种标准下易拉罐的优化设计问题,并将实测数据和模型摸拟结果进行了对比分析。结论表明,易拉罐的设计不但要考虑材料成本(造价),还要满足结构稳定、美观、方便使用等方面的要求。 在第二个问题中,易拉罐被假定为圆柱体,针对材料最省的标准,得到了不同顶部、底部与侧面材料厚度比时的最优设计方案。针对材料厚度的不同,建立两个模型:模型一,设易拉罐各个部分厚度和材料单价完全相同,最优设计方案为半径与高的比(为圆柱的高,为圆柱的半径);模型二,设易拉罐顶盖、底部厚度是罐身的3倍,通过计算得到半径与高时,表面积最小。一般情况下,当顶盖、底部厚度是罐身的倍 b 时,最优设计方案为61:: =H R 。 在第三问中,针对圆柱加圆台的罐体,本文也建立了两个模型:模型三,设易拉罐整体厚度相同,利用LINGO 软件对模型进行分析,得出当(为圆台的高,为圆台上盖的半径)时,设计最优;模型四,假设罐顶盖、底部的厚度是罐身的3倍,同样利用软件LINGO 对其进行分析,得出,时材料最省,即顶部为圆锥时材料最省,模型的结果在理论上成立,但与实际数据不符。原因是厂商在制作易拉罐时,不仅要考虑材料最省,还要考虑开盖时所受到的压力、制造工艺、外形美观、坚固耐用等因素。 在第四问中,本文根据第三问中模型最优设计结果与实测数据的误差,调整了的设计标准,在材料最省的基础上,加入了方便使用,物理结构更稳定等标准。通过比较发现,前面四个模型中,模型二和模型四体现了硬度方面的要求。进一步对模型二、四进行比较,发现模型四的结论更优。为此,将模型四结论中的底部也设计为圆锥。此时,材料最省。但是,两端都设计为圆锥时,无法使用。因此,将项部和底部设计为圆台,并考虑拉环长度和手指厚度(易于拉动拉环)时,得到圆台顶端和底部半径都为2.7。此时,易拉罐形状和尺寸最优。如果设计为旋转式拉环,86.693.3075.h 2.2r ====H R ,,,时,可以得到优于现实中易拉的设计方案。 关键词:最优设计 体积结构 材料最省 lingo

易拉罐形状及尺寸的最优模型

易拉罐形状及尺寸的最优模型 『摘要』 本文研究的是易拉罐外形和尺寸的最优化问题,通过建立数学模型找到在易拉罐体积一定的条件下,使得易拉罐表面积最小,材料最省的外形及尺寸。 我们首先动手测量易拉罐的各项尺寸,然后通过一个由简单到复杂的分析过程,逐步建立模型与实测数据比较确定易拉罐外形和尺寸的设计方案,并且通过进一步优化得到最优的设计方案。 第一题需要我们亲自动手用各种工具测量易拉罐上底面及下底面直径、易拉罐各部分高度以及厚度。 第二题假设易拉罐为一个正圆柱体,问题简化为已知圆柱体的体积求其高度和底面半径为多少时表面积最小。进一步分析问题建立目标函数,用微分地方法求解。最后于我们实际测量的数据比较发现这种模型不是最优模型,还需要进一步研究。 第三题假设易拉罐的上部是一个正圆台,这样问题就变为上不圆台和下部圆柱体体积和一定的条件下,求其表面积和最小,与第二步相同建立目标函数,并考虑到各种约束条件,例如美观要符合黄金比例、人体机能等 关键词:最优化 LINGO 黄金分割率 3dmax cad

1问题重述 我们只要稍加留意就会发现销量很大的饮料(例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。 现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务: 1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。 2.设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。 3.设易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。 什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。4.利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。 5.用你们做本题以及以前学习和实践数学建模的亲身体验,写一篇短文(不超过1000字,你们的论文中必须包括这篇短文),阐述什么是数学建模、它的关键步 2 问题分析 通过对问题进行分析可以看出,本文研究容积一定的易拉罐的用料最省问题,通过建立模型找到一种最合理、最节约的设计,进而结合实际问题优化模型。 问题1,通过实际测量得到易拉罐下部圆柱体内直径,中部圆柱体内高度,上部圆台体上直径、下直径,上部圆台体高度以及易拉罐顶部和其他部位厚度。 问题2,假设易拉罐是一个正圆柱体,即将上部圆台看成正圆柱,问题简化为在圆柱体体积一定的条件下求其表面积最少,建立优化模型,用微分方程求解模型。 问题3,设易拉罐是由一个圆柱体和一个圆台构成,即在第二问基础上考虑到易拉罐上下表面直径不同,问题仍然可以看成已知体积求最小表面积的优化问题。求解方法为,把易拉罐分为两部分分别求其表面积和体积,然后求和得出其总体积、总的表面积,确定目标函数,并从美观、方便等方面建立约束条件,进而求出最优解。 问题4,

参考论文1-易拉罐的最优设计

易拉罐最优设计模型 (2006年全国一等奖) 摘要:本文建立了易拉罐形状和尺寸的最优设计模型,使易拉罐制作所用的材料最省,来增加生产商的经济效益。在饮料罐容积一定的基础上,按照材料最省原则,根据所给的任务2、任务3、任务4,分别建立了模型Ⅰ、模型Ⅱ、模型Ⅲ,最终在讨论和分析后,对模型进行了评价和改进。 对于任务1,利用千分卡尺测量了我们认为验证模型所需要的易拉罐各个部分的数据,并把所测得的数据用图形和表格加以说明。 对于任务2,在易拉罐为正圆柱体的情况下建立模型Ⅰ,通过确定目标函数),(h r A ,给出约束条件0),(=h r B ,利用初等解法得出 4:=r h 为圆柱体易拉罐的最优设计。并用此其结果检验用千分尺所测得029.4:=r h ,其绝对误差仅为0.29,可以说几乎一致。 当易拉罐为正圆台与正圆柱组合的情况下建立了非线性规划模型Ⅱ,利用LINGO 软件算出9.120:37.0:6.30:8.29:::11≈h h r r 为该模型的最优设计。这一结果与我们测量所得数据基本吻合,其中圆台高误差较大,这引起了我们对此模型与实际易拉罐形状、尺寸的进一步观察与思考。 最终我们感悟出要设计一个既省材又耐用且美观的易拉罐必需考虑经济、耐压、美观和实用性四个方面。从这四个方面出发我们建立了关于材料最省的优化模型Ⅲ,并利用LINGO 软件算出其结果为: 9.9:5.27:5.30:7.10:8.116:5.32:::::3211≈h r r h h r 在模型的结尾部分,我们通过对建立模型的方法、计算工具等方面进行了模型的评价,并提出进一步改进的方法。 最后通过本模型以及以前学习和实践数学建模的亲身体验,写了一篇短文。 关键词:易拉罐 最优设计 非线性规划 LINGO 软件

数学建模 易拉罐的设计问题

易拉罐的形状和尺寸的最优设计 一旅五队赵久国(3782011040)摘要 现实生活中,我们会发现销售量很大的易拉罐饮料(例如:体积为355毫升的可乐,啤酒,雪碧,七喜等)的形状和尺寸几乎都一样,联系利润问题,我们可能会猜想同样是355毫升的容量,设计成那样的形状可能会节约易拉罐的制造成本。带着这样的猜想,我通过数学建模的方法去寻找原因。 本文就是通过建立简化的数学模型,找到在易拉罐体积一定(355毫升)的条件下,使得易拉罐材料最省(通过计算易拉罐的表面积来表示用料)的外形及尺寸。我第一步是实际调查研究(发现:实际生活中没有把易拉罐设计成长方体的形状的,都是接近圆柱体的,可以断定长方体没有圆柱体节省材料,于是对于后面的模型只考虑圆柱体的情况);第二步是通过简化建模所需的条件(假定易拉罐的侧面和底面用的材料都一样且厚度都一样(注:现实生活中肯定不一样,这需要前面模型的优化));第三步是建立的简单模型,并且进行求解;第四步是对模型所得的数据进行分析,和与实际生活中所测的易拉罐的数据进行对比;第五步是得出基本的结论和对模型进行改进,粗略确定易拉罐外形和尺寸的最佳设计方案。 关键词:355毫升易拉罐简化条件模型设计导数求极值 对比分析优化设计

第一步: 对于体积恒定的355毫升的易拉罐,在保证体积不变的情况下设计他的形状,尺寸,要求是表面积最小。 第二步: 假设: 1.易拉罐设计的形状为圆柱体,侧面和底面用的材料都一样且厚度都一样. 2.易拉罐的体积一定. 3.确定变量和参数:设易拉罐内半径为r,高度为h ,厚度为a ,体积为v ,表面积为s 。其中r 和h 是自变量,易拉罐面积s 是因变量,而体积v 是固定参数,则s 和v 分别为: 2222233 222()()2422,s r a a r a h r h ar a r a hra ha v v r h h r ππππππππππ=+?++?-=++++== 第三步: 根据前两步建立模型: 2g(,)min (,) 0,0,(,)0r h r h v s r h r h g r h π=-=>>=设目标函数其中且 V 是已知的,g(r,h)是约束条件,目标函数s 就是要求在体积V 一定的条件下求S 的最小值,此时r 和s 的比值。

易拉罐形状和尺寸的最优设计(2)

参赛论文 易拉罐的形状和尺寸的最优设计问题 摘要 饮料灌装是饮料生产中十分重要的一环,饮料灌装容器的设计不仅直接关系到生产企业的制造成本,同是也决定着饮料产品的品质和价值。理想的饮料灌装容器应能起到以下作用:保护内在质量、免受物理损坏、使用方便、便于运输、和促进销售。在日常生活中,我们总会买些易拉罐装的饮料和食品,殊不知,易拉罐的设计便包含了一定的物理、数学知识。对易拉罐的设计,生产者总会考虑让它成本最低,并且功能最强。如:设计一个体积固定为V 的圆柱形易拉罐,什么样的设计方案最优? 首先我们根据测的一组数据得直径和高的比值接近黄金分割点。本文基于用铝材料做成一个容积一定的圆柱形的容器用料最省问题,我们分析说明表面积最小是正圆柱体的最优设计。再从实际情况出发,注意到罐的顶盖比其他部分都要厚,我们引入了厚度因子a,并结合模型<一>的结论r:h=1:4,考虑用材料的体积SV ,建立模型<二>,得出a=3.再以此为基础, 建立模型<三>: Min S=[2H R ??π+2R ?π+32r ?π+22)3.0()(h h r R +?+?π]b ? S.t. V=H R ??2π+)(3 1 33r R -??π R=r+0.3h 设定从顶盖到胖体部分的斜率为 a. 并代入工程生产中普遍认定的斜率0.3,运用Mathematica 软件求解,得出h=4r 的结论,这与我们在第一问中用游标卡尺所测得的数据吻合.对此时的SV 进行求偏导数,得出极值点为h=5.36221, r=1.49597, R=3.1046, H=10.8017.问题四我们用曲面积分思想建立了模型〈四〉: Min )(2322 02120 02122R R r R R r R H R SV ---??++?+??=ππππb ? S.t V=H R ??2π+])()[(3 320322020R R h R R h R --+-?- ??π π 得出我们设计的易拉罐H=6.54 h=2.54 R=3.82 直径:高度=2R :(H+h ) 最后,我们根据自己本次参加数学建模课余培训直到参加竞赛的亲身体验,写了《体验数学建模》一文。

易拉罐设计问题

易拉罐的设计问题 一、模型的假设 1、除易拉罐的顶盖外,罐的其他部分厚度相同 2、忽略材料的接缝折边以及切削的损耗 3、易拉罐所装的饮品的体积一定 4、忽略制造中的工艺上的必须要求的折边长度 二、符号说明 V 表示易拉罐的用料体积 0V 表示易拉罐的罐内的容积 r 表示圆柱形的圆半径 S 易拉罐的表面积 λ表示易拉罐的上、下底面的单位面积的造价 θ表示易拉罐的侧面的价格 α表示易拉罐的上顶面与侧面厚度的比例系数 d 表示除顶盖外的其他部分材料的厚度 三、模型的建立及求解 要比较易拉罐的优劣,可以由其制作过程中所消耗的原材料的多少来判别,即最优易拉罐应具有最小的表面积。 如果,先不考虑材料的厚度及价格等因素,由圆柱的体积公式可得,2V r h π=,从而2V h r π=,又易拉罐的表面积为2222S r r h ππ=+,将2V h r π=代入其中得222V S r r π=+ 又由题知,体积V 为常数,即求当 r 为何值时,函数S取值最

小,由此目标函数为 min 222V S r r π=+ 22V V S r r r π=++≥= 当且仅当22V r r π=,即r =时h=2r 。但是,在实际生活中,易拉罐却不是这样的。 我们以355ml 的可口可乐易拉罐为对象来测量,得到如下数据。 由数据可知,4h r ≈即易拉罐的高与直径的比约为2:1。这是由于喝饮料时要使劲拉使得顶盖要比其他部分厚。 考虑到用于上下底面与侧面所用材料的造价不同,故制造一个易拉罐的价格为222y r rh λπθπ=+,于是目标函数可化为 min 222y r rh λπθπ=+ () 223y r rh rh πλθθ=++≥当且仅当22r λ=rh θ,即2r h λθ= 时,易拉罐的价格最低,此时易拉 罐不再是等边圆柱了。 考虑易拉罐的顶盖厚度是其他部分的材料厚度的α倍,进而易拉罐的侧面用料体积为 22(())((1))V r d r h d ππα=+-++ 圆柱形易拉罐顶盖用料的体积为2d r απ,底部用料体积为2d r π,所以易拉罐用料体积为

自制玩具:易拉罐

易拉罐 玩法一:垒高楼 幼儿把易拉罐一个一个往上垒,看谁垒得高。 玩法二:走梅花桩 把相同的易拉罐三个或五个捆绑固定在一起。把捆好的易拉罐站立相隔20—30厘米摆成直线或圆形,幼儿在上面平稳地走。 玩法三:推拉车 将三四个易拉罐用铁丝穿在一起固定住,再捆上适合幼儿推拉的小木棍即成推拉车。

玩法四:做打击乐器 在易拉罐里装上适量的小石子或玉米粒,将口封住。看谁的节奏打得好。 玩法五:做运动器械 幼儿每人两个可用其做易拉罐操。 玩法六:踩高跷 在两个易拉罐的沿口上对称钻洞,拴上合适长短的绳子,幼儿站在上面手脚配合交替提着走。 玩法七:大保龄球 把四五个易拉罐并排放在终点线上,幼儿站在2米以外的起点线上,拿球或者沙包投掷,看谁投倒得多。

饮料瓶 玩法一:做陀螺 将两个饮料瓶剪去底部后,把剩余的部分按比例剪成同等宽窄的长条,将两个剪好的部分按对称的方法用胶带粘在一起,再用好看的即时贴装饰即成陀螺。 玩法二:拉力器 将两个婴幼儿常喝的娃哈哈或者爽歪歪小瓶底部扎洞,穿上橡皮筋。看谁拉得长。 玩法三:做沙丘 在饮料瓶里装上沙子或玉米粒,盖好盖子晃一晃,看谁晃得好听。 玩法四:拖拉玩具 用饮料瓶装上石子,盖好盖,拴上长绳,放在地上当拖拉玩具。老师在站在前面,幼儿随后,老师说:我走你也走,

幼儿就在后面拖着走;如果说:我跑你也跑,幼儿就在后面拖着玩具跑。 玩法五:小猫钓鱼 教师画好一个大圆圈做池塘,幼儿围在圆圈外面,每人拿一个带有绳子的饮料瓶,在池塘里往外面钓鱼(绳子是鱼钩,瓶子是鱼),看谁钓的鱼又快又多。 玩法六:排序 多个大小不同的瓶子,让幼儿看一看有什么不同。(师):这些瓶子太乱了,你能想个办法把它排好吗?按从大到小或从小到大的顺序排。看谁排得有对又快。 玩法七:做喷壶 在饮料瓶盖上钻上些许洞。瓶子里装上水,挤压瓶身,一个好看又好玩的喷壶就成了。

2006_全国数学建模C题易拉罐形状和尺寸的最优设计.解析

易拉罐形状和尺寸的最优设计 摘要 本题在建立数学模型的基础上,用LINGO实证分析了各种标准下易拉罐的优化设计问题,并将实测数据和模型摸拟结果进行了对比分析。结论表明,易拉罐的设计不但要考虑材料成本(造价),还要满足结构稳定、美观、方便使用等方面的要求。 在第二个问题中,易拉罐被假定为圆柱体,针对材料最省的标准,得到了不同顶部、底部与侧面材料厚度比时的最优设计方案。针对材料厚度的不同,建立两个模型:模型一,设易拉罐各个部分厚度和材料单价完全相同,最优设计方案为半径与高的比:1:2 R H=(H为圆柱的高,R为圆柱的半径);模型二,设易拉罐顶盖、底部厚度是罐身的3倍,通过计算得到半径与高:1:6 R H=时,表面积最小。一般情况下,当顶盖、底部厚度是罐身的b倍时,最优设计方案为:2 =。 R H b 在第三问中,针对圆柱加圆台的罐体,本文也建立了两个模型:模型三,设易拉罐整体厚度相同,利用LINGO软件对模型进行分析,得出当24 +==(h为 H h R r 圆台的高,r为圆台上盖的半径)时,设计最优;模型四,假设罐顶盖、底部的厚度是罐身的3倍,同样利用软件LINGO对其进行分析,得出 4.5 r→时 H h R +≈,0 材料最省,即顶部为圆锥时材料最省,模型的结果在理论上成立,但与实际数据不符。原因是厂商在制作易拉罐时,不仅要考虑材料最省,还要考虑开盖时所受到的压力、制造工艺、外形美观、坚固耐用等因素。 在第四问中,本文根据第三问中模型最优设计结果与实测数据的误差,调整了的设计标准,在材料最省的基础上,加入了方便使用,物理结构更稳定等标准。通过比较发现,前面四个模型中,模型二和模型四体现了硬度方面的要求。进一步对模型二、四进行比较,发现模型四的结论更优。为此,将模型四结论中的底部也设计为圆锥。此时,材料最省。但是,两端都设计为圆锥时,无法使用。因此,将项部和底部设计为圆台,并考虑拉环长度和手指厚度(易于拉动拉环)时,得到圆台顶端和底部半径都为2.7。此时,易拉罐形状和尺寸最优。如果设计为旋转式拉环,====时,可以得到优于现实中易拉罐的设计方案。 r h R H 2.2,0.75, 3.93, 6.86 最后,本文总结了此次数学建模中有益的经验--在数学建模过程必须灵活应用从简到繁、由易到难不断扩展的研究方法,并且要充分发挥数学软件在优化设计中无可比拟的优势;同时,通过此次数学建模比赛深刻体会到了数学工具在生产实践中的重要作用。

易拉罐的最优设计

易拉罐最优设计模型 周亦挺 鲍亨卫 莫亚萍 (2006年获全国一等奖) 摘要:本文建立了易拉罐形状和尺寸的最优设计模型,使易拉罐制作所用的材料最省, 来增加生产商的经济效益。在饮料罐容积一定的基础上,按照材料最省原则,根据所给的任务2、任务3、任务4,分别建立了模型Ⅰ、模型Ⅱ、模型Ⅲ,最终在讨论和分析后,对模型进行了评价和改进。 对于任务1,利用千分卡尺测量了我们认为验证模型所需要的易拉罐各个部分的数据,并把所测得的数据用图形和表格加以说明。 对于任务2,在易拉罐为正圆柱体的情况下建立模型Ⅰ,通过确定目标函数),(h r A ,给出约束条件0),(=h r B ,利用初等解法得出 4:=r h 为圆柱体易拉罐的最优设计。并用此其结果检验用千分尺所测得029.4:=r h ,其绝对误差仅为0.29,可以说几乎一致。 当易拉罐为正圆台与正圆柱组合的情况下建立了非线性规划模型Ⅱ,利用LINGO 软件算出9.120:37.0:6.30:8.29:::11≈h h r r 为该模型的最优设计。这一结果与我们测量所得数据基本吻合,其中圆台高误差较大,这引起了我们对此模型与实际易拉罐形状、尺寸的进一步观察与思考。 最终我们感悟出要设计一个既省材又耐用且美观的易拉罐必需考虑经济、耐压、美观和实用性四个方面。从这四个方面出发我们建立了关于材料最省的优化模型Ⅲ,并利用LINGO 软件算出其结果为: 9 .9:5.27:5.30:7.10:8.116:5.32:::::3211≈h r r h h r 在模型的结尾部分,我们通过对建立模型的方法、计算工具等方面进行了模型的评价,并提出进一步改进的方法。 最后通过本模型以及以前学习和实践数学建模的亲身体验,写了一篇短文。 关键词:易拉罐 最优设计 非线性规划 LINGO 软件 问题重述 在生活中我们会发现销量很大的饮料 (例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。 现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务:

相关文档
最新文档