镜头角度与距离计算方法

镜头角度与距离计算方法
镜头角度与距离计算方法

专用的镜头角度计算方法

镜头焦距的计算

1公式计算法:视场和焦距的计算视场系指被摄取物体的大小,视场的大小是以镜头至被摄取物体距离,镜头焦头及所要求的成像大小确定的。

1、镜头的焦距,视场大小及镜头到被摄取物体的距离的计算如下;

f=wL/W 2、f=hL/h

f;镜头焦距 w:图象的宽度(被摄物体在ccd靶面上成象宽度)

W:被摄物体宽度

L:被摄物体至镜头的距离

h:图象高度(被摄物体在ccd靶面上成像高度)视场(摄取场景)高度

H:被摄物体的高度

ccd靶面规格尺寸:单位mm

规格 W H

1/3" 4.8 3.6

1/2" 6.4 4.8

2/3" 8.8 6.6

1" 12.7 9.6

由于摄像机画面宽度和高度与电视接收机画面宽度和高度一样,其比例均为4:3,当L不变,H或W增大时,f变小,当H或W不变,L增大时,f增大。

2视场角的计算如果知道了水平或垂直视场角便可按公式计算出现场宽度和高度。水平视场角β(水平观看的角度)β=2tg-1= 垂直视场角q(垂直观看的角度) q=2tg-1= 式中w、H、f同上水平视场角与垂直视场角的关系如下: q=或=q 表2中列出了不同尺寸摄像层和不同焦距f时的水平视场角b的值,如果知道了水平或垂直场角便可按下式计算出视场角便可按下式计算出视场高度H和视场宽度W. H=2Ltg、W=2Ltg 例如;摄像机的摄像管为17mm(2/3in),镜头焦距f为12mm,从表2中查得水平视场角为40℃而镜头与被摄取物体的距离为2m,试求视场的宽度w。 W=2Ltg=2×2tg=1.46m 则H=W=×1.46=1.059m 焦距f

越和长,视场角越小,监视的目标也就小。

图解法如前所示,摄像机镜头的视场由宽(W)。高(H)和与摄像机的距离(L)决定,一旦决定了摄像机要监视的景物,正确地选择镜头的焦距就由来3个因素决定; *.欲监视景物的尺寸 *.摄像机与景物的距离 *.摄像机成像器的尺士:1/3"、1/2"、2/3"或1"。图解选择镜头步骤:所需的视场与镜头的焦距有一个简单的关系。利用这个关系可选择适当的镜头。估计或实测视场的最大宽度;估计或实测量摄像机与被摄景物间的距离;使用1/3”镜头时使用图2,使用1/2镜头时使用图3,使用2/3”镜头时使用图4,使用1镜头时使用图5。具体方法:在以W和L为座标轴的图示2-5中,查出应选用的镜头焦距。为确保景物完全包含在视场之中,应选用座标交点上,面那条线指示的数值。例如:视场宽50m,距离40m,使用

1/3"格式的镜头,在座标图中的交点比代表4mm镜头的线偏上一点。这表明如果使用4mm镜头就不能覆盖50m的视场。而用2.8mm的镜头则可以完全覆盖视场。

f=vD/V 或 f=hD/H

其中,f代表焦距,v代表CCD靶面垂直高度,V代表被观测物体高度,h代表CCD靶面水平宽度,H代表被观测物体宽度。

举例:假设用1/2”CCD摄像头观测,被测物体宽440毫米,高330毫米,镜头焦点距物体2500毫米。由公式可以算出:

焦距f=6.4X2500/440≈36毫米或

焦距f=4.8X2500/330≈36毫米

当焦距数值算出后,如果没有对应焦距的镜头是很正常的,这时可以根据产品目录选择相近的型号,一般选择比计算值小的,这样视角还会大一些。

智能建筑闭路电视系统中摄像机镜头的选择及计算

摘要:本文主要介绍闭路电视系统中摄像机镜头的选择和计算,在选择和计算镜头时提供了三种方法;公式计算法、查表法和图解法。

关键词:摄像机、镜头、焦距、视场、视场角

摄像机镜头是视频监视系统的最关键设备,它的质量(指标)优劣直接影响摄像机的整机指标,因此,摄像机镜头的选择是否恰当既关系到系统质量,又关系到工程造价。

1.镜头的种类

1.1按镜头尺寸划分:摄像机镜头与摄像机一样也分为8.5mm(1/3in)、13mm(1/2in)、17mm(2/3)、19mm(3/4in)、25mm(lin)等多种,在选择摄像机镜头时,一般应与摄像机相对应,即13mm摄像机应选用13mm镜头。

1.2按镜头类别划分:摄像机镜头分手动光圈镜头和自动光圈镜头两大类型,手动和自动调整都是为了调节光通光量,使传感器感受光量保持在最佳状态。

2.手动、自动光圈镜头的应用围

手动光圈镜头是的最简单的镜头,适用于光照条件相对稳定的条件下,手动光圈由数片金属薄片构成。光通量靠镜头外径上的一个环调节。旋转此圈可使光圈收小或放大。

在照明条件变化大的环境中或不是用来监视某个固定目标,应采用自动光圈镜头,比如在户外或人工照明经常开关的地方,自动光圈镜头的光圈的动作由马达驱动,马达受控于摄像机的视频信号。

手动光圈镜头和自动光圈镜头又有定焦距(光圈)镜头自动光圈镜头和电动变焦距镜头之分。

2.1定焦距(光圈)镜头,一般与电子快门摄像机配套,适用于室监视某个固定目标的场所作用。

定焦距镜头一般又分为长焦距镜头,中焦距镜头和短焦距镜头。中焦距镜头是焦距与成像尺寸相近的镜头;焦距小于成像尺寸的称为短距镜头,短焦距镜头又称广角镜头,该镜头的焦距通常是28mm以下的镜头,短焦距镜头主要用于环境照明条件差,监视围要求宽的场合,焦距大于成像尺寸的称为长焦距镜头,长焦距镜头又称望远镜头,这类镜头的焦距一般在150mm以上,主要用于监视较远处的景物。

2.2、手动光圈镜头,可与电子快门摄像机配套,在各种光线下均可使用。

2.3、自动光圈镜头,(EF)可与任何CCD摄像机配套,在各种光线下均可使用,特别用于被监视表面亮度变化大、围较大的场所。为了避免引起光晕现象和烧坏靶面,一般都配自动光圈镜头。

2.4、电动变焦距镜头,可与任何CCD摄像机配套,在各种光线下均可使用,变焦距镜头是通过遥控装置来进行光对焦,光圈开度,改变焦距大小的。

3、镜头的计算

3、1公式计算法

3.1.1、视场和焦距的计算

视场系指被摄取物体的大小,视场的大小是以镜头至被摄取物体距离,镜头焦头及所要求的成像大小确定的。镜头的焦距,视场大小及镜头到被摄取物体的距离的计算如下;

--------------------------------------------------------------------------------

焦距:f==c W

--------------------------------------------------------------------------------

视场 H= L 图1-视场计算图

W=

式中: H=视场(摄取场景)高度(m)

W=视场(摄取场景)宽度(m)

由于摄像机画面宽度和高度与电视接收机画面宽度和高度一样,其比例均为4:3,所以

W=H(m)

L-镜头至被摄取物体的蹁(视距)(m)

f-焦距(mm)

像场(靶面成像面)宽度(mm)

像场(靶面成像面积)高度(mm)

因摄像机的摄像管不同,其靶面像场的a,b值也不同,具体数值如下表1.

摄像机靶面成像像场a,b值

从式中可以看出,当L不变,H或W增大时,f变小,

当H或W不变,L增大时,f增大。

2视场角的计算

如果知道了水平或垂直视场角便可按公式计算出现场宽度和高度。

水平视场角β(水平观看的角度)

β=2tg-1=

垂直视场角q(垂直观看的角度)

q=2tg-1=

式中w、H、f同上

水平视场角与垂直视场角的关系如下:

q=或=q

表2中列出了不同尺寸摄像层和不同焦距f时的水平视场角b的值,如果知道了水平或垂直场角便可按下式计算出视场角便可按下式计算出视场高度H和视场宽度W.

H=2Ltg、W=2Ltg

例如;摄像机的摄像管为17mm(2/3in),镜头焦距f为12mm,从表2中查得水平视场角为40℃而镜头与被摄取物体的距离为2m,试求视场的宽度w。

W=2Ltg=2×2tg=1.46m

则H=W=×1.46=1.059m

焦距f越和长,视场角越小,监视的目标也就小。

3.3图解法

如前所示,摄像机镜头的视场由宽(W)。高(H)和与摄像机的距离(L)决定,一旦决定了摄像机要监视的景物,正确地选择镜头的焦距就

摄像机在不同焦距f时水视场角β表2

由来3个因素决定;

*.欲监视景物的尺寸

*.摄像机与景物的距离

*.摄像机成像器的尺士:1/3"、1/2"、2/3"或1"。

图解选择镜头步骤:

所需的视场与镜头的焦距有一个简单的关系。利用这个关系可选择适当的镜头。

估计或实测视场的最大宽度;估计或实测量摄像机与被摄景物间的距离;使用1/3”镜头时使用图2,使用1/2镜头时使用图3,使用2/3”镜头时使用图4,使用1镜头时使用图5。具体方法:在以W和L 为座标轴的图示2-5中,查出应选用的镜头焦距。为确保景物完全包含在视场之中,应选用座标交点上,面那条线指示的数值。例如:

视场宽50m,距离40m,使用1/3"格式的镜头,在座标图中的交点比代表4mm镜头的线偏上一点。这表明如果使用4mm镜头就不能覆盖50m的视场。而用2.8mm的镜头则可以完全覆盖视场。

电视监控CCD摄像机与镜头的选用及配合

摘要文章在系统地介绍了CCD摄像机和镜头的基础上,重点阐述了镜头的选用原则和镜头与摄像机的配合步骤。

关键词电视监控 CCD摄像机镜头 C/CS型接口同步

在进入信息化时代的今天,随着社会财富的增加,人们越来越重视安全防问题。同时,利用当今现有技术,也完全可以对防区进行有效的设防。CCD摄像机的出现与发展,为安全防提供了一种崭新的技术手段,以其既具有醒目的威慑作用,又可为破案提供强有力证据的魅力,广泛地应用于各个领域,在闭路电视监控方面

发挥着举足轻重的作用。CCD摄像部分位于闭路电视监控系统的最前沿,可以说是整个系统的“眼睛",“眼睛"的好坏将影响整个系统的质量。所以,认真选择和处理CCD摄像部分是至关重要的。

1 CCD摄像机与镜头

CCD是电荷藕合器件(Charge Couple Device)的简称,它能够将摄入光线转变为电荷并将其储存、转移,把成像的光信号转变为电信号输出,完成光电转移功能,因此是理想的摄像元件。CCD摄像机就是以其构成的一和中微型图像传感器。

1.1 CCD摄像机的特点

CCD摄像机具有体积小、重量轻、灵敏度高、寿命长、抗振动及不受电磁干扰等特点。这也正是CCD

摄像机比以前的摄像管式摄像机具有的最大优点。

衡量CCD摄像机性能的技术指标主要有以下几个方面:

(1)清晰度:一般多指水平清晰度。电视监控系统水平清晰度要求彩色摄像机在300线以上,黑白摄像机在350线以上。

(2)灵敏度(也称最低照度):灵敏度用“勒克斯',(Lx)表示。如某一摄像机的最低照度为0.1lx,其灵敏度一般0.1lx以上的摄像机为普通型;0.1lxi以下的摄像机为星、月光级高灵敏度型,也称作电子增感摄像机或夜视型摄像机。

(3)信噪比:摄像机的图象信号与它的噪声信号之比,用S/N表示。S表示摄像机在假设元噪声时的图像信号值,N表示摄像机本身产生的噪声值(比如热噪声),二者之比即为信噪比,用分贝(dB)表示。信噪比越高越好,典型值为46dB。

(4)视频输出:一般用输出信号电压的峰一峰值表示,多为1Vp-p~1.2Vp-p,即1V~1.2V峰-峰值负极性输出,且为750复合视频信号,采用BNC接头(同步头朝下)。

(5)CCD靶面尺寸:常见的CCD摄像机靶面大小分为:

1英寸----靶面尺寸为宽12.7mm×高9.6mm,对角线16mm。

2/3英寸----靶面尺寸为宽8.8mm×高6.6mm,对角线11mm。

1/2英寸----靶面尺寸为宽6.4mm×高4.8mm,对角线8mm。

1/3英寸----靶面尺寸为宽4.8mm×高3.6mm,对角线6mm。

1/4英寸----靶面尺寸为宽3.2mm×高2.4mm,对角线4mm。

CCD摄像机靶面小,将能降低成本,因此1/3英寸及以下的摄像机将占据越来越大的市场份额。

除了上述几种技术指标外,摄像机的供电电源分为直流和交流两种供电型式,常见的交流供电电压

有,110V和24V,直流供电电压有24V,12V和9V。摄像机与镜头接口形式有C/CS型之分。扫描制式基本有两种:PAL-B和NTSC。

另一个值得重视的指标是同步方式。现代的CCD摄像机,大多采用相位可调线路锁定的同步方式,即以交流电源频率(50Hz)作为用于垂直同步的参考值而代替了摄像机的同步发生器。在切换摄像机输出时,图像元滚动,不会造成画面失真。此外还有一个外部调整的相位控制(±90%),所以可获得非常精确的同步。

1.2 摄像机镜头的分类和技术特性

1.2.1 以镜头安装方式分类

与普通照相机所用卡口镜头不同,所有摄像机的镜头均是螺纹口的,CCD摄像机的镜头安装有两种工业标准,即C安装座和Cs安装座。两者之螺纹部分相同,都是1英寸32牙螺纹座,直径均为25.4mm。不同之处在于C安装座从镜头安装基准面到焦点的距离是17.526mm;Cs安装从镜头安装基准面到焦点的距离则为12.5mm。如果要将一个C安装座镜头装到一个CS安装座摄像机上时,则需要使用镜头转换器,即C/CS调节圈。

1.2.2 以镜头视场大小分类

标准镜头:视角300左右,当镜头焦距近似等于摄像靶面对角线长度时,则定为该机的标准镜头。在2/3英寸CCD摄像机中,标准镜头焦距定为16mm,在1/2英寸CCD摄像机中,标准镜头焦距定为12mm,在1/3英寸CCD摄像机中,标准镜头焦距定为8mm。

广角镜头:视角550以上,焦距可小到几毫米,能提供较宽广的视景。

远摄镜头:视角200以,焦距可达几十厘米、几十分米,这种镜头可在远距离情况下将拍摄的物体影像放大,但观察围将缩小。

变焦镜头:又称伸缩镜头,有手动变焦和电动变焦两类,可对所监视场景的视场角及目标物进行变焦距摄取图像,适合长距离变化观察和摄取目标。变焦镜头的特点是:在成像清晰的情况下,通过镜头焦距的变化来改变图像大小与视场大小。

针孔镜头:镜头端头直径仅几毫米,可隐蔽安装。针孔镜头或棱镜镜头适用于有遮盖物或有特殊要求的环境中,此时标准镜头或容易受损、或容易被发现,采用针孔镜头或棱镜镜头可满足类似特殊要求,比如在工业窑炉及精神病院等场所。

1.2.3 以镜头光圈分类

镜头有手动光圈和自动光圈之分,手动光圈镜头适合于亮度变化较小场所,自动光圈镜头因光照度发生大幅度变化时,其光圈亦作自动调整,可提供必要的动态围,使摄像机产生优质的视频信号,故适合于亮度变化较大场所。自动光圈有两类:一类是通过视频信号控制镜头光圈,称为视频输入型,另一类是利用机上直流电压直接控制光圈,称为DC输入型。

1.2.4 从镜头焦距上分类

短焦距镜头:因入射角较宽,故可提供一个较宽阔的视景。

中焦距镜头:即标准镜头,焦距的长度视CCD靶面的尺寸而定。

长焦距镜头:因人射角较窄,故仅能提供一个狭窄的视景,适用于远距离监视。

1.2.5 焦距和视场角

焦距是从透镜中心到一个平面的距离,在此平面可产生一个目标物之清晰影像,通常用焦距值f表示。镜头焦距f、镜头到目标物的距离d、视野H×V之间的关系如图1所示。

由此可知,镜头的焦距与视场角的大小成反比,即焦距越长,视场角越小;焦距越短,视场角越大。

1.2.6 相对孔径和光圈

镜头的相对孔径是镜头的人射膛D与焦距f之比,它是决定镜头通光能力的重要指标。式F=f/D表示,即光圈数。F值越小,头上均标有其最大的F值,如6mm/F1.距f为6mm,最大孔径为4.29mm。对孔径的平方成正比,对孔径就应是原来的在倍,倍。在镜头的标环上常标有1.4、2、2.8、4、5.16、22等档。

另一个值得注意的是景深问题,像机通过镜头,除了能把一还使该景物前后一面上,这段围叫做景深。物距有关,焦距越短景深越大,距越近,景深越小。

2 CCD摄像机与镜头的选配原则

2.1 CCD摄像机的选用原则

CCD摄像机与镜头的选用原则是根据使用场合、监视对象、目标距离、安装环境及监视目的来选择所需的摄像机。

一般来讲,在保证摄像系统可靠性及基本质量的前提下尽可能采用中低档次的摄像机和镜头,这一方面可以节省投资,另一方面,通常档次越高的设备由于其造价高产量必然较少,故相对来说可靠性指标比之中低档次产品要低,而维护使用的费用及技术水平却要求较高。作为电视监控系统不能像电视台那样配备水平较高的专业技术人员,因操作的限制,高档次设备得不到高质量画面的例子屡见不鲜的。彩色摄像机能辨别出景物或衣着的颜色,适合观察和辨认目标细节,但造价较高,清晰度较低,若进行宏观监视,目标场景色彩又较为丰富,此时最好采用彩色摄像机。从技术发展来看,彩色摄像机应用比重越来越大。

黑白摄像机清晰度较高,灵敏度也高于彩色摄像机,但没有色彩体现,所以在照度不高,目标没有明显的色彩标志和差异,同时又希望较清晰地反映出目标下,应选用黑白摄像机。

距离计算方法

1.欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的欧氏距离: 也可以用表示成向量运算的形式: 2.曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。 (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离 (2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离 5.标准化欧氏距离(Standardized Euclidean distance ) (1)标准欧氏距离的定义

标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是: 标准化后的值= (标准化前的值-分量的均值) /分量的标准差 经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的标准化欧氏距离的公式: 如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。 7.夹角余弦(Cosine) 有没有搞错,又不是学几何,怎么扯到夹角余弦了?各位看官稍安勿躁。几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2)两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦 类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。 即:

镜头角度与距离计算方法

监控摄像头镜头可视角度表 镜头焦距搭配1/3" CCD搭配1/4" CCD二者的角度差异 2.8 mm89.9°75.6°14.3° 3.6 mm75.7°62.2°13.5° 4 mm69.9°57.0°12.9° 6 mm50.0°39.8°10.2° 8 mm38.5°30.4°8.1° 12 mm26.2°20.5° 5.7° 16 mm19.8°15.4° 4.4° 25 mm10.6°8.3° 2.3° 60 mm 5.3° 4.1° 1.2° 监控摄像头镜头可视距离表 镜头焦 距(毫米数) 距离5米 (宽×高) 距离10米 (宽×高) 距离15米 (宽×高) 距离20米 (宽×高) 距离30米 (宽×高) 2.8mm13×9.8米26×19.5米39×29.3米52×39米78×58.5米 3.6mm8.5×6.4米17×12.8米25.5×19米34×25.5米51×38.3米4mm8×6米16×12米24×18米32×24米48×36米

6mm 5.5×4.1米11×8.3米16.5×12.4米22×16.5米33×24.8米8mm 3.5×2.6米7×5.3米10.5×7.9米14×10.5米21×15.8米12mm2×1.5米4×3米6×4.5米8×6米12×9米16mm 1.5×1.1米3×2.3米 4.5×3.4米6×4.5米9×6.8米25mm 1.3×1米 2.5×1.9米 3.8×2.9米5×3.8米7.5×5.6米60mm0.5×0.4米1×0.75米 1.5×1.1米2×1.5米3×2.3米

摄像机选型、安装需要考虑的几个问题 摄像机选型、安装通常有八点需要考虑,具体如下(1)应根据监控目标的的照度选着不同灵敏度的摄像机。监控目标的最低环 境照度应高于摄像机最低照度的10倍。 监视目标的照度要求与摄像机的灵敏度密切相关,通常闭路 电视监控系统是由被监视视场所监视时刻的自然光,一般画 面的典型照度见表1-1 表1-1 一般画面的典型照度 各种天气下的自然光照度值照度估计值(lx) 直射阳光100000—130000 晴天(非阳光直射)10000—20000 阴天1000 工作场所内(白天)200—400 非常阴暗的白天100 黄昏(拂晓)10 入夜1 满月0.1 弦月0.01 没有月亮的晴朗夜空0.001 没有月亮的多云夜空0.0001 监视目标的最低环境照度应高于摄像机最低照度的10倍以上,

投影幕布尺寸表+投影机到幕布距离的计算公式

投影幕布尺寸表卷帘屏幕(4:3) 对角线(英寸)尺寸(m)100" 约2.0 * 1.5 120" 约2.4 * 1.8 150" 约3.0 * 2.4 180" 约3.6 * 2.6 200" 约4.2 * 3.2 卷帘屏幕(16:9) 对角线(英寸)尺寸(m)92" 2.03 * 1.44 106" 约2.34 * 1.32 133" 约2.94 * 1.65 159" 3.55 * 1.98 161" 3.55 * 2.03 背投硬幕(丹麦DNP) 规格(对角线)尺寸(m)67" 1.04 * 1.37 72" 1.10 * 1.46 84" 1.28 * 1.70 100" 1.52 * 2.03 120" 1.83 * 2.44 卷帘/支架(方幕)

规格(英寸)尺寸(m)50*50 1.27 * 1.27 60*60 1.52 * 1.52 70*70 1.78 * 1.78 84*84 2.13 * 2.13 96*96 2.44 * 2.44 108*108 2.74 * 2.74 120*120 3.05 * 3.05 144*144 3.66 * 3.66 150" 2.28 * 3.04 快装活动幕(4:3) 对角线(英寸)尺寸(m)100" 2.032 * 1.524 120" 2.438 * 1.830 150" 3.040 * 2.280 180" 3.660 * 2.740 200" 4.267 * 3.200 250" 3.675 * 4.876 300" 6.090 * 4.570

以下为幕布内实际画面内尺寸(宽屏) 单位:毫米: 投影机到幕布距离的计算公式 最小投射距离(米) = 最小焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 最大投射距离(米) = 最大焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 已知投射距离得到画面尺寸 最大投射画面(米) = 投射距离(米)x 液晶片尺寸(英寸)÷最小焦距(米) 最小投射画面(米) = 投射距离(米)x 液晶片尺寸(英寸)÷最大焦距(米) 例如: 1、Toshiba TLP-S71的焦距是26.5mm~31.5mm, 液晶片尺寸是0.7英寸LCD板,需要85英寸的画面。 最小投射距离(米)=0.0265米x 85英寸÷0.7英寸= 3.217米 最大投射距离(米)=0.0315米x 85英寸÷0.7英寸= 3.825米 2、已知:EPSON EMP-6000的焦距是24.0 - 38.2 mm, 液晶片尺寸是0.8英寸LCD 板,投射距离为4米, 求:最大的投射画面和最小的投射画面。

地图投影参数说明

地图投影参数说明 2.4.1 地图投影的基本要素 ●假东、假北 地球椭球面或圆球面是不可展开的曲面,而地图又是一个平面,所以如何将地球表上的点或线表示在地图平面上,就是地图投影的基本问题。地图投影就是建立地球表面上点(地理坐标经度λ,纬度φ)和地图平面上的点(直角坐标x,y)之间的函数关系式: x = F1(φ,λ) y = F2(φ,λ) 实际工作中,为了避免横坐标出现负值,将其起算原点向西移动FalseEast 距离,单位为米(Metre);为了避免纵坐标出现负值,将其起算原点向南移动FalseNorth 距离。所以投影关系函数可表示为: x = F1(φ,λ) + FalseEast y = F2(φ,λ) + FalseNorth 其中FalseEast 为投影参数中的“假东”数值,单位为米(Metre);FalseNorth 为投影参数中的“假北”数值,单位为米(Metre)。 ●椭球体模型 大地测量中,大地水准面所包围的球体称为大地球体。可以一个大小和形状同它极为接近的旋转椭球面来代替:以椭圆的短轴(地轴)为轴旋转而成的椭球面称为地球椭球面。椭球体的元素与公式如下: 扁率: f=(a-b)/a 第一偏心率 e 2=(a 2-b 2)/a 2 第二偏心率: ep 2=(a 2-b 2)/b 2 表1 地球椭球体模型参数表 地球椭球体的大小因采用的资料不同,推算的椭球体的元素值也不同。世界各国采用和

曾用的地球椭球体模型不下30种。本程序中列出的椭球体数据见表1。 最后,本程序还提供了“用户设定椭球模型"项,供用户指定地球椭球体的长、短半径。 我国1952年以前采用海福特椭球(该椭球1924年被定为国际椭球)。从1953年起,改用克拉索夫斯基(Krassovsky)椭球,形成了1954年北京坐标系。1978年起开始采用国际大地测量协会(IUGG)所推荐的“1975年基本大地数据”中给定的椭球(IUGG 1975)参数,形成了1980年西安坐标系。因此,地球模型通常应选择Krassovsky或IUGG 1975(China 1980)模型。 2.4.2 地图投影的分类 由地球椭球面投影到地图平面,必然引起变形和误差。根据投影前后的变形性质,将投影分为: ①等角投影——即保角投影,或称正形投影,地球上任意两线段所组成的角度,在投影后仍保持不变。 ②等面积投影——即保面积投影,地球面上的图形在投影后保持面积不变。 ③等距离投影——沿某一主方向的长度(距离)保持不变。 根据投影时投影平面的类型,可将投影分为: ①圆锥投影——纬线投影为同心圆圆弧,经线为圆半径,经线间的夹角与经差成正比。该投影按变形性质可分为等角、等面积或等距离圆锥投影;按投影锥面与椭球体的相对位置关系可以分为正轴、横轴或斜轴圆锥投影;按投影锥面与椭球体相切或相割分为单标准纬线和双标准纬线圆锥投影。通常,等角圆锥投影称为兰勃特(Lambert)正形圆锥投影,双标准纬线;而正轴等面积割圆锥投影也曾叫亚尔勃斯(Albers)投影。 正轴圆锥投影中,“中央经线”为投影纵轴所在的经线;“极点”是指中央经线上,投影坐标原点对应的纬度数值;当采用双标准纬线时,“割线1”、“割线2”分别为北、南两条标准纬线;当采用单标准纬线时,“切线”为椭球体上与锥面相切的纬线。 ②圆柱投影——纬线投影为一组平行直线,经线为垂直于纬线的另一组平行直线,且两相邻线之间的距离相等。圆柱投影需指定“中央经线”作为投影纵轴所在的经线,而赤道通常则作为投影的横轴。等角圆柱投影亦叫墨卡托投影;而等角横切椭圆柱投影即是著名的高斯一克吕格(Gauss-Kruger)投影;等角横割椭圆柱投影也称通用横轴墨卡托(UTM)投影。 ③方位投影——纬线投影为同心圆,经纬为圆的半径,且经线间的夹角等于地球面上相应的经差。通常,等面积方位投影称为兰勃特等面积方位投影;等距离方位投影称为波斯托投影。 通常,投影类型是由投影面类型和变形性质等参量共同限定;投影参数则因投影类型不同而不同。本程序提供的投影类型(见表2)有: ⑴高斯投影,即高斯-克吕格(Gauss-Kruger)投影,在美国又称为横向墨卡托(Transverse Mercator, TM)投影,属于等角横轴切椭圆柱投影。该投影以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。 为了控制变形,高斯投影采用分带技术。通常采用6度分带:从180oW经线起,向东每6度经差为一个投影带,将全球划分为60个投影带,编号为1至60,各投影带的中央经线由L0=6n-3-180计算(n为投影带带号)。一般从80oS向北至84oN的范围内使用该投影,对于两极地区则采用通用球面极(Universal Polar Stereographic, UPS)投影。该投影常用来制作大比例尺的地图,已被许多国家作为地形图的数学基础。我国1:2.5—1:50万地形图均采用6度分带高斯投影;1:1万及更大比例尺地形图则采用3度分带,以保证必要的精度。 由于高斯投影每一个投影带的坐标都是相对本带坐标原点的相对值,即带内坐标,因此,

镜头角度与距离计算方法

专用的镜头角度计算方法 镜头焦距的计算 1公式计算法:视场和焦距的计算视场系指被摄取物体的大小,视场的大小是以镜头至被摄取物体距离,镜头焦头及所要求的成像大小确定的。 1、镜头的焦距,视场大小及镜头到被摄取物体的距离的计算如下; f=wL/W 2、f=hL/h f;镜头焦距 w:图象的宽度(被摄物体在ccd靶面上成象宽度) W:被摄物体宽度 L:被摄物体至镜头的距离 h:图象高度(被摄物体在ccd靶面上成像高度)视场(摄取场景)高度 H:被摄物体的高度 ccd靶面规格尺寸:单位mm 规格 W H 1/3" 1/2" 2/3" 1" 由于摄像机画面宽度和高度与电视接收机画面宽度和高度一样,其比例均为4:3,当L不变,H或W增大时,f变小,当H或W不变,L增大时,f增大。 2视场角的计算如果知道了水平或垂直视场角便可按公式计算出现场宽度和高度。水平视场角β(水平观看的角度)β=2tg-1= 垂直视场角q(垂直观看的角度) q=2tg-1= 式中w、H、f同上水平视场角与垂直视场角的关系如下: q=或=q 表2中列出了不同尺寸摄像层和不同焦距f时的水平视场角b的值,如果知道了水平或垂直场角便可按下式计算出视场角便可按下式计算出视场高度H和视场宽度W. H=2Ltg、W=2Ltg 例如;摄像机的摄像管为17mm(2/3in),镜头焦距f为12mm,从表2中查得水平视场角为40℃而镜头与被摄取物体的距离为2m,试求视场的宽度w。W=2Ltg=2×2tg= 则H=W=×= 焦距f越和长,视场角越小,监视的目标也就小。 图解法如前所示,摄像机镜头的视场由宽(W)。高(H)和与摄像机的距离(L)决定,一旦决定了摄像机要监视的景物,正确地选择镜头的焦距就由来3个因素决定; *.欲监视景物的尺寸 *.摄像机与景物的距离 *.摄像机成像器的尺士:1/3"、1/2"、2/3"或1"。图解选择镜头步骤:所需的视场与镜头的焦距有一个简单的关系。利用这个关系可选择适当的镜头。估计或实测视场的最大宽度;估计或实测量摄像机与被摄景物间的距离;使用1/3”镜头时使用图2,使用1/2镜头时使用图3,使用2/3”镜头时使用图4,使用1镜头时使用图5。具体方法:在以W和L为座标轴的图示2-5中,查出应选用的镜头焦距。为确保景物完全包含在视场之中,应选用座标交点上,面那条线指示的数值。例如:视场宽50m,距离40m,使用 1/3"格式的镜头,在座标图中的交点比代表4mm镜头的线偏上一点。这表明如果使用4mm镜头就不能覆盖50m的视场。而用的镜头则可以完全覆盖视场。 f=vD/V 或 f=hD/H 其中,f代表焦距,v代表CCD靶面垂直高度,V代表被观测物体高度,h代表CCD靶面水平宽度,H代表被观测物体宽度。 举例:假设用1/2”CCD摄像头观测,被测物体宽440毫米,高330毫米,镜头焦点距物体2500毫米。由公式可以算出: 焦距f=440≈36毫米或 焦距f=330≈36毫米

投影机投影距离计算

投影机投影距离计算(转载) 2009-09-09 11:50 在选购投影机时,我们首先注意到投影机的亮度、分辨率、对比度、均匀度等重要参数,另外,我们也要弄清楚投影机的焦距和液晶片尺寸等参数,以便在投影距离和画面尺寸上适合我们使用场合,投影距离和画面尺寸是与投影机的焦距和液晶片尺寸紧密相关的,其相互关系如下: 已知画面尺寸得到投射距离: 最小投射距离(米) = 最小焦距(米)x 画面尺寸(英寸)÷ 液晶片尺寸(英寸) 最大投射距离(米) = 最大焦距(米)x 画面尺寸(英寸)÷ 液晶片尺寸(英寸) 已知投射距离得到画面尺寸: 最大投射画面(米) = 投射距离(米)x 液晶片尺寸(英寸)÷ 最小焦距(米) 最小投射画面(米) = 投射距离(米)x 液晶片尺寸(英寸)÷ 最大焦距(米) 例如: Toshiba TLP-S71的焦距是26.5mm~31.5mm, 液晶片尺寸是0.7英寸LCD板,需要85英寸的画面 最小投射距离(米)=0.0265米 x 85英寸÷0.7英寸 = 3.217米 最大投射距离(米)=0.0315米x 85英寸÷0.7英寸 = 3.825米 2、已知:EPSON EMP-6000的焦距是24.0 - 38.2 mm,液晶片尺寸是0.8 英寸LCD板,投射距离为4米,求:最大的投射画面和最小的投射画面。 最大投射画面(英寸) =4米x 0.8英寸÷0.024米 = 133.3英寸 最小投射画面(英寸) =4米x 0.8英寸÷0.0382米 = 83英寸 上面提到投影画面尺寸,我们需要根据投影画面尺寸来选择投影屏幕尺寸,我们现在所说的屏幕尺寸实际为屏幕对角线的长度,单位为英寸。一般我国的尺刻度为米,且量长和款比较方便,所以有必要知道根据屏幕尺寸(英寸)得到屏幕宽度(米)和屏幕高度(米) 长度单位换算公式:1英寸=2.54厘米=0.0254米

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

最大最小距离算法以及实例

最大最小距离算法实例 10个模式样本点{x1(0 0), x2(3 8), x3(2 2), x4(1 1), x5(5 3), x6(4 8), x7(6 3), x8(5 4), x9(6 4), x10(7 5)} 第一步:选任意一个模式样本作为第一个聚类中心,如z1 = x1; 第二步:选距离z1最远的样本作为第二个聚类中心。 经计算,|| x6 - z1 ||最大,所以z2 = x6; 第三步:逐个计算各模式样本{x i, i = 1,2,…,N}与{z1, z2}之间的距离,即 D i1 = || x i - z1 || D i2 = || x i – z2 || 并选出其中的最小距离min(D i1, D i2),i = 1,2,…,N 第四步:在所有模式样本的最小值中选出最大距

离,若该最大值达到||z1 - z2 ||的一定比例以 上,则相应的样本点取为第三个聚类中心 z3,即:若max{min(D i1, D i2), i = 1,2,…,N} > θ||z1 - z2 ||,则z3 = x i 否则,若找不到适合要求的样本作为新的 聚类中心,则找聚类中心的过程结束。 这里,θ可用试探法取一固定分数,如1/2。 在此例中,当i=7时,符合上述条件,故 z3 = x7 第五步:若有z3存在,则计算max{min(D i1, D i2, D i3), i = 1,2,…,N}。若该值超过||z1 - z2 ||的一定 比例,则存在z4,否则找聚类中心的过程 结束。 在此例中,无z4满足条件。 第六步:将模式样本{x i, i = 1,2,…,N}按最近距离分到最近的聚类中心: z1 = x1:{x1, x3, x4}为第一类 z2 = x6:{x2, x6}为第二类 z3 = x7:{x5, x7, x8, x9, x10}为第三类最后,还可在每一类中计算各样本的均值,得到更具代表性的聚类中心。

投影机距离计算方法

投影机距离计算方法 在选购投影机时,我们首先注意到投影机的亮度、分辨率、对比度、均匀度等重要参数,另外,我们也要弄清楚投影机的焦距和液晶片尺寸等参数,以便在投影距离和画面尺寸上适合我们使用场合,投影距离和画面尺寸是与投影机的焦距和液晶片尺寸紧密相关的,其相互关系如下: 已知画面尺寸得到投射距离: 最小投射距离(米)= 最小焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 最大投射距离(米)= 最大焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 已知投射距离得到画面尺寸: 最大投射画面(米)= 投射距离(米)x 液晶片尺寸(英寸)÷最小焦距(米) 最小投射画面(米)= 投射距离(米)x 液晶片尺寸(英寸)÷最大焦距(米) 例如: sony投影机VPL-EX130 4700*1.17*1.15=6300元 18.63-22.36 0.63 需要120英寸的画面 最小投射距离(米)=0.01863米x 120英寸÷0.7英寸= 3.194米 最大投射距离(米)=0.02236米x 120英寸÷0.7英寸= 3.833米 EIP-X350的焦距是23.6~28.5, 液晶片尺寸是0.7英寸LCD板,需要85英寸的画面 最小投射距离(米)=0.0236米x 85英寸÷0.7英寸= 2.865米 最大投射距离(米)=0.0285米x 85英寸÷0.7英寸= 3.460米 2、已知:EIKI LC-XT5E的焦距是76~98,液晶片尺寸是1.8英寸LCD板,投射距离为10米,求:最大的投射画面和最小的投射画面。 最大投射画面(英寸)=10米x 1.8英寸÷0.076米= 236.8英寸 最小投射画面(英寸)=10米x 1.8英寸÷0.098米= 183.6英寸 上面提到投影画面尺寸,我们需要根据投影画面尺寸来选择投影屏幕尺寸,我们现在所说的屏幕尺寸实际为屏幕对角线的长度,单位为英寸。一般我国的尺刻度为米,且量长和款比较方便,所以有必要知道根据屏幕尺寸(英寸)得到屏幕宽度(米)和屏幕高度(米) 长度单位换算公式:1英寸=2.54厘米=0.0254米 普通屏幕的宽度和高度的比为4:3 ,于是由勾股定理得到:

GIS学习笔记地图投影与GPS参数计算

参数计算学习笔记——地图投影与GPSGIS、椭球体1而基准面的定义则由特定椭球体及其对应的转GIS中的坐标系定义由基准面和地图投影两组参数确定, 换参数确定。基准面基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面。 是在椭球体基础上建立的,椭球体可以对应多个基准面,而基准面只一个椭球体。 椭球体的几何定义: 为短半轴。为长半轴,b为旋转轴,O是椭球中心,NSa 子午圈:包含旋转轴的平面与椭球面相截所得的椭圆。 纬圈:垂直于旋转轴的平面与椭球面相截所得的圆,也叫平行圈。赤道:通过椭球中心的平行圈。基本几何参数: 是子午椭圆的焦点离开中心'和α反映了椭球体的扁平程度。偏心率ee称为长度元素;扁率、其

中ab 的距离与椭圆半径之比,它们也反映椭球体的扁平程度,偏心率愈大,椭球愈扁。套用不同的椭球体,同一个地点会测量到不同的经纬度。下面是几种常见的椭球体及参数列表。几种常见的椭球体参数值 2、地图投影 地球是一个球体,球面上的位置,是以经纬度来表示,我们把它称为“球面坐标系統”或“地理坐标系統”。在球面上计算角度距离十分麻烦,而且地图是印刷在平面纸张上,要将球面上的物体画到紙上,就必须展平,这种将球面转化为平面的过程,称为“投影”。 经由投影的过程,把球面坐标换算为平面直角坐标,便于印刷与计算角度与距离。由于球面無法百分之百展为平面而不变形,所以除了地球仪外,所有地图都有某些程度的变形,有些可保持面积不变,有些可保持方位不变,视其用途而定。 目前国际间普遍采用的一种投影,是即横轴墨卡托投影(Transverse Mecator Projection),又称为高斯-克吕格投影(Gauss-Kruger Projection),在小范围内保持形状不变,对于各种应用较为方便。我们可以想象成将一个圆柱体橫躺,套在地球外面,再将地表投影到这个圆柱上,然后将圆柱体展开成平面。圆柱与地球沿南北经线方向相切,我们将这条切线称为“中央经线”。 在中央经线上,投影面与地球完全密合,因此图形没有变形;由中央经线往東西两侧延伸,地表图形会被逐渐放大,变形也会越来越严重。 为了保持投影精度在可接受范围内,每次只能取中央经线两侧附近地区来用,因此必须切割为许多投影带。就像将地球沿南北子午线方向,如切西瓜一般,切割为若干带状,再展成平面。目前世界各国军用地图所采用之UTM 坐标系統(Universal Transverse Mecator Projection System),即为横轴投影的一种。是将地球沿子午线方向,每隔6 度切割为一带,全球共切割为60 个投影带

关于距离计算的总结

关于距离计算的总结 距离计算在自然语言处理中得到广泛使用,不同距离计算方式应用与不同的环境,其中也产生了很多不同的效果。 1 余弦距离 余弦夹角也可以叫余弦相似度。集合中夹角可以用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,词余弦值就可以用来表示这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向就更加吻合,即更加相似。当两个向量的方向完全相反时,夹角的余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度于向量的幅值无关,于向量的方向相关。 公式描述: Python代码实现: import numpy as np # np.dot(vec1,vec2) 量向量(数组):两个数组的点积,即元素对应相乘后求和 # np.linalg.norm(vec1):即求vec1向量的二范数(向量的模) vec1 = [1,2,3,4] vec2 = [5,6,7,8] dist1 = np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)) print("余弦距离测试结果为:\t"+str(dist1)) 2 欧氏距离 欧几里得距离即欧几里得空间中两点间的直线距离。 Python实现: import numpy as np vec1 = np.mat([1,2,3,4]) # 生成numpy矩阵 vec2 = np.mat([5,6,7,8]) # 根据公式求解1 dist1 = np.sqrt(np.sum(np.square(vec1 - vec2))) print("欧式距离测试结果是:\t"+ str(dist1)) dist2 = np.sqrt((vec1-vec2)*(vec1-vec2).T) # 根据公式求

距离计算

摘要:颜色恒常性算法通常使用距离测量是基于数学方法进行评价,如角误差。然而,并不知道这些距离与人类视觉距离是否相关。因此,本文的主要目的是分析的几个性能指标和质量之间的相关性,通过心理物理实验,用不同的颜色恒常性算法获得输出图像。随后处理的问题是性能指标的分布,表明在一个大的图像中可以提供更多附加的和替代的信息,而且得到了改进的感性意义,即人类观察者之前存在的差异得到了明显的改善。?2009美国光学学会 颜色恒常性是视觉系统的能力,无论是人或机器,尽管光源颜色发生了巨大变化也可以保持稳定的物体颜色。颜色恒常性是颜色和计算机视觉的一个主题部分。为了解决颜色恒常性的问题,通常的方法是通过估计从视觉场景中的光源,然后恢复这些反射光源。 许多的颜色恒常性的方法已经被提出,例如,[ 1,4 ]–。为基准,颜色恒常性算法的精度是通过计算在相同数据的距离度量集如[ 5,6 ]评价。事实上,这些距离的措施计算到什么程度原光源向量近似估计。两种常用的距离度量是欧氏距离和角度误差,后者可能是更广泛的应用。然而,这些距离的措施本身是基于数学原理和归一化RGB颜色空间计算,它是未知的是否与人类视觉距离措施。此外,其他的距离度量可以基于人眼视觉原理的定义。 因此,在本文中,一种颜色恒常性算法分类法不同距离的措施第一,

从数学基础的距离知觉和颜色恒常性的特定距离。然后,设置距离这些措施的颜色恒常知觉的比较。显示距离的措施和看法之间的相关性,颜色校正后的图像与视觉检测的参考光照下的原始图像相比。在这种方式中,距离度量的心理物理学实验涉及的颜色校正后的图像进行配对比较。此外,以下[ 7 ],一个绩效指标的分布的讨论,表明附加的和替代的信息可以提供进一步的洞察在一个大的组的图像的颜色恒常性算法的性能。 最后,除了性能措施的心理评估,颜色恒常性算法之间的感知差异分析。这种分析是用来提供一个获得的性能改进的感性意义的指示。换句话说,这种分析的结果可以用来表明是否观察者可以看到之间的颜色校正两颜色恒常性算法产生的图像的差异。 本文的组织如下。在2节中,讨论了颜色恒常性和图像变换。进一步,设计了一套颜色恒常性的方法。然后,进行了3不同距离的措施。第一类问题的数学方法,包括角度误差和欧氏距离。第二类型涉及测量距离在不同的色彩空间,例如,设备无关的,感性的,或直观的色彩空间。第三,两域特定距离的措施进行了分析。在4节中,心理物理实验的实验装置进行了讨论,这些实验的结果在第5节。6节各种颜色恒常性算法进行比较,表明距离测量的影响,并在7节中两种算法之间的差异的感性意义的讨论。最后,对得到的结果进行了讨论在8节。 2、颜色恒常性 朗伯表面的图像值f取决于光源的颜色e(λ),表面的反射率S(x,

投影机计算公式

1:直投背投距离=屏幕的底边长度x投影机镜头的倍数 120寸屏幕底边为2489(mm) x 现在普通投影机的镜头倍数2.0=直投背投距离4972(mm) 2:次反射背投距离=屏幕的底边长度x投影机镜头的倍数x 0.6 120寸屏幕底边为2489(mm) x 现在普通投影机的镜头倍数2.0 x 0.6=直投背投距离2983.2(mm) 以上公式只做为参照,实际距离视环境及设备等因素决定 2: 实际屏幕亮度=投影机输出光强x屏幕增益平均亮度(英尺-朗伯):平均亮度(英尺-朗伯) = 实际屏幕总亮度/ 屏幕面积(英尺2) 因为我们通常使用屏幕对角线尺寸(英寸)来表示画面大小,因此: 16:9画面:平均亮度= 337x投影机输出光强x屏幕增益/屏幕对角线的平方(英寸) 4:3画面:平均亮度= 300x投影机输出光强x屏幕增益/屏幕对角线的平方(英寸) 实例:已知:VW11HT的输出光强为1000流明,投射100″ 16:9的画面,屏幕增益为1。求:此时的屏幕亮度? 屏幕亮度:337×1000x1/10000=33.7 (英尺-朗伯) 实例:已知:VW11HT的输出光强为1000流明,屏幕增益为1。求:要达到16 footlamberts以上的亮度,最大的屏幕尺寸是多少? 屏幕对角线的平方 = 337 x 1000 / 16= 21062.5平方英寸最大屏幕尺寸:145英寸实际意义:VW11HT在全遮光的环境下,要达到理想的亮度,最大的画面尺寸是145英寸。如果你想要投得更大,你需要使用高增益的银幕。虽然规格书上讲VW11HT可以最大投影到400英寸,实际上由于亮度太低,400英寸对于观看画面来讲没什么意义。 背投暗房空间如何计算 公式如下: 1:直投背投距离=屏幕的底边长度x投影机镜头的倍数

投影仪与幕布之间的距离确定

选购投影机时,我们首先注意到投影机的亮度、分辨率、对比度、均匀度等重要参数,另外,我们也要弄清楚投影机的焦距和液晶片尺寸等参数,以便在投影距离和画面尺寸上适合我们使用场合,投影距离和画面尺寸是与投影机的焦距和液晶片尺寸紧密相关的,其相互关系如下: 已知画面尺寸得到投射距离: 最小投射距离(米)= 最小焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 最大投射距离(米)= 最大焦距(米)x 画面尺寸(英寸)÷液晶片尺寸(英寸) 已知投射距离得到画面尺寸: 最大投射画面(米)= 投射距离(米)x 液晶片尺寸(英寸)÷最小焦距(米)最小投射画面(米)= 投射距离(米)x 液晶片尺寸(英寸)÷最大焦距(米) 例如: 1、Toshiba TLP-S71的焦距是26.5mm~31.5mm, 液晶片尺寸是0.7英寸LCD 板,需要85英寸的画面。 最小投射距离(米)=0.0265米x 85英寸÷0.7英寸= 3.217米 最大投射距离(米)=0.0315米x 85英寸÷0.7英寸= 3.825米 2、已知:EPSON EMP-6000的焦距是24.0 - 38.2 mm,液晶片尺寸是0.8英寸LCD板,投射距离为4米,求:最大的投射画面和最小的投射画面。 最大投射画面(英寸)=4米x 0.8英寸÷0.024米= 133.3英寸 最小投射画面(英寸)=4米x 0.8英寸÷0.0382米= 83英寸

上面提到投影画面尺寸,我们需要根据投影画面尺寸来选择投影屏幕尺寸,我们现在所说的屏幕尺寸实际为屏幕对角线的长度,单位为英寸。一般我国的尺刻度为米,且量长和款比较方便,所以有必要知道根据屏幕尺寸(英寸)得到屏幕宽度(米)和屏幕高度(米) 长度单位换算公式:1英寸=2.54厘米=0.0254米 普通屏幕的宽度和高度的比为4:3 ,于是由勾股定理得到: 屏幕宽度(米)=屏幕尺寸(英寸)x 0.0254米/英寸x 0.8 =屏幕尺寸÷50 屏幕高度(米)=屏幕尺寸(英寸)x 0.0254米/英寸x 0.6 =屏幕尺寸÷66 得到的单位为米 依此公式: 60英寸的屏幕的宽度为60÷50=1.2(米)高度为60÷66=0.909(米) 150英寸的屏幕的宽度为150÷50=3(米)高度为150÷66=2.27(米)200英寸的屏幕的宽度为200÷50=4(米)高度为200÷66=3(米) 根据以上计算公式,我们就可以自己计算了,

投影距离计算方式方法

投影距离计算方式 投影距离是指投影机镜头与屏幕之间的距离,一般用米来作为单位。在实际的应用当中,在狭小的空间要获取大画面,需要选用配有广角镜头的投影机,这样就可以在很短的投影距离获得较大的投影画面尺寸;在影院和礼堂的环境投影距离很远的情况下,要想获得合适大小的画面,就需要选择配有远焦镜头的投影机,这样就可以在较远的投影距离也可以获得合适的画面尺寸,不至于画面太大而超出幕布大小。普通的投影机为标准镜头,适合大多数用户使用。 如何估算投影距离? 投影距离很好算,若以英寸计量画面的对角线长度,那么此数字的1/10正好是英尺计量的投影距离数。也即,100英寸对角线画面(满屏800×600)的投影距离为10英尺,3米略多。 如何算出投N"时需要的最短及最长距离 用液晶片尺寸及镜头焦距算出投N"时需要的最短及最长距离 参考一下公式: 最短m=最小焦距mm/25.4*银幕尺寸in/液晶片尺寸in*2.54/N 最长m=最大焦距mm/25.4*银幕尺寸in/液晶片尺寸in*2.54/N 最小=屏幕尺寸/液晶片尺寸*最小焦距。 备注:其他尺寸计算方法类似。(mm/25.4)转换成为英寸in 投影方式 吊顶功能:将投影机倒置吊在屋顶上进行投影,要求投影机投射的图像能实现上下翻转功能。 背投功能:将投影机放在背透幕的后面进行投影,要求投影机投射的图像能实现左右翻转的功能。

F是镜头的透光度。F越小,镜头的透光性越好。f是镜头的放大比率。如,f=1.4时,就是说,在一固定的位置上,画面可放大1.4倍。镜头的光圈是用数值来表示的,一般从1.6-2.0,为使用方便,一个镜头设置多档光圈,光圈的数值越大,光圈就越小,光通量也越少,每一个镜头的最大光圈都用数值标在镜头的前方。 焦距也是用数值来表示的,通常从50-210,分为短焦、标准和长焦,还有超短和超长焦的。数值越小焦距越短,数值越大焦距越长,投影机对镜头焦距的要求正投一般在50-140,背投一般在35左右,焦距决定了打满预定尺寸时投影机与影幕的距离,焦距越短,投影机与影幕的距离就越近,反之就越远。如果要在短距离投射大画面就需要选择短焦镜头的投影机,反之则需要选择长焦镜头。一般的投影机都为标准镜头。 在投影机的日常使用中,投影机的位置尽可能要与投影屏幕成直角才能保证投影效果(如下图) 如果无法保证二者的垂直,画面就会产生梯形。在这种情况下,用户需要使用“梯形校正功能”来校正梯形,保证画面成标准的矩形。 梯形校正通常有二种方法:光学梯形校正和数码梯形校正,光学梯形校正是指通过调整镜头的物理位置来达到调整梯形的目的,另一种数码梯形校正是通过软件的方法来实现梯形校正。

:空间距离的各种计算

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23 ,∴CF =FD =2 1,∠EFC =90°,EF = 2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. 例1题图 例2题图

投影距离和投影画面尺寸的计算公式

投影距离和投影画面尺寸的计算公式 最小投射距离(米) = 最小焦距(米)x 画面尺寸(英寸)÷ 液晶片尺寸(英寸) 最大投射距离(米) = 最大焦距(米)x 画面尺寸(英寸)÷ 液晶片尺寸(英寸) 最大投射画面(英寸) = 投射距离(米)x 液晶片尺寸(英寸)÷ 最小焦距(米)最小投射画面(英寸) = 投射距离(米)x 液晶片尺寸(英寸)÷ 最大焦距(米)长度单位换算公式: 1英寸=2.54厘米=0.0254米 1 英尺=1 2 英寸=0.3048 米 1 毫米=0.03937 英寸 1 厘米=10 毫米=0.3937 英寸 1 分米=10厘米=3.937英寸 1 米=10分米=1.0936码=3.2808英尺 普通屏幕的宽度和高度的比为4:3 ,于是由勾股定理得到: 屏幕宽度(米)=屏幕尺寸(英寸)x 0.0254x 0.8 =屏幕尺寸(英寸)÷50 屏幕高度(米)=屏幕尺寸(英寸)x 0.0254x 0.6 =屏幕尺寸(英寸)÷66 得到的单位为米 例如: (1)、已知:EPSON EMP-820的焦距是28.3mm~37.98mm, 液晶片尺寸是0.9英寸LCD板,需要72英寸的画面。 求:最小的投射距离和最大的投射距离。 最小投射距离(米)=0.0283米 x 72英寸÷0.9英寸 = 2.264米 最大投射距离(米)=0.03798米x 72英寸÷0.9英寸 = 3.0384米 (2)、已知:EPSON EMP-8300的焦距是53mm~72mm, 液晶片尺寸是1.4英寸LCD 板,投射距离为5米, 求:最大的投射画面和最小的投射画面。 最大投射画面(英寸) =5米x 1.4英寸÷0.053米 = 132英寸 屏幕尺寸计算: 长度单位换算公式:1英寸=2.54厘米=0.0254米 普通屏幕的宽度和高度的比为4:3 ,于是由勾股定理得到: 屏幕宽度(米)=屏幕尺寸(英寸)x 0.0254米/英寸x 0.8 大约=屏幕尺寸(英寸)÷50 屏幕高度(米)=屏幕尺寸(英寸)x 0.0254米/英寸x 0.6 大约=屏幕尺寸(英寸)÷66 得到的单位为米

相关文档
最新文档