基于小波和插值的超分辨率图像重建算法

基于小波和插值的超分辨率图像重建算法
基于小波和插值的超分辨率图像重建算法

基于小波和插值的超分辨率图像重建算法

clear all;

close all;

I1=imread('D:\matlabtu\car1.bmp');

h=ones(4,4)/16;

I2=imfilter(I1,h); %通过四邻域方法得到低分辨率的图像

figure(1);

imshow(I1),title('原始图像');

figure(2);

imshow(I2),title('低分辨率的图像');

%用双线性插值方法获得插值图像Y1

[Y1,map]=imresize(I2,2,'bilinear');

%用最近邻域插值得到邻域插值图像Y2

[Y2,map]=imresize(I2,2);

[c,s]=wavedec2(Y1,2,'haar');

sizey1=size(Y1);

%从小波分解的结构[c,s]中提取Y1第一层的尺度系数和小波系数Xa1=appcoef2(c,s,'haar',1);

Xh1=detcoef2('h',c,s,1);

Xv1=detcoef2('v',c,s,1);

Xd1=detcoef2('d',c,s,1);

ded1=[Xa1,Xh1,Xv1,Xd1];

nbcol=size(map,1);

[c,s]=wavedec2(Y1,2,'haar');

sizey2=size(Y2);

%从小波分解的结构[c,s]中提取Y2第一层的尺度系数和小波系数Xa2=appcoef2(c,s,'haar',1);

Xh2=detcoef2('h',c,s,1);

Xv2=detcoef2('v',c,s,1);

Xd2 =detcoef2('d',c,s,1);

ded1=[Xa2,Xh2,Xv2,Xd2];

nbcol=size(map,1);

Y=idwt2(Xa2,Xh1,Xv1,Xd1,'haar');

nbcol=size(map,1);

figure(3);

imshow(uint8(Y)),title('获得的超分辨率图像');

% err = Y - I2;

% err = err(:);

% PSNRdb = 20 * log10(256/sqrt(mean(err .^2)));

超分辨率图像重建方法综述_苏衡

第39卷第8期自动化学报Vol.39,No.8 2013年8月ACTA AUTOMATICA SINICA August,2013 超分辨率图像重建方法综述 苏衡1,2周杰1张志浩1 摘要由于广泛的实用价值与理论价值,超分辨率图像重建(Super-resolution image reconstruction,SRIR或SR)技术成为计算机视觉与图像处理领域的一个研究热点,引起了研究者的广泛关注.本文将超分辨率图像重建问题按照不同的输入输出情况进行系统分类,将超分辨率问题分为基于重建的超分辨率、视频超分辨率、单帧图像超分辨率三大类.对于其中每一大类问题,分别全面综述了该问题的发展历史、常用算法的分类及当前的最新研究成果等各种相关问题,并对不同算法的特点进行了比较分析.本文随后讨论了各不同类别超分辨率算法的互相融合和图像视频质量评价的方法,最后给出了对这一领域未来发展的思考与展望. 关键词超分辨率图像重建,计算机视觉,图像处理,方法综述 引用格式苏衡,周杰,张志浩.超分辨率图像重建方法综述.自动化学报,2013,39(8):1202?1213 DOI10.3724/SP.J.1004.2013.01202 Survey of Super-resolution Image Reconstruction Methods SU Heng1,2ZHOU Jie1ZHANG Zhi-Hao1 Abstract Because of its extensive practical and theoretical values,the super-resolution image reconstruction(SRIR or SR)technique has become a hot topic in the areas of computer vision and image processing,attracting many researchers attentions.This paper categorizes the SR problems according to their input and output conditions into three main cat-egories:reconstruction-based SR,video SR and single image SR.For each category,the development history,common algorithm classes and state-of-the-art research achievements are reviewed comprehensively.We also analyze the charac-teristics of di?erent algorithms.Afterwards,we discuss the combination of di?erent super-resolution categories and the evaluation of image and video qualities.Thoughts and foresights of this?eld are given at the end of this paper. Key words Super-resolution image reconstruction,computer vision,image processing,survey Citation Su Heng,Zhou Jie,Zhang Zhi-Hao.Survey of super-resolution image reconstruction methods.Acta Auto-matica Sinica,2013,39(8):1202?1213 超分辨率图像重建(Super resolution image re-construction,SRIR或SR)是指用信号处理和图像处理的方法,通过软件算法的方式将已有的低分辨率(Low-resolution,LR)图像转换成高分辨率(High-resolution,HR)图像的技术.它在视频监控(Video surveillance)、图像打印(Image printing)、刑侦分析(Criminal investigation analysis)、医学图像处理(Medical image processing)、卫星成像(Satellite imaging)等领域有较广泛的应用. 收稿日期2011-08-31录用日期2013-01-29 Manuscript received August31,2011;accepted January29, 2013 国家自然科学基金重大国际(地区)合作研究项目(61020106004),国家自然科学基金(61005023,61021063),国家杰出青年科学基金项目(61225008),教育部博士点基金(20120002110033)资助 Supported by Key International(Regional)Joint Research Pro-gram of National Natural Science Foundation of China(6102010 6004),National Natural Science Foundation of China(61005023, 61021063),National Science Fund for Distinguished Young Scholars(61225008),and Ph.D.Programs Foundation of Min-istry of Education of China(20120002110033) 1.清华大学自动化系北京100084 2.北京葫芦软件技术开发有限公司北京100084 1.Department of Automation,Tsinghua University,Beijing 100084 2.Beijing Hulu Inc.,Beijing100084 超分辨率问题的解决涉及到许多图像处理(Im-age processing)、计算机视觉(Computer vision)、优化理论(Optimization problem)等领域中的基本问题[1],例如图像配准(Image registration)、图像分割(Image segmentation)、图像压缩(Image com-pression)、图像特征提取(Image feature extrac-tion)、图像质量评价(Image quality estimation)、机器学习(Machine learning)、最优化算法(Opti-mization algorithm)等,超分辨率是这些基本问题的一个具体应用领域,同时也对它们的研究进展起到了推动的作用.因此超分辨率问题本身的研究具有重要的理论意义.目前超分辨率问题已经成为相关研究领域的热点之一. 在上世纪80~90年代,就有人开始研究超分辨率图像重建的方法,1984年Tsai的论文[2]是最早提出这个问题的文献之一.在这之后有很多相关的研究对超分辨率的问题进行更加深入的讨论.有关超分辨率问题的研究成果,在计算机视觉、图像处理与信号处理领域的顶级会议和期刊都有大量收录. 1998年,Borman等[3]发表了一篇超分辨率图像重建的综述文章.2001年,Kluwer出版了一本详细介

插值法在图像处理中的运用要点

插值方法在图像处理中的应用 作者: 专业姓名学号 控制工程陈龙斌 控制工程陈少峰 控制工程殷文龙 摘要 本文介绍了插值方法在图像处理中的应用。介绍了典型的最近邻插值、双线性插值、双三次插值、双信道插值、分形插值的原理。以分形插值为重点,在图像放大领域用MATLAB进行仿真,并与其它方法的结果做了比对。指出了各种方法的利弊,期待更进一步的研究拓展新的算法以及改进现有算法。

一、引言 人类通过感觉器官从客观世界获取信息,而其中一半以上的信息都是通过视觉获得的。图像作为人类视觉信息传递的主要媒介,具有声音、语言、文字等形式无法比拟的优势,给人以具体、直观的物体形象。在数字化信息时代,图像处理已经成为重要的数据处理类型。数字图像比之传统的模拟图像处理有着不可比拟的优势。一般采用计算机处理或者硬件处理,处理的内容丰富,精度高,变通能力强,可进行非线性处理。但是处理速度就会有所不足。图像处理的主要内容有:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解等。以上这些图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分。 日常生活中,越来越多的领域需要高分辨率图像,采用图像插值技术来提高数字图像的分辨率和清晰度,从软件方面进行改进就具有十分重要的实用价值。多媒体通信在现代网络传输中扮演重要角色,因此插值放大提高图像分辨率是一个非常重要的问题。此外,图像变换被广泛用于遥感图像的几何校正、医学成像以及电影、电视和媒体广告等影像特技处理中。在进行图像的一些几何变换时,通常都会出现输出像素坐标和输入栅格不重合的现象,也必须要用到图像插值。图像插值是图像处理中图像重采样过程中的重要组成部分,而重采样过程广泛应用于改善图像质量、进行有损压缩等,因而研究图像插值具有十分重要的理论意义和实用价值。 图像插值是一个数据再生过程。由原始图像数据再生出具有更高分辨率的图像数据。分为图像内插值和图像间插值。前者指将一幅较低分辨率的图像再生出一幅较高分辨率的图像。后者指在若干幅图像之间再生出几幅新的图像。插值过程就是确定某个函数在两个采样点之间的数值时采用的运算过程.通常是利用曲线拟合的方法进行插值算法,通过离散的输入采样点建立一个连续函数,用这个重建的函数求出任意位置处的函数值,这个过程可看作是采样的逆过程。 20世纪40年代末,香农提出了信息论,根据采样定理,若对采样值用sinc函数进行插值,则可准确地恢复原函数,于是sinc函数被接受为插值函数,也称为理想插值函数。理想插值函数有两个缺点: (1)它虽然对带限信号可以进行无错插值,但实际中带限信号只是一小部分信号。 (2)sinc函数的支撑是无限的,而没有函数既是带限的,又是紧支撑的。 为了解决这个问题,经典的办法是刚窗函数截断sinc函数,这个窗函数必须在0剑l 之间为正数,在l到2之间为负数。sinc函数对应的是无限冲激响应,不适于有限冲激相应来进行局部插值。对数字图像来说,对图像进行插值也称为图像的重采样。它分为两个步骤:将离散图像插值为连续图像以及对插值结果图像进行采样。 经典的图像插值算法是利用邻近像素点灰度值的加权平均值来计算未知像素点处的灰度值,而这种加权平均一般表现表现为信号的离散采样值与插值基函数之间的二维卷积。这种基于模型的加权平均的图像插值方法统称为线性方法。经典的插值方法有:最近邻域法,双线性插值,双三次B样条插值,双三次样条插值,sinc函数等。线性方法,它们一个共同点就是,所有这些基函数均是低通滤波器,对数据中的高频信息都具有滤除和抑制效应,因

超分辨率算法综述

超分辨率复原技术的发展 The Development of Super2Re solution Re storation from Image Sequence s 1、引言 在图像处理技术中,有一项重要的研究内容称为图像融合。通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥 补观测图像上的有限信息量是一个需要解决的问题。图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅) 携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。 (图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提 高图象的空间分辨率。对图象空间分辨率进行增强的技术也叫超分辨率 (super2resolution) 技术,或亚像元分析技术。本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。) (我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如 光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。按照傅里叶光学的观点,光学成像系统是一个低通滤波器,由于受到光学衍射的影响,其传递函数在由衍射极限分辨率所决定的某个截止频率以上值均为零。显然,普通的图像复原技术如去卷积技术等只能将物体的频率复原到衍射极

图像超分辨率重建

收稿日期:2008唱08唱21;修回日期:2008唱10唱28 作者简介:王培东(1953唱),男,黑龙江哈尔滨人,教授,硕导,CCF会员,主要研究方向为计算机控制、计算机网络、嵌入式应用技术;吴显伟(1982唱),男(回族),河南南阳人,硕士,主要研究方向为计算机控制技术(wu_xianwei@126.com). 一种自适应的嵌入式协议栈缓冲区管理机制 王培东,吴显伟 (哈尔滨理工大学计算机科学与技术学院,哈尔滨150080) 摘 要:为避免创建缓冲区过程中必须指定大小和多次释放而导致可能的内存泄露和代码崩溃的弊端,提出一种自适应的嵌入式协议栈的缓冲区管理机制AutoBuf。它是基于抽象缓冲区接口而设计的,具有自适应性,支持动态内存的自动分配与回收,同时实现了嵌入式TCP/IP协议栈各层之间的零拷贝通信。在基于研究平台S3C44B0X的Webserver网络数据监控系统上的测试结果表明,该缓冲区的设计满足嵌入式系统网络通信的应用需求,是一种高效、可靠的缓冲区管理机制。 关键词:嵌入式协议栈;抽象缓冲区;零拷贝;内存分配 中图分类号:TP316 文献标志码:A 文章编号:1001唱3695(2009)06唱2254唱03doi:10.3969/j.issn.1001唱3695.2009.06.077 Designandimplementationofadaptivebufferforembeddedprotocolstack WANGPei唱dong,WUXian唱wei (CollegeofComputerScience&Technology,HarbinUniversityofScience&Technology,Harbin150080,China) Abstract:Toavoidtraditionalmethodofcreatingbuffer,whichmusthavethesizeofbufferandfreememoryformanytimes,whichwillresultinmemoryleaksandcodescrash.ThispaperproposedaflexiblebuffermanagementmechanismAutoBufforembeddednetworkprotocolstack.Itwasadaptiveandscalableandbasedonanabstractbufferinterface,supporteddynamicme唱moryallocationandbackup.ByusingtheAutoBufbuffermanagementmechanismwithdatazerocopytechnology,itimplementedtotransferdatathroughtheembeddednetworkprotocolstack.ThemanagementmechanismhadbeenappliedtotheWebserversystembaseonS3C44b0Xplatformsuccessfully.Theresultsinrealnetworkconditionshowthatthesystemprovidesagoodper唱formanceandmeetsthenecessaryofembeddednetworksystem.Keywords:embeddedstack;abstractbuffer;zero唱copy;memoryallocation 随着网络技术的快速发展,主机间的通信速率已经提高到了千兆数量级,同时多媒体应用还要求网络协议支持实时业务。嵌入式设备网络化已经深入到日常生活中,而将嵌入式设备接入到互联网需要网络协议栈的支持。通过分析Linux系统中TCP/IP协议栈的实现过程,可以看出在协议栈中要有大量数据不断输入输出,而管理这些即时数据的关键是协议栈中的缓冲区管理机制,因此对嵌入式协议栈的缓冲区管理将直接影响到数据的传输速率和安全。通用以太网的缓冲区管理机制,例如4.4BSDmbuf [1] 和现行Linux系统中的sk_buf [2] 多是在大内存、 高处理速率的基础上设计的,非常庞大复杂。由于嵌入式设备的硬件资源有限,特别是可用物理内存的限制,通用的协议栈必然不适用于嵌入式设备,在应用时要对标准的TCP/IP协议进行裁剪 [3] 和重新设计缓冲区管理机制。 1 缓冲区管理机制的性能需求分析 缓冲区管理 [4] 是对内存提供一种统一的管理手段,通过该 手段能够对可用内存提供分配、回收、数据操作等行为。内存的分配操作是根据一定的内存分配策略从缓冲区中获得相应大小的内存空间;缓冲区的数据操作主要是向缓冲区写数据,从缓冲区读数据,在缓冲区中删除数据,对空闲的内存块进行合并等行为;内存的回收就是将已空闲的内存重新变为可用内存,以供存 储其他新的数据。 为了满足长度不一的即时数据的需求,缓冲区对内存的操作主要集中在不断地分配、回收、合并空闲的内存块等操作。因为网络中的数据包小到几个字节大到几千个字节,不同长度的数据对内存的需求必然不同。现存嵌入式设备中的内存多是以物理内存,即实模式形式存在的,没有虚拟内存的形式,对内存的操作实际是操作真实的物理内存,所以对内存操作要特别谨慎。在传统使用动态分配的缓冲区(通过调用malloc()/free())在函数之间传递数据。尽管该方法提供了灵活性,但它也带来了一些性能影响。首先考虑对缓冲区的管理(分配和释放内存块)。如果分配和释放不能在相同的代码位置进行,那么必须确保在某个内存块不再需要时,释放一次(且仅释放一次)该内存块是很重要的,否则就会导致内存泄露。其次是必须确定缓冲区的大小才能分配该内存块。然而,确定数据大小并非那么容易,传统做法是采用最大的数据尺寸的保守估计。而采用保守估计预分配的内存大小总是远超过实际需要的大小,而且没有一定的范围标准,这样难免会导致资源的严重浪费。 随着数据在协议栈中的不断流动,内存块的多次释放和多次分配是难以避免的,而保守估计对于有限的资源来说又是一种浪费的策略。因此为了能有效地利用资源,设计一种可自控的、不用预判断大小的数据缓冲区接口就势在必行。 第26卷第6期2009年6月  计算机应用研究 ApplicationResearchofComputers Vol.26No.6Jun.2009

关于图像超分辨率重构的现状研究

关于图像超分辨率重构的现状研究 摘要:图像超分辨率的重构技术是近20年来兴起的一门新的数字图像处理技术。随着计算机硬件技术和软件设计技术的不断发展,各种图像超分辨率重构算法被提出。综述超分辨率重构的相关研究,指出图像超分辨率重构技术近几年来的一些研究成果。 关键字:图像超分辨率;图像超分辨率重构;迭代法投影法 Abstract:Image super-resolution reconstruction technology is nearly 20 years the rise of a new digital image processing technology. With the continuous development of computer hardware and software design technology, all kinds of image super-resolution reconstruction algorithm was proposed. Of related studies on super-resolution reconstruction, and points out that the technology of image super-resolution reconstruction in recent years, some of the research. Keywords:image super-resolution; image super-resolution reconstruction; iterative projection method 1引言 超分辨率重构算法始于20世纪80年代,其目的在于恢复一些已丢失的频率分量。在成像过程中,由于受成像系统的物理性质和天气条件的影响,图像中存在着光学和运动模糊、采样不足和附加噪声等退化现象,图像空间分辨率较低。而在实际应用中,需要高分辨率的图像,如在遥感检测、军事侦查、交通及安全监控、医学诊断和模式识别等方面。在现有的传感器不作改变的情况下,人们希望利用信号处理的方法,通过一系列低分辨率图像来重构高分辨率图像。这种从同一场景的低分辨率图像序列中,通过信息融合来提高空间分辨率的方法通常被称为超分辨率重构。

超分辨率算法综述

图像超分辨率算法综述 摘要:介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法,对图像超分辨率的方法进行了分类对比,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望。 关键词:图像超分辨率;插值;重建;学习; Abstract:This paper introduced the conception and origin of image super resolu- tion technology. By reviewing these three kinds of methods(interpolation,reconstruct, study), it contrasted and classified the methods of image super-resolution,and at last, some perspectives of super-resolution are given. Key words: image super-resolution;interpolation;reconstruct;study;

1 引言 1.1 超分辨率的概念 图像超分辨率率(super resolution,SR)是指由一幅低分辨率图像(low resolution,LR)或图像序列恢复出高分辨率图像(high resolution, HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制[1],在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像(参见图1)具有重要的现实意义。 图1 图像超分辨率示意图 图像超分辨率技术分为超分辨率复原和超分辨率重建,许多文献中没有严格地区分这两个概念,甚至有许多文献中把超分辨率图像重建和超分辨率图像复原的概念等同起来,严格意义上讲二者是有本质区别的,超分辨率图像重建和超分辨率图像复原有一个共同点,就是把在获取图像时丢失或降低的高频信息恢复出来。然而它们丢失高频信息的原因不同,超分辨率复原在光学中是恢复出超过衍射级截止频率以外的信息,而超分辨率重建方法是在工程应用中试图恢复由混叠产生的高频成分。几何处理、图像增强、图像复原都是从图像到图像的处理,即输入的原始数据是图像,处理后输出的也是图像,而重建处理则是从数据到图像的处理。也就是说输入的是某种数据,而处理结果得到的是图像。但两者的目的是一致的,都是由低分辨率图像经过处理得到高分辨率图像。另外有些文献中对超分辨率的概念下定义的范围比较窄,只是指基于同一场景的图像序列和视频序列的超分辨处理,实际上,多幅图像的超分辨率大多数都是以单幅图像的超分辨率为基础的。在图像获取过程中有很多因素会导致图像质量下降,如传感器的形

时域插值的几种图像放大方法

基于时域插值的几种图像放大方法 摘要:图像插值是图像比例缩放的常用方法。针对时域图像的放大问题,介绍了最邻近、双线性和双立方三种插值方法,并使用matlab 对其进行实现、分析。结果表明双立方插值得到的图像质量最高,最邻近和双线性速度较快。 1 引言 在数字图像处理中,图像的几何变换作为图像处理的基础操作之一,为图像分析提供了灵活多变的预处理模式,简化了后级处理过程,图像的几何变换还为生成特殊样式的图形提供了可能。在图像的几何变换中,图像的比例缩放是最常用的模式。图像的比例缩放是指对数字图像大小按某确定比例进行调整的过程。 对于数字图像 ),(P y x f = 则其缩放21k k ?倍的图像 ),(I 21y k x k f = 若21k k =,则I 为x 轴方向和y 轴方向等比例缩放的图像;否则,图像内的像素位置会发生相对变化,产生图像几何畸变。在本文中,讨论等比例放大图像时的情况,即 121≥=k k 由图像变换的思想,图像几何变换应当是源图像到目的图像矩阵的映射(前向映射)。前向映射时,由于系数k 为有理数,矩阵坐标为自然数的情况,此目的矩阵映射为空;同时目的矩阵存在无灰度值相对应的情况。 因此,可引入逆映射法,首先生成一个对应大小的空目的矩阵,分别计算目的矩阵每个像素点对应于原矩阵的位置,对于落在源图像两像素之间的点,可用

插值法为其映射一个灰度值,这个过程称为重采样。 重采样得出的灰度值由周围像素点的灰度和其权值特性决定,在此讨论三种常见的插值算法:最邻近(Nearest Neighbor )、双线性(Bilinear )和双立方(Bicubic )。 2 最邻近插值 最邻近插值是最简单的插值方式,它是将目的矩阵映射到源矩阵上,将其距离最近的像素点的值作为插值的值。 将目的矩阵的点),(I y x f =映射到源矩阵上, )/,/(21k y k x f 定义函数 ?????????? ?>-≤-=5 .05.0)(t t t t t t t h 图1 则目的矩阵的元素灰度值 ))/(),/((21k y h k x h f P = 在程序设计只需将转换到源矩阵的坐标四舍五入至整数 ))/(),/((21k y round k x round f P = 以4*4的像素矩阵RGB 色域为例 ??? ???????????(0,0,143) 5)(239,255,1 (0,79,255) (0,0,143)(0,79,255) (255,63,0) )(31,25,233 (127,0,0))(31,25,233 (0,0,143) (0,79,255) 5)(239,255,1)(31,25,233 (0,79,255) 5)(239,255,1 (255,63,0) 将其放大30倍,并与Matlab 库函数imresize()放大结果比较 ?? t ?? t t -

人脸图像超分辨率的自适应流形学习方法

第20卷第7期2008年7月 计算机辅助设计与图形学学报 JO U RN A L O F COM PU T ER -AID ED D ESIG N &COM P U T ER G RA PH ICS Vo l 120,N o 17 July,2008 收稿日期:2007-11-06;修回日期:2008-03-111基金项目:国家科技支撑计划重点项目(2006BAK07B04).张雪松,男,1977年生,博士研究生,工程师,主要研究方向为数字图像复原与超分辨率、模式识别、红外图像实时处理.江 静,女,1979年生,硕士,讲师,主要研究方向为数字图像处理.彭思龙,男,1971年生,博士,研究员,博士生导师,主要研究方向为小波分析、图像处理、视频增强、模式识别. 人脸图像超分辨率的自适应流形学习方法 张雪松1) 江 静2) 彭思龙 1) 1)(中国科学院自动化研究所国家专用集成电路设计工程技术研究中心 北京 100190)2) (华北科技学院机械与电气工程系 北京 101601)(xuesong.zhang@https://www.360docs.net/doc/8f4528049.html,) 摘要 样本规模与使用方法是基于学习的超分辨率中的一个重要问题.面向人脸图像超分辨率重建,提出一种基 于局部保持投影(L P P)的自适应流形学习方法.由于能够揭示隐含在高维图像空间中的非线性结构,L PP 是一种可以在局部人脸流形上分析其内在特征的、有效的流形学习方法.通过在L P P 特征子空间中动态搜索出与输入图像块最相似的像素块集合作为学习样本,实现了自适应样本选择,并且利用动态样本集合通过基于像素块的特征变换方法有效地恢复出低分辨率人脸图像中缺失的高频成分.实验结果证实:通过在局部人脸流形上自适应地选择学习样本,文中方法可以仅使用相对少量的样本来获得很好的超分辨率重建结果.关键词 人脸图像;超分辨率;局部保持投影;流形学习;非监督学习中图法分类号 T P391.4 Adaptive Manifold Learning Method for Face Hallucination Zhang Xuesong 1) Jiang Jing 2) Peng Silong 1) 1)(National AS I C Desig n Eng inee ring Center ,Institute of A utomation,Chinese A cad emy of S cie nces ,B eij ing 100190)2) (Dep artment of M ec hanic s and E lectricity En gineering ,N or th Ch ina I nstitu te of S cie nce and Te chnolog y ,B eij ing 101601) Abstract T he size of training set as well as the usage thereof is an important issue of learning -based super -resolution.T his w or k presents an adaptive learning metho d for face hallucination using Locality Preserving Pr ojectio n (LPP).LPP is an efficient manifold learning m ethod that can be used to analy ze the lo cal intrinsic features on the manifold of local facial areas by virtue of its ability to reveal no n -linear structures hidden in the hig h -dim ensional image space.We fulfilled the adaptive sam ple selection by searching out patches online in the LPP sub -space,w hich makes the resultant training set tailor ed to the testing patch,and then effectively r estored the lo st hig h -frequency com ponents of the low -resolution face image by patched -based eig en transform ation using the dy namic training set.The ex perim ental r esults fully dem onstrate that the proposed m ethod can achieve goo d super -reso lution reconstruction perfo rmance by utilizing a relative small am ount o f samples. Key words face im ag e;super -r esolutio n;lo cality preserv ing projections;m anifold learning;unsuperv ised learning 超分辨率是指根据多张低分辨率图像重建出高分辨率图像的过程,在不同的应用中,输入的低分辨率图像可以是某个静态场景的图像序列 [1-3] (序列中 的图像间存在相对运动)或者是一段动态场景的视频[4-5].这些超分辨率方法通常是基于/重建约束0的:即认为低分辨率图像是待求高分辨率图像在不

数字图像处理中常用的插值方法

分类: 算法 数字图像处理中常用的插值方法 2010-11-15 14:05 在做数字图像处理时,经常会碰到小数象素坐标的取值问题,这时就需要依据邻近象如:做地图投影转换,对目标图像的一个象素进行坐标变换到源图像上对应的点时,数,再比如做图像的几何校正,也会碰到同样的问题。以下是对常用的三种数字图像 1、最邻近元法 这是最简单的一种插值方法,不需要计算,在待求象素的四邻象素中,将距离待求象

对于 (i, j+v),f(i, j) 到 f(i, j+1) 的灰度变化为线性关系,则有: f(i, j+v) = [f(i, j+1) - f(i, j)] * v + f(i, j) 同理对于 (i+1, j+v) 则有: f(i+1, j+v) = [f(i+1, j+1) - f(i+1, j)] * v + f(i+1, j) 从f(i, j+v) 到 f(i+1, j+v) 的灰度变化也为线性关系,由此可推导出待求象素灰度的计算 f(i+u, j+v) = (1-u) * (1-v) * f(i, j) + (1-u) * v * f(i, j+1) + u * (1-v) * f(i+1, j) 双线性内插法的计算比最邻近点法复杂,计算量较大,但没有灰度不连续的缺点,结性质,使高频分量受损,图像轮廓可能会有一点模糊。 3、三次内插法 该方法利用三次多项式S(x)求逼近理论上最佳插值函数sin(x)/x, 其数学表达式为: 待求像素(x, y)的灰度值由其周围16个灰度值加权内插得到,如下图:

待求像素的灰度计算式如下:f(x, y) = f(i+u, j+v) = ABC 其中:

图像的超分辨率处理方法研究现状

超分辨率图像处理技术是利用多帧关于同一场景的有相互位移的低分辨率降质图像来重建高分辨率高质量图像的技术。介绍了超分辨率图像处理技术的概念和起源;综述了超分辨率图像恢复研究现状。重点对单帧和多帧超分辨率图像处理的主要方法进行了评述,并总结对比了频域和空域方法的优缺点。最后对超分辨率图像处理技术的技术难点和前沿问题研究前景进行介绍和展望。 0引言 图像超分辨率处理技术是指利用多帧关于同一场景的有相互位移的低分辨率降质图像(LR,lowresolution)来重建高分辨率高质量图像(HR,highresolution)的技术[1]。图像超分辨率处理技术可突破图像采集设备的分辨率限制,充分利用多帧图像之间的互补信息,实现像素级的图像信息融合。在计算机视觉、卫星遥感、天文学、生物医学成像、民用安防等多个领域都有广泛的应用。图像超分辨率处理常被认为是广义的图像复原(Restoration)或图像重建(Reconstruction)。实际上它与两者有一定联系但是又不完全相同。图像复原是指去除或减轻获取数字图像过程中发生的图像质量下降(退化)[2],目标是恢复光学系统截止频率以内的成分,而图像超分辨率处理的目标是得到系统截止频率以外的成分。图像重建可用于现有成像系统不能提供满意图像分辨率的情况,如提高遥感图像、CT、核磁共振、超声波图像和各种监控图像等的分辨率[3]。在超分辨率处理中,多帧低分辨率降质图像可以认为是高分辨率理想图像经成像系统在观测平面上的一个投影,因此图像超分辨率处理也可以认为是由多帧低分辨率降质图像来重建高分辨率理想图像。 1超分辨率图像处理技术研究概况 J.L.Harris[4]和J.W.Goodman[5]提出的基于单帧图像的Harris-Goodman频谱外推法是最早的超分辨率图像处理的方法。随后,Tsai与Huang提出了基于序列或多帧图像的超分辨率重建问题,并给出了基于频域逼近的重建图像方法。此后,极大后验概率估计法、反向投影迭代法、凸集投影法和自适应滤波方法等许多有使用价值的方法被提出并发展。 目前,国内外对超分辨率的研究较突出的有:美国加州大学多维信号处理研究小组的PeymanMilanfar等提出了大量的实用算法和集成各种算法的超分辨率图像恢复软件包[6];美国Dayton大学和Wright实验室对红外CCD相机进行了机载试验,利用20幅低分辨率的红外图像,取得了分辨率提高近5倍的实验结果。香港R. F. Chars等研究了超分辨率图像恢复的有效预处理共扼梯度迭代算法[7]。以色列耶鲁撒冷大学M.Elad等[8]对存在任意运动的图像序列,以及动态的和彩色的多媒体等的超分辨率恢复进行了研究。以色列的EROS-A卫星利用“过采样”技术使影像的分辨率提高一倍以上。印度S.Chaudhuri等研究了迭代的超分辨率图像恢复方法[9]。韩国Pohang理工大学在各向异性扩散用于超分辨率[10]方面进行了研究。国内近几年在频谱外推、混叠效应的消除、无损检测、成像探测元的阵列改进以及一些超分辨率方法的改进方面做过类似研究,但研究水平无论从深度和广度上都较国外存在一定的差距[11]。 2超分辨率图像处理方法 图像超分辨率处理技术通常可以分为两大类:单帧图像重建(静态图像插值)方法和多帧图像处理(序列图像重建)方法。单帧图像处理也称为图像放大,是指利用一帧探测器采集到的低分辨率图像的信息,通过重建算法提高图像分辨率的方法。为了增加利用图像的信息,人们逐渐将研究热点转向多帧图像处理。多帧图像处理充分利用了不同帧图像之间的互补信息,其超分辨率复原能力好于利用单帧图像处理。其主要方法大致可以分为两类:频域法和空域法。早期的超分辨率图像处理方法研究都集中在频域,后来转向空域超分辨率图像处理复原方法的研究。频域法不能利用图像的先验知识,而空域方法则能够充分利用图像先验知识。频域方法的基本流程如图1(a)所示。其中图像配准和运动模型估计的精度越高,图像重建的效果就越好。当考虑到普遍的运动类型以及退化模型时,频率域方法仅能进行整体运动估计,

插值法在数字图像处理中的应用

插值法在数字图像处理中的应用 一、引言 数字图像处理的对象涉及到社会生活的许多领域。而图像的放大作为数字图像处理中的基本操作尤为重要。 插值法是一种古老的数学方法,尤其是近几十年发展起来的二维插值,是图像处理中不可或缺的方法。本文主要讨论了最近邻插值法和双线性插值法,并分别用这两种算法实现了图像的放大,从而得出这两种不同算法之间的差异。 二、插值法 (一)一维插值 已知n+1个节点(xj,yj)(j=0,1,2…n,其中xj互不相同。不妨设a=x0

(如图1),通过全部已知节点,即zi=f xi,yi ,(i=0,1,2…,n),再用,进行插值,即z= f(x,y)。 常用的插值法有最近邻插值法和双线性插值法:y?=f(x?)。 图 1.最近邻插值法 最近邻插值法就是把所求点的值与它附近的(2×?2)4个邻近的值作比较,取与它的值就近的节点的值为的插值点函数值。 在图像处理中,最近邻插值即选择离它所映射到的位置最近的输入像素的灰度值为插值结果。若几何变换后输出的图像上坐标为(x′,y′)的像素点在原图像上的对应坐标为(u,v),则近邻插值公式为:gx′,y′ =f(x,y) x=[u+0.5] y=[v+0.5] 其中[ ]表示取整。 2.双线性插值法

图像超分辨率重建处理算法研究概要

第4l卷第ll期 2011年11月 激光与红外 LASER &INFRARED V01.41,No.11 November,2011 文章编号:1001-5078(201111-1278-04 图像超分辨率重建处理算法研究 ?图像与信号处理? 万雪芬1,杨义2,崔剑3 (1.华北科技学院,河北三河065201;2.东华大学,上海201620;3.北京航空航天大学,北京100191 摘要:超分辨算法为实现图像和视频分辨率提高的一种方法。其广泛应用于数字电视、医学图像处理、军事与遥感等领域。超分辨率图像通过融合多帧相似的低分辨率图像达到提高图像细节的目的。本文对使用较为普遍的频域方法、非均匀差值算法、凸集投影算法、迭代反投 影算法、最大后验概率方法及基于学习的方法进行了分析,并简要讨论了超分辨算法未来的发展方向。 关键词:图像处理;超分辨率;低分辨率重建 中图分类号:TP751文献标识码:A DOI:10.3969/j.issn.1001-5078.2011.11.023 Research on super-resolution image reconstruction WAN Xue—fenl,YANG Yi2,CUI Jian3

(I.Nordl China Institute of Science and Technology,Sanhe 065201,China;2.Donghua University,Shanghai 201620,China; 3.Beihang University,Beijing 100191,China Abstract:Super-resolution image reconstruction is a technique to reconstruct high resolution image or video from a 8e- quence of low resolution images.It has been widely used in digital TV,medicinal processing,military and remote剐m8一 ing.The super resolution method is summarized in this paper.Some super resolution image reconstructions ale dis— cussed for super-resolution image reconstruction.The tendency and development prospect a弛also discussed. Key words:image processing;super resolution;low resolution image reconstruction l 引言 近年来,数字图像采集技术已被广泛应用于工控、安监、军事与消费等领域。但由于价格成本因素限制,很多情况下通过低端图像采集设备获得的图片质量与分辨率较低,往往不能满足实际的要求。利用一系列相似的低分辨的图像,经过超分辨率技术的处理,可以得到一幅分辨率较高、包含信息较多的图像。这个处理过程就是超分辨率重建。采用超分辨率技术可以在不更换原有设备的前提下,提高图像的分辨率、改善图像的质量。 超分辨率技术用途较为广泛。在数字电视领域,可以利用超分辨率重建技术将数字电视信号转化为与高清晰度电视接收机相匹配的信号,提高观众的体验。在医疗领域,提高医学图像的分辨率,可以帮助医生做出正确的诊断。在军事、气象领域,通过侦查卫星与气象卫星获得图片的分辨率通常难以达到人们期望的分辨率级别,使用超分辨率技术,通过对观测结果做后期处理,可以更好地识别目标,更好地服务于军事安全和日常生活。

相关文档
最新文档