《结构设计原理》教案 第六章 钢筋混凝土受压构件承载能力计算教学内容

《结构设计原理》教案 第六章 钢筋混凝土受压构件承载能力计算教学内容
《结构设计原理》教案 第六章 钢筋混凝土受压构件承载能力计算教学内容

1、轴心受压构件在实际工程中几乎没有。如果荷载偏心距很小,所产生的弯矩与其轴力相比甚小,可略去不计时,则视为轴心受压构件。其计算方法简单,但应重视它的构造要求,并注意细长比对失稳的重要影响。螺旋箍盘柱施工较复杂,只有当柱子受力很大时,才考虑采用它。

2、矩形、I形偏心受压构件必须确定是大偏心还是小偏心,因为两者在计算上有本质的差别。

3、偏心受压构件可以看成是轴心压力N和弯矩M=N·e0 的共同作用。由于M的作用将使构件产生挠曲变形f又和轴心压力N组成附加弯矩,从而使其计算复杂化。附加弯矩的大小与N、e0和f 有关,而f又与截面尺寸、配筋多少、混凝土强度等级、钢筋种类等因素有关。

4、学习时要注意大小偏心二种情况的计算公式、分界条件、适用条件等。

5、大偏心受压构件的受力和变形特点,与受弯构件双筋梁相类似;小偏受压构件的受力和变形特点与轴心受压构件相类似。学习时可与受弯构件和轴心受压构件结合起来学习,以加深理解。

6、圆形截面偏心受压构件不分大小偏心,重点掌握实用计算法。

第一节轴心受压构件的强度计算

一、普通箍筋柱

二、螺旋箍筋柱

以承受轴向压力为主的构件称为受压构件。

凡荷载的合力通过截面形心的受压构件称之为轴心受压构件(compression members with axial load at zero eccentricity)。

若纵向荷载的合力作用线偏离构件形心的构件称之为偏心受压构件。

受压构件(柱)往往在结构中具有重要作用,一旦产生破坏,往往导致整个结构的损坏,甚至倒塌。

按箍筋作用的不同,钢筋混凝土轴心受压构件可分为两种基本类型:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(tied columns),如图;另一种为配有纵向钢筋及螺旋箍筋或焊环形箍筋的螺旋箍筋柱(spirally reinforced columns),如图。

一、普通箍筋柱

(一)构造要点

1、截面形式:正方形、矩形、工字形、圆形;

2、截面尺寸:根据正压力、柱身弯距来确定,截面最小边长不宜小于250mm;

3、纵筋:

(1)纵向受力钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm,根数不少于4根。

(2)构件的全部纵向钢筋配筋率不宜超过5%。构件的最小配筋率不应小于0.5%,当混凝土强度等级为C50及以上时不应小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。

(3)纵向受力钢筋应伸入基础(foundations)和盖梁(caps),伸入长度不应规定的锚固长度。

4、箍筋:

(1)箍筋应做成封闭式,以保证钢筋骨架的整体刚度。

(2)箍筋间距应不大于纵向受力钢筋直径的15倍且不大于构件横截面的较小尺寸(圆形截面采用0.8倍直径)且不大于400mm。纵向受力钢筋搭接范围的箍筋间距,当绑扎搭接钢筋受拉时不大于主钢筋直径的5倍且不大100mm;当搭接钢筋受压时不大于主钢筋直径的10倍且不大于200mm。纵向钢筋截面面积大于混凝土截面面积3%时,箍筋间距不应大于纵向钢筋直径的10倍且不大于200mm。

(3)箍筋直径不小于8mm且不小于纵向钢筋直径的1/4。

(4)构件内纵向受力钢筋应设置于离角筋,间距s不大于150mm或15倍箍筋直径(取较大者)范围内,如超出此范围设置纵向受力钢筋,应设复合箍筋(compound stirrup)。各根箍筋的弯钩接头,在纵向其位置应错开。

箍筋构造见图(6-2);当遇到柱截面内折角的构造时,则箍筋应按照如图的方式布置。

当遇到柱截面内折角的构造时,则箍筋应如图方式布置。

(二)破坏状态分析

1、短柱(short columns)破坏,如图:

在开始加载时,混凝土和钢筋都处于弹性工作阶段,钢筋和混凝土的应力基本上按其弹性模量(elastic modulus)的比值来分配。当外荷载稍大后,随着荷载的增加,混凝土应力的增加愈来愈慢,而钢筋的应力基本上与其应变成正比增加,柱子变形增加的速度就快于外荷增加的速度。随着荷载的继续增加,柱中开始出现微小的纵向裂缝。在临近破坏荷载时,柱身出现很多明显的纵向裂缝,混凝土保护层开始剥落,箍筋间的纵筋被压曲向外鼓出,混凝土被压碎,柱子发生破坏时,混凝土的应力达到轴心抗压极限强度f ck,相应的应变达到其抗压极限应变(一般取εc=0.002),而钢筋的应力为

σs=εs×Es=400mpa,但应小于其屈服强度,此值即为钢筋的抗压设计强度。

2、长柱(long columns)破坏,如图:

其破坏由于丧失稳定导致的。由于初始偏心距的存在,构件受荷后产生附加弯矩,伴之发生横向挠度,加速了构件的失稳破坏。构件破坏时,首先在靠近凹边出现大致平行于纵轴方向的纵向裂缝,而在凸边发生水平的横向裂缝,随后受压区混凝土被压溃,纵筋向外鼓出,横向挠度迅速发展,构件失去平衡,最后将凸边的混凝土拉断。长柱的破坏荷载较小,一般是采用纵向弯曲系数φ来表示长柱承载能力的降低程度。试验表明,纵向弯曲系数φ与构件的长细比有关。

所谓长细比(slenderness ratio),对矩形截面可用l0/b表示(l0为柱的计算长度,b为截面的短边尺寸),l0/b愈大,即柱子愈长细,则φ值愈小,承载能力愈低。

(三)强度计算

1、基本公式:如图。

2、截面设计

截面尺寸已知时,可由下式计算所需钢筋截面面积。

截面尺寸未知时,则可在适宜配筋率(ρ=0.5%~1.5%)范围内选取一个ρ值,并暂设φ=1,这时基本公式可写成:

若柱为正方形,边长b=,求出的边长b根据构造要求要调整为整数。然后按实际的L0/b查出

φ,再由公式

计算所需的钢筋截面面积。

3、强度复核

首先应根据Lo/b查出φ值,由基本公式求得截面所能承受的纵向力

所求得的截面承载能力应大于计算纵向力。

二、螺旋箍筋柱

(一)构造要点

1、截面形式:多为圆形或多边形,如图。

2、纵向受力筋:ρ不小于箍筋圈内核心混凝土截面面积的0.5%,构件的核心截面面积不小于构件整个截面面积的2/3。配筋率也不宜大于3%,一般为核心面积的0.8%~1.2%。纵筋至少要采用6根,通常为6~8根。

3、箍筋:螺距S(或间距)应不大于核心直径的1/5;且不大于80mm。其间距也不宜小于40mm。螺旋箍筋或焊环的最小换算面积应不小于纵筋面积的25%。螺旋钢筋配筋率不小于1%,而且也不宜大于3%。

4、规定:螺旋筋外侧保护层应不小于15mm。此外,长细比L0/d>12的尺寸也不宜选用。

(二)实验研究

螺旋箍筋柱与普通箍筋柱的主要区别,在于所配置的横向箍筋能有效地约束混凝土的横向变形,使核心混凝土处于三向受压的工作状态,大大提高了核心部分混凝土的轴心抗压强度。螺旋箍筋柱在混凝土的应力较(σc<0.7fcd)时,其受力情况和普通箍筋柱一样,当纵向压力增加到一定数值时,混凝土保护层开始剥落。最后,由于螺旋箍筋的应力达到屈服强度(yielding strength),失去对混凝土的约束作用,使混凝土被压碎而破坏。由此可见,螺旋箍筋的作用是间接地提高了核心混凝土的轴心抗压强度,从而提高了构件的承载力(bearing capacity),如图。

螺旋箍筋的面积,以换算截面面积Aso表示。

试验和理论计算表明,螺旋箍筋所提高的承载能力约为同体积纵向钢筋承载能力的2~2.5倍。这种增大的承载能力是由箍筋的横向约束作用,使核心混凝土处于三向压应力作用下工作,此时混凝土的轴心抗压强度提高了,其大小按下式决定:

将圆形箍筋沿直线切开,根据平衡条件得:

当螺旋箍筋达到受拉屈服强度时,上式可写为:

则,

(三)强度计算

1、强度计算,如图。

《公桥规》规定,按上式计算的螺旋箍筋柱抗压承载力设计值不应大于由普通箍筋柱抗压承载能力设计公式计算值的1.5倍,用以保证混凝土保护层在使用荷载作用下,不致过早剥落,即

《公桥规》规定,凡属下列情况之一者,不考虑间

接钢筋(螺旋箍筋)的影响,而按普通箍筋柱进行计算。

a、箍筋只能提高核芯混凝土的抗压强度,而不能增加柱的稳定性。

b、混凝土核心面积不能太小,否则计算承载能力反而小了。这种情况通常发生在间接钢筋外围的混凝土面积较大时。

c、间接钢筋的换算面积太小,会失去间接钢筋的侧限作用。

以上条件若有一条不满足则按普通箍筋柱计算。

(四)计算方法

1、截面设计

(1)已知:轴向力组合设计值,构件长度,支承约束条件,构件截面尺寸,混凝土和钢筋等级。求间接钢筋和纵向钢筋截面面积。

解:(a)验算是否满足要求;

(b)选定间接钢筋直径d和间距s;

(c)计算间接钢筋截面面积;

(d)计算纵向钢筋截面面积

(e)验算是否满足要求。

(2)截面设计时,当构件截面尺寸未知,

在经济配筋范围内,选取ρ和ρj

值,代入上式求得

Acor,可以求得构件截面核心混凝土面积的直径

按实际的混凝土核心截面面积,求得纵向钢筋截面面积

第二节偏心受压构件的构造及受力特点

一、概述

二、偏心受压构件的构造

三、偏心受压构件的破坏形态

一、概述

偏心受压构件是指轴向力的作用点位于截面形心之外的构件。轴向力N对截面形心偏离的距离e0,如图,称偏心距。偏心受压构件不论其具体的受力情况如何,对任一截面而言,即受有轴向压力,又承受弯矩。偏心受压构件应用很广,例如钢筋混凝土拱桥的主拱圈(archring)、刚架桥的支柱、桥墩(piers)、桥台(abutments)等。

二、偏心受压构件的构造

1、截面:

现浇的偏心受压构件一般多采用矩形截面,应将长边布置在弯矩作用的方向,长短边比值一般为1.5~3.0,为了模板尺寸模数化,边长宜采用5cm的倍数。

预制的装配式结构(prefabricated members)中,常采用T形、工字形和箱形截面。柱式桥墩、钻孔灌注桩等是圆形截面。

2、材料:

常用的混凝土强度等级为C20、C25、C30或更高级别。宜尽可能地采用强度等级较高的混凝土。

不宜采用高强钢筋,以免因不能发挥其高强作用而造成浪费。

3、配筋:

纵向受力钢筋的直径,净距及保护层厚度等规定,均与轴心受压相同。截面每侧的纵向钢筋的最小配筋率不宜小于0.2%,纵向受力钢筋大多按对称布置。

箍筋的间距S和直径d必须满足下列规定:

(纵向受力钢筋直径),或,或,。

当被箍筋固定的纵向受力钢筋的配筋率大于3%时,箍筋间距S≤10d,且不大于200mm。

当构件截面宽度b≤400mm及每侧钢筋不多于4根时,形式如图;当构件截面宽度b>400mm时,则可采用形式如图。

三、偏心受压构件的破坏形态

1、脆性破坏——小偏心受压构件,如下图。

(1)发生场合:当偏心距eo很小时;或当偏心距较小时或虽然偏心距较大,但此时配置了较多受拉钢筋。

(2)破坏形态:应力较边混凝土应力达到抗压强度极限值而压碎,相应的受压钢筋应力能达到屈服强度,受拉边或压应力较小边的钢筋应力一般达不到钢筋的屈服强度。这是一种无明显预兆的破坏,其破坏性质属于脆性破坏。

2、塑性破坏——大偏心受压构件,如下图。

(1)发生场合:当偏心距eo较大时。

(2)破坏形态:破坏时,受拉钢筋应力先达到屈服强度,这时中性轴上升,受压区面积减小,压应力增加,最后使受压区混凝土应力达到弯曲抗压强度而破坏。此时受压区的钢筋一般也能达到屈服强度。破坏前有明显的预兆,弯曲变形显著,裂缝开展甚宽,这种破坏称塑性破坏。

3、界限破坏(大小偏心界限)

界于以上两种破坏状态之间的破坏状态称为界限破坏。用界限系数来表示。

当时,为大偏心受压

当>时,为小偏心受压

如用偏心距eo来鉴别,必须确定相应于界限状态时的偏心距eb,参照第三章双筋受弯构件计算简图和公式,偏心受压界限状态的计算简图,如图所示。

界限状态偏心距的变化如图所示。

e0<0.3(为小偏心)

e0≥0.3(一般为大偏心)

(三)偏心受压构件的N一M相关曲线

以对称配筋截面为例

如图所示。ab段表示大偏心受压时的N一M相关曲线。随着N的增大,M也相应提高。b点为受拉钢筋与受压混凝土同时达到其强度值的界限状态。此时偏心受压构件承受的弯矩最大。be段表示小偏心受压时的N一M曲线。由曲线趋向可以看出,在小偏心受压情况下,随着N的增大,M反而降低。图中a点表示受弯构件的情况,c点代表轴心受压构件的情况。曲线上任一点d的坐标代表截面承载力的一种和的组合。如任意点e位于图中曲线的内侧,说明截面在该点坐标给出的内力组合下未达到承载能力极限状态,是安全的;若e点位于图中曲线的外侧,则表明截面的承载力不足。

4、偏心受压构件的纵向弯曲影响

(1)偏心距增大系数η:《公桥规》规定,计算偏心受压构件时,对于矩形截面lo/h>5(h为弯矩作用平面内的截面高度),对于圆形截面lo/dl>5(dl为圆形截面直径),对于任意截面lo/γi>17.5(γi 为弯矩作用平面内截面的回转半径),均应考虑构件在弯矩作用平面内的挠度(deflection)对纵向力偏心距的影响。此时,应将纵向力对截面重心轴的偏心距eo乘以偏心距增大系数η,即

如图,两端铰接的偏心受压构件弹性曲线方程为

《钢筋混凝土结构设计》项目1 任务1教案

课时授课计划 课次序号:1 一、任务:项目一任务1 结构的整体认识 二、课型:课堂讲授,现场观摩 三、目的要求: 掌握(1)结构的分类;(2)钢筋混凝土结构的概念及特点 了解(1)结构的发展(2)本课程的学习要求 四、重点、难点: 钢筋混凝土结构的受力特点 五、教学方法及手段:讲授 六、参考资料: 《公路钢筋混凝土及预应力混凝土桥涵设计规范》 《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》 《结构设计原理》

一、结构的组成及分类 结构是由若干个构件,按照一定的规则,通过正确的连接方式所组成的能够承受并传递荷载和其它间接作用的骨架。常见基本构件有板、梁、柱、墙、杆、拱、索基础等。 结构的基本构件按受力性能不同,可分为受弯构件、受压构件、受拉构件、受扭构件及复杂受力构件(如压弯构件、拉弯构件、弯扭构件、拉弯扭构件)等。 二、钢筋混凝土结构的特点和发展 1、混凝土结构的定义和分类 (1)定义:以混凝土为主制成的结构称为混凝土结构。 (2)分类:钢筋混凝土结构、预应力混凝土结构、素混凝土结构。 钢筋混凝土结构——由配置受力的普通钢筋、钢筋网或钢筋骨架的混凝土制成的结构称为钢筋混凝土结构; 预应力混凝土结构——由配置受力的预应力钢筋通过张拉或其他方法建立预加应力的混凝土制成的结构称为预应力混凝土结构; 素混凝土结构——由无筋或不配置受力钢筋的混凝土制成的结构称为素混凝土结构。 2、配筋的作用与要求 (1)试验介绍 图1-1 简支梁受力破坏示意图 图1-1 (a ),(b)分别表示素混凝土简支梁和钢筋混凝土简支梁的破坏和受力情况。 a. 素混凝土简支梁

图1-1 (a)所示的素混凝土梁在外加集中力和梁的自身重力作用下,梁截面的上部受压,下部受拉。由于混凝土的抗拉性能很差,只要梁的跨中附近截面的受拉边缘混凝土一开裂,梁就突然断裂,破坏前变形很小,没有预兆,属于脆性破坏类型。 b.钢筋混凝土简支梁 为了改变这种情况,在截面受拉区域的外侧配置适量的钢筋构成钢筋混凝土梁,见图1-1 (b)。 钢筋主要承受梁中和轴以下受拉区的拉力,混凝土主要承受中和轴以上受压区的压力。由于钢筋的抗拉能力和混凝土的抗压能力都很大,即使受拉区的混凝土开裂后梁还能继续承受相当大的荷载,直到受拉钢筋达到屈服强度,此后荷载还可略有增加,当受压区混凝土被压碎,梁才破坏。破坏前,变形较大,有明显预兆,属于延性破坏类型。 可见,与素混凝土梁相比,钢筋混凝土梁的承载能力和变形能力都有很大提高,并且钢筋与混凝土两种材料的强度都能得到较充分的利用。 c. 钢筋混凝土受压柱 如图1-1 (C)所示,在轴心受压的柱子中通常也配置抗压强度较高的钢筋协助混凝土承受压力,以提高柱子的承载能力和变形能力。由于在浇注好的混凝土柱体中,钢筋的抗压强度比混凝土抗压强度高,所以柱子的截面尺寸可以小些。另外,配置了钢筋还能改善受压构件破坏时的脆性,并可以承受偶然因素产生的拉力。 (2)钢筋和混凝土协同工作的主要原因 a.粘结力 混凝土硬化后与钢筋之间有良好的粘结力,从而可靠地结合在一起,共同变形、共同受力。 b.钢筋和混凝土两种材料的温度线膨胀系数相近 钢筋: 1.2 ×10-5/℃ 混凝土: 1.0~1.5×10-5/℃ 当温度变化时,钢筋与混凝土之间不会产生由温度引起的较大的相对变形造成的粘结破坏。

混凝土结构设计原理习题之四五含复习资料钢筋混凝土受压受拉构件承载力计算试题

混凝土结构设计原理习题集之四 6 钢筋混凝土受压构件承载力计算 一、填空题: 1.偏心受压构件的受拉破坏特征是______________________________________ , 通常称之 为_____ ;偏心受压构件的受压破坏特征是 _________________________________ , 通常称之为_______ 。 2.矩形截面受压构件截面,当l/h__ 时,属于短柱范畴,可不考虑纵向弯曲的影0响,即 取___ ;当l/h___ 时为细长柱,纵向弯曲问题应专门研究。0 3.矩形截面大偏心受压构件,若计算所得的ξ≤ξ,可保证构件破坏时 ____ ;b x=ξh≥2a′可保证构件破坏时_______ 。s0b 4.对于偏心受压构件的某一特定截面(材料、截面尺寸及配筋率已定),当两种荷载组合同为大偏心受压时,若内力组合中弯矩M值相同,则轴向N越__ 就越危险;当两种荷载组合同为小偏心受压时,若内力组合中轴向力N 值相同,则弯矩M 越__ 就越危险。 5.由于轴向压力的作用,延缓了__ 得出现和开展,使混凝土的__ 高度增 加,斜截面受剪承载力有所___ ,当压力超过一定数值后,反而会使斜截面受剪承载力__ 。 6.偏心受压构件可能由于柱子长细比较大,在与弯矩作用平面相垂直的平面内发生 _____ 而破坏。在这个平面内没有弯矩作用,因此应按______ 受压构件进行承载 力复核,计算时须考虑______ 的影响。 7.矩形截面柱的截面尺寸不宜小于mm,为了避免柱的长细比过大,承载力降低过多,常取l/b≤,l/d≤(b为矩形截面的短边,d为圆形截面直径,l000为柱的计算长度)。 8.《规范》规定,受压构件的全部纵向钢筋的配筋率不得小于___ _ ,且不应超过 ___ 。 9.钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:_______ 和 _________ ;对于短柱和长柱属于______ ;细长柱属于______ 。 二、选择题: <2a′时,受拉钢筋截面面积A1.在矩形截面大偏心受压构件正截面强度计算中,当x的ss求法是() A.对受压钢筋的形心取矩求得,即按x=2a′求得。s B.要进行两种计算:一是按上述A的方法求出A,另一是按A′=0,x为未知,而求出s s A,然后取这两个A值中的较大值。ss C.同

4.3-偏心受压构件承载力计算

4.2 轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e =M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,0 相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压 构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情 况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这 种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N 增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加 宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并 形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减 小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图 4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过 多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载 逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

《钢筋混凝土课程设计》教学大纲

《钢筋砼结构课程设计》教学大纲 一、课程设计基本信息 课程代码: 305086231 开课专业:建筑工程技术(高职) 总学时数:二周;学分:2学分 关联课程:房屋建筑学,钢筋混凝土结构,建筑力学,建筑施工技术等 教学形式:实例讲解 + 查阅资料 + 设计指导 二、课程设计的目的与要求 建筑施工技术专业混凝土结构课程设计的目的和要求为: (1)了解建筑工程结构设计的主要过程; (2)锻炼和提高钢筋混凝土结构的计算、设计及构造处理、绘制结构施工图的能力; (3)培养同学在建筑工程设计过程中的配合意识,包括工种与工种之间的协调及设计组人员之间的配合,加深对所学理论课程的理解和巩固; (4)初步培养正确、熟练的运用结构设计规范、手册、各种标准图集及参考书的能力; (5)通过实际工程训练,初步建立结构设计、施工、经济全面协调统一的思想; (6)通过课程设计,进一步建立建筑工程师的责任意识。 三、课程设计的内容 Ⅰ.钢筋混凝土肋形楼盖设计 (1)完成设计计算书一份。内容包括: ①板、次梁和主梁的截面尺寸拟定; ②板、次梁和主梁的荷载计算、内力计算(板、次梁按塑性方法,主梁按弹性方法),主梁的弯矩包络图和剪力包络图; ③构件截面配筋计算。

(2)绘制楼盖结构施工图(两张2号图纸)。内容包括: ①粱板结构布置图;②板的模板图及配筋图; ③次梁模板图及配筋图;④主梁模板图、配筋图及材料图;⑤主梁钢筋表; ⑥设计说明,如混凝土强度等级、钢筋级别、混凝土保护层厚度等。 Ⅱ.单跨厂房钢筋混凝土排架(柱与基础)设计 (1)结构计算(交一份计算书) ①确定计算排架的尺寸和计算简图(横向排架尺寸,作用在排架上的恒荷载、屋面活荷载、雪荷载、风荷载、吊车荷载及其作用位置和方向); ②进行排架内力分析,计算控制截面的内力,绘出各类荷载下的排架内力图; ③对计算的排架柱进行内力组合; ④对柱及基础作截面设计及有关的构造设计; (2)绘施工图(交1#铅笔图2张)。 ①基础、基础梁结构布置图;②吊车梁,柱及柱间支撑结构布置图; ③屋盖结构布置图。④柱、基础模板及配筋图。 四、课程设计进度与时间安排 时间一周,在此期间应当完成计算书一份,结构施工图数张。具体时间安排如下:

大连理工大学《钢筋混凝土结构课程设计》离线作业答案教学教材

大连理工大学《钢筋混凝土结构课程设计》离线作业答案

网络教育学院《钢筋混凝土结构课程设计》题目:XX单层厂房单向板设计 学习中心: 专业: 年级: 学号: 学生: 指导教师:

1 基本情况 XX 单层工业建筑的中间楼面详见图1-1“建筑平面图”。中间楼面使用的是现浇钢筋混凝土单向板肋梁楼盖。现在对其进行结构设计。 设计的内容:生产车间的四周外墙全为240的承重砖墙, 主梁端墙处:370mm ×370mm 壁柱;设置钢筋混凝土柱,截面尺寸400mm ×400mm 。 楼盖自重:钢筋混凝土容重325/kN m γ=; 楼面活荷载,单位是0.52/kN m ; 楼面面层:水磨石地面20.65/kN m ; 板底粉刷:20.40/kN m 。 混凝土:C20、C25或C30; 钢筋:次梁及主梁受力筋用HRB335或HRB400级钢筋,板内及梁内的其它钢筋可以采用HPB300或HRB335级钢筋。 图1-1 建筑平面图

2 单向板结构设计 2.1 板的设计 2.1.1恒荷载标准值 板的永久荷载标准值 80mm 现浇钢筋混凝土板 0.08×25=2kN/2m 10mm 厚大理石地面 0.01×28=0.28kN/2 m 20mm 板底混合砂浆抹灰 0.02×17=0.34kN/2 m 合计 2.62kN/2 m 板的可变标准荷载值 3.5kN/2 m 永久荷载分项系数取1.2或者1.35,因楼面可变荷载标准值为3.5kN/2 m ,所 以可变荷载分项系数应取1.4。于是板的荷载总计算值 ①q=G γk g +?Q γk q =1.35×2.62+0.7×1.4×3.5=6.967kN/2m ②q= G γk g +Q γk q =1.2×2.62+1.4×3.5=8.044kN/2m 由于②>①,所以取②q=8.044kN/2m ,近似取q=8kN/2m 图2-1 板的计算简图 2.1.2内力计算及配筋: 在表2-1可查得,板的弯矩系数αm 分别为:边跨中为1/11; 离端第二支座为-1/11;中跨中为1/16;中间支座为-1/14,则有 M1=-MB=1/11(g+q )l0 2=1/11×8.04×2.022=2.982KN ·m M2=M3=1/16(g+q )l0 2=1/16×8.04×2.002=2.01 KN ·m Mc=-1/14(g+q )l0 2=-1/14×8.04×2.002=-2.297KN ·m

钢筋混凝土结构习题及答案教学内容

钢筋混凝土结构习题 及答案

钢筋混凝土结构习题及答案 一、填空题 1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生的 超过了混凝土的极限抗拉强度而开裂的。 2、随着纵向配筋率的提高,其斜截面承载力。 3、弯起筋应同时满足、、,当设置弯起筋仅用于充当支座负弯矩时,弯起筋应同时满足、,当允许弯起的跨中纵筋不足以承担支座负弯矩时,应增设支座负直筋。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A、I;B、 I a;C、II;D、II a;E、III;F、III a。①抗裂度计算以阶段为依据;②使用阶段裂缝宽度和挠度计算以阶段为依据;③承载能力计算以阶段为依据。 5、界限相对受压区高度b 需要根据等假定求出。 6、钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在 弯矩范围内,假定其刚度为常数,并按截面处的刚度进行计算。 7、结构构件正常使用极限状态的要求主要是指在各种作用下 和 不超过规定的限值。

8、受弯构件的正截面破坏发生在梁的 ,受弯构件的斜截面破坏发生在梁的 ,受弯构件内配置足够的受力纵筋是为了防止梁发生 破坏,配置足够的腹筋是为了防止梁发生 破坏。 9、当梁上作用的剪力满足:V ≤ 时,可不必计算抗剪腹筋用量,直接按构造配置箍筋满足max min ,S S d d ≤≥;当梁上作用的剪力 满足:V ≤ 时,仍可不必计算抗剪腹筋用量,除满足max min ,S S d d ≤≥以外,还应满足最小配箍率的要求;当梁上作用的剪 力满足:V ≥ 时,则必须计算抗剪腹筋用量。 10、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。 11、由于纵向受拉钢筋配筋率百分率的不同,受弯构件正截面受弯破坏形态有 、 和 。 12、斜截面受剪破坏的三种破坏形态包括 、 和 13、钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而 。用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距_______(大、小)些。 14、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 答案: 1、复合主拉应力;

钢筋混凝土与砌体结构—电子教案

教案 二级学院:工学院 课程名称:钢筋混凝土结构与砌体结构任课教师: 授课班级:2 建筑工程技术 授课时间:2

教案编写说明 一、编写原则 1.教案编写要依据教学大纲和教材,从学生实际情况出发,精心设计。一般要符合以下要求:(1)明确地制订教学目的,具体规定传授基础知识、培养基本技能、发展能力以及思想政治教育的任务。(2)合理组织教材,突出重点,解决难点,便于学生理解并掌握系统的知识。(3)恰当地选择和运用教学方法,调动学生学习的积极性,面向大多数学生,同时注意培养优秀学生和提高后进生,使全体学生得到发展。 2.教师应提前一周备课,并在每次授课时携带教案授课。 3.教案按每次授课单元填写,一般以2~4学时为宜。 二、编写说明 1.“授课时间”、“章节名称”必须填写。 2. “教学目的”:依照教学大纲要求,本课程学生应掌握、熟悉、了解的要点。“教材版本”包括教材系列、教材名称、主编、出版社、版本及出版时间。 3. “教学重点”是依据教学目标,在对教材进行科学分析的基础上而确定的最基本、最核心的教学内容,一般是一门学科所阐述的最重要的原理、规律,是学科思想或学科特色的集中体现。它的突破是一节课必须要达到的目标,也是教学设计的重要内容。 4. “教学难点”是指学生不易理解的知识,或不易掌握的技能技巧。难点不一定是重点,也有些内容既是难点又是重点。 5.“教学方法”是教师和学生为了实现共同的教学目标,完成共同的教学任务,在教学过程中运用的方式与手段,包括讲授法、现场演示法、讨论法、练习法、案例分析法等。 6.“课程资源准备”:包括教室条件说明、教具准备、多媒体或电子教案准备、教学参考资料等内容。 7.“教学设计”:主要包括本次授课的主要教学内容(板书设计)、时间分配、教学模式(如理论教学、实践教学、讨论式教学等)、教学方法等设计内容。

钢筋混凝土结构课程教学试验

简支梁正截面试验 一、试验目的 1、观察适筋梁、超筋梁和少筋梁的破坏过程(裂缝出现及发展、挠度变 化及破坏特征)。 2、通过试验反算 f值。 cm 3、观察适筋梁纯弯段在使用阶段的裂缝宽度及裂缝间距。 4、验证平截面假定。 5、初步了解正截面科学研究的基本方法。 6、比较适筋梁与超筋梁的破坏形态及破坏荷载和挠度情况。 二、试件设计 为了确保梁正截面强度破坏,试件的剪弯区段箍筋已配得很强,纵筋端部锚固也足够可靠。 图1-1、图1-2、图1-3和表1-1给出了L-1(少筋梁)、L-2(适筋梁)、L-3(超筋梁)的配筋详图及截面参数。设计时,混凝土采用C20,纵向受力筋,Ⅰ级钢带弯钩,Ⅱ级钢不带弯钩。 表1-1

截面 面 图1-1 少筋梁配筋图 截面 图1-2 适筋梁配筋图

截面 图1-3 超筋梁配筋图 三、试件制作 试件采用干硬性混凝土,平板振捣器振捣,蒸汽养护或自然养护28天。制作试件同时预留混凝土立方体试块(150×150×150mm )和纵向受力钢筋试件以测得混凝土和钢筋的实际强度,所用钢筋不得冷拉。 表1-2 四、加载装置

采用两点加载,梁中部为纯弯区段,见图1-4。 1、反力梁 2、垫板 3、传感器 4、千斤顶 5、分配梁 6、支座 7、位移计 8、支墩 N 1-N 12电阻应变片 图1-4 加载位置和测点布置图 五、仪表安装(见图1-4) 1、百分表(1φ~3φ)用来测定梁的挠度,其中1φ、2φ用来测定支座沉降。 v (挠度)=2 2 13φφφ+- 2、百分表(4φ~7φ)用来测定纵向应变以验证平截面假定。 3、千斤顶、分配梁应与试件在同一平面内,并对中。 4、用荷载传感器和电子秤显示所加荷载。 六、安全措施及注意事项 为了得到准确可靠的试验数据以及保证试验过程中人和仪表的安全,应做

受压构件承载力计算复习题(答案)详解

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

偏心受压构件计算方法

非对称配筋矩形截面偏心受压构件正截面承载力设计与复核 1大小偏心的判别 当e < h o时,属于小偏心受压。 时,可暂先按大偏心受压计算,若b,再改用小偏心受压计算2、大偏心受压正截面承载力设计 1).求A s和A,令b,(HRB33歐,b 0.55; HRB40C级,b 0.52) 2 Ne i f c bh o b(1 0.5 b) A s RE f y(h o a)(混规, f y 2).求A s A s A si A s2 A S3 (0)若 b 按照大偏心 (1)若 b cy 2 i b A ;Ne i f c bh o2 (1 /2) f y(h o a ) i f c bh o b N A s 主A s f y 适用条件: A s/bh > min,且不小于f t / f y ;A;/ bh > min 0 如果 x<2a/,A s N(e h/2 a') f y (h o a/) 适用条件:A;/ bh > min,且不小于f t/f y ;A;/bh > min 0 3、小偏心受压正截面承载力设计

如果s Q A s min bh 再重新求,再计算A s (2)若 h/ h o Ne i f c bh(h 。h ) 2 f y (h o a) 然后计算和A s N(h/2 e Q e a a 7) 1 f c bh(h/2 a 7) f y (h o a ) 情况(2)和(3)验算反向破坏。 4、偏心受压正截面承载力复核 1).已知N ,求M 或仓。 先根据大偏心受压计算出X : (1)如果 x 2a / , ⑵ 如果2a / x b h 。,由大偏心受压求e ,再求e 0 ⑶若 b ,可由小偏心受压计算 。再求e 、e o 2).已知e o ,求N 先根据大偏心受压计算出x (1) 如果 X 2a /, (2) 若2a / x b h o ,由大偏心受压求N 。 (3) 若x > b h o ,可由小偏心受压求N 。 注意适用条件的验算。 适用条件: A s /bh > min ,且不小于 f t / f y ; A s /bh > min A s min bh ⑶若 h/h o ,取 X h , s A s A s cy ,取 s f / y

《钢筋混凝土结构》课程教学大纲

《钢筋混凝土结构》课程教学大纲 华南理工大学东莞东阳教学中心 课程名称:钢筋混凝土结构(英文)Reinforced concrete structure 课程性质:必修课适用专业:专升本 学时:72 学分:4.5 一、课程的作用、地位和任务 本课程属土木工程专业必修的专业基础课。是一门实践性很强、与现行的规范、规程等有关的专业基础课。通过本课程的学习,使学生掌握混凝土结构学科的基本理论及基本知识,为以后在混凝土结构学科领域继续学习及毕业设计打下基础。 二、课程内容和要求: (一)绪论 1.了解混凝土的一般概念 2、深刻理解和掌握钢筋和混凝土共同工作的条件(重点) 3、充分认识钢筋与混凝土的优缺点(重点) 4、了解钢筋混凝土结构在土木工程中的应及发展前景 5、做好学习本课课程的准备。 (二)钢筋混凝土材料的主要力学性能 内容:钢筋和混凝土材料的力学性能以及混凝土与钢筋粘结协同工作的特性直接影响结构和构件的受力性能,也是混凝土结构的计算理论、计算公式建立的基础。 要求: 1.熟悉建筑工程中所用钢筋的品种、级别及其性能 2、掌握钢筋的强度指标和变形,重点理解钢筋的应力应变曲线 3、熟悉混凝土在各种受力状态下的强度与变形性能,掌握混凝土各项强度指 标、弹性模量以及变形模量等(重点)

4、了解钢筋与混凝土的粘结(第六章有展开) 5、了解混凝土的时随变形——收缩和徐变。 (三)梁的受弯性能的试验研究、分析 内容:通过对典型试验梁的挠度曲线、截面应变分布及破坏过程的分析,说明混凝土和钢筋的力学性能对梁的受力阶段、应力状态、破坏特征的影响,以及如何在试验研究的基础上建立起钢筋混凝土的应力分析和极限弯矩的计算公式。 要求: 1、掌握试验梁、梁的挠度曲线、梁受力的三个阶段以及相应的截面应力分布 (重点) 2、掌握适筋梁及其破坏特征(重点) 3、熟悉混凝土梁的受力特点 4、熟悉配筋率对梁的破坏特征的影响 5、掌握梁截面应力分析的基本假定——平截面假定、材料的应力-应变物理 关系、基本方法(重点) 6、熟悉《规范》采用的极限弯矩计算方法,具有实际意义。 (四)结构设计原理、设计方法 内容:现行规范和法规是混凝土结构设计的遵守的基本原则,本章结合现行《混凝土结构设计规范》(GB50010-2002)介绍了结构设计原理——结构极限状态的基本概念、近似概率的极限状态设计法及其极限状态使用设计表达式。 要求: 1、熟悉结构设计的要求 2、掌握工程结构极限状态的基本概念。包括结构的作用、对结构的功能要求、 两类极限状态等(重点) 3、了解结构可靠度的基本原理 4、熟悉近似概率极限状态设计法在混凝土结构设计中的应用 (五)受弯构件正截面承载力计算 内容:本章在第二章的试验分析和第三章的理论分析的基础上,突出问题的主要特性,推导出受弯构件正截面承载力计算的基本公式和适用条,并注意构造要求。 要求:

偏心受压构件承载力计算

轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M 的共同作用时,等效于承受一个偏心距为 e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0 的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0 较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0 较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0 较小,或偏心距e0 虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu 被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0 较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

混凝土结构设计1教案完美版

第一章梁板结构设计 1.1 概述 *楼盖和屋盖是房屋结构的重要组成部分,在房屋结构的自重和造价中占有较大比例。 *楼盖的主要功能(P1): (1)把楼盖上的竖向力传给竖向结构(柱、墙、基础等);(2)把水平力传给竖向结构或分配竖向结构; (3)作为竖向结构构件的水平联系和支撑。 *对楼的结构设计要求(P1): ①在竖向荷载作用下,满足承载力和竖向刚度的要求; ②在楼盖自身水平面内要有足够的水平刚度和整体性; ③与竖向构件有可靠的连接,以保证竖向力和水平力的传 递。 *楼盖的结构类型分类

(1)按结构的受力形式分类:单向板肋梁楼盖、双向板肋梁楼盖、井式楼盖、密肋楼盖、无梁楼盖; (2)按是否施加预应力分类:钢筋混凝土楼盖、预应力混凝土楼盖(包括无粘结预应力混凝土楼盖P1-2); (3)按施工方法分类:现浇式楼盖、装配式楼盖、装配整体式楼盖(P2)。 1.2 现浇式楼盖 1.2.1单向板肋梁楼盖 1.单向板的概念 单向板--板面竖向荷载主要向一个方向传递,主要在一个方向受力的板。 (1) 悬臂板 (2) 对边支承板 (3) 四边支承板、(两邻边支承板、三边支承板) *按弹性理论分析(P3 1.1—1.3式) ① 当长边1l 与短边2l 之比,2/21 l l 时,荷载主要沿短边方向传递,可忽略荷载沿长边方向的传递,按单向板(One way slabs )计算;

② 当2/21l l 时,按单向板(One way slabs )计算; ② 当3/21

钢筋混凝土结构 学习指南

第一章绪论 【课程导学】 本章讲述了钢筋混凝土结构的一般概念、优缺点和相应的学习方法。这些概念能启发以后的学习,而学过以后各章再重新学习这章,则会对这些概念有更深的认识。本章简略介绍了与此方法有关的基本知识,以方便后续各章的学习。另外,还介绍了钢筋混凝土结构发展的历史。 你现在学习的第1章位于课程学习流程图的节点1 第二章钢筋混凝土结构分析和设计的基础 【课程导学】 本章主要介绍结构设计的一些常用的基本概念,并结合钢筋混凝土简支梁的试验结果初步分析了整体工作、带裂缝工作和极限破坏三个阶段的应力应变状态分析的特点,对钢筋混凝土结构设计方法的演变历史做了概述,重点阐述了基于概率的极限状态设计准则和实用设计表达式。本章中有关概念十分重要,将贯穿以后各个章节,所以要求学习者认真领会。

你现在学习的第2章位于课程学习流程图的节点2 第三章钢筋混凝土材料的力学性能 【课程导学】 钢筋与混凝土是两种性能极不相同的材料,是非匀质的;又由于混凝土具有显著的非弹性性能,及钢筋与混凝土之间共同工作又相互作用的特点,故钢筋混凝土的物理力学性能与匀质弹性材料有很大差异。对本章中钢筋与混凝土的主要物理力学性能的了解,包括其强度与变形性能,以及对两者相互作用(粘结力性能的了解)是学习钢筋混凝土结构和构件的受力特点、计算方法、构造措施的基础。

你现在学习的第3章位于课程学习流程图的节点3 第四章受弯构件正截面的承载力计算 【课程导学】 本章将讲述钢筋混凝土梁的试验结果和受弯构件正截面受弯承载力的计算公式及其适用条件,同时还讲述计算公式的应用及有关的构造要求等内容。本章是这门课程最重要的一章,是讲述钢筋混凝土基本构件的开始,一些重要的概念都会在此讲述,故学好本章是顺利学习后续章节的重要保证。

受压构件的承载力计算

受压构件的承载力计算 6.1 重点与难点 6.1.1 轴心受压构件正截面承载力计算 1. 配置一般箍筋的柱 受压破坏时混凝土被压碎,纵向受压钢筋达到其受压屈服强度,正截面承载力公式如下: )''(9.0s y c u A f A f N N +=≤? (6—1) 式中:φ—稳定性系数,按规范查表6.2.15确定,对于短柱,φ=1(如 矩形截面,当80≤b l 时即为短柱,b 为截面较小边长;圆形7/0≤d l ,d 为直径;其他截面,28/0≤i l ,i 为截面最小回转半径); A —构件截面面积,但当纵向钢筋配筋率大于3%时,取混凝土 净截面面积' S A A -; 'y f ——纵向钢筋抗压强度设计值; N ——轴向压力设计值;其他符号与前同; 0.9——可靠度调整系数 2. 配置螺旋式(或焊接环式)箍筋的柱 柱截面形状一般为圆形或多边形。受压破坏时核芯混凝土达到其 三向抗压强度,保护层剥落,纵向受压钢筋达到其受压屈服强度,环向箍筋达到其抗拉屈服强度,正截面承载力公式如下: )2(9.00''ss y s y cor c u A f A f A f N N α++=≤ (6—2) s A d A ss cor ss 1 0 π= (6—3) 式中: cor A ——构件的核心截面面积;取间接钢筋内表面范围内混凝土面积 y f ——间接钢筋的抗压强度设计值;0ss A ——间接钢筋的换算截面面积; cor d ——构件的核心截面直径; s ——间接钢筋间距; 1ss A ——单根间接钢筋的截面面积; α——间接钢筋对砼的约束的折减系数:C50级以下砼,α=1.0 ,C80级砼,α=0.85 其间现性插入。 按式(6—2)计算时尚须注意: ⑴式(6—2)计算的承载力设计值不应大于按式(6—1)计算所得的1.5倍; ⑵下列任一情况下,不考虑间接钢筋的作用。 ①当120>d l 时; ②当按式(6—2)算得的承载力设计值小于按式(6—1)计算所得值时; ③当' 0%25s ss A A <时。 6.1.2 偏心受压构件正截面承载力计算 1. 偏心受压构件的破坏特征 ⑴受拉破坏(大偏心受压破坏) 当相对偏心距较大,且受拉钢筋配置不太多时发生此种破坏。破坏始于受拉钢筋 (离轴

钢筋混凝土结构电子教案(二)

第七章受压构件承载力计算 1、教学要求 (1)掌握轴心受压构件的受力全过程、破坏特征、正截面承载力计算方法。了解螺旋箍筋柱的应用。 (2)掌握偏心受压构件的两类破坏形态、特征及其界限,偏心矩增大系数和附加偏心矩的意义及其影响。熟练掌握矩形、工字形截面偏心受压构件(不对称和对称配筋)的计算方法、适用条件及构造要求。 (3)掌握偏心受压构件受剪计算方法。了解双向偏心受压构件设计方法的原理。 2、重点、难点 (1)重点 轴心受压构件的破坏特征、正截面强度计算、构造要求。偏心受压构件的两类破坏形态及其区分界限,偏心矩增大系数,矩形截面对称配筋偏心受压构件强度计算,工字形截面对称配筋偏心受压构件强度计算,偏心受压构件的构造要求。 (2)难点 偏心受压构件的两类破坏形态及其区分界限,偏心矩增大系数,矩形截面非对称配筋,工字形截面对称配筋偏心受压构件强度计算。 轴心受压 分类 偏心受压 图 7.1 § 7.1 受压构件的构造要求 一、材料强度等级 混凝土C ≥ C20

钢筋:热轧钢筋 二、截面形式及尺寸 截面形式:八边形 截面尺寸: ≥250×250mm 工字形:翼缘,腹板 当时,取50模数。 当时,取100mm模数。 三、纵向钢筋 直径:屋架斜腹杆:d≥10;柱:d≥12; 间距:≤350mm或>50mm; 配筋率:, 当时,设构造筋。图7.2。

四、箍筋: 布置方式:封闭式:图 7.2。 直径:一般,且 当时,,且间距,。 间距S: 且 (绑扎)

(焊接) 搭接区内:受拉:≤5d,且≤100mm。受压:≤10d,且≤200mm。 § 7.2 轴心受压构件承载力计算 纵筋:角部均匀布置; 作用:协助混凝土受压;承受偏心引起的拉力。 钢筋:普通筋、螺旋筋。 作用:防止纵筋压屈、外凸;对核心混凝土起约束作用。 图7.3 一、配有普通箍筋的轴心受压柱 1、试验研究: 图 7.4 图 7.5 ①当N小时,应力应变分布均匀,压缩变形与外力增长成正比。 ②随N的增大,变形的增长较N的增长快(图7.5) ③随N的进一步加大,柱中出现了微裂缝。 柱四周纵向裂缝; 核心混凝土压碎破坏 纵筋压屈、外凸; 破坏时,混凝土,

06第五章-钢筋混凝土受压构件承载力计算(1)

第五章钢筋混凝土受压构件承载力计算 以承受轴向压力为主的构件称为受压构件(柱)。 理论上认为,轴向外力的作用线与构件轴线重合的受压构件,称为轴心受压构件。在实际结构中,真正的轴心受压构件几乎是没有的,因为由于混凝土材料组成的不均匀,构件施工误差,安装就位不准,都会导致压力偏心。如果偏心距很小,设计中可以略去不计,近似简化为按轴心受压构件计算。 若轴向外力作用线偏离或同时作用有轴向力和弯矩的构件称为偏心受压构件。在实际结构中,在轴向力和弯矩作用的同时,还作用有横向剪力,如单层厂房的柱、刚架桥的立柱等。在设计时,因构件截面尺寸较大,而横向剪力较小,为简化计算,在承载力计算时,一般不考虑横向剪力,仅考虑轴向偏心力(或轴力和弯矩)的作用。 §5-1 轴心受压构件承载力计算 轴心受压构件按其配筋形式不同,可分为两种形式:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(直接配筋);另一种为配有纵向钢筋和密集的螺旋箍筋或焊接环形箍筋的构件,称为螺旋箍筋柱(间接配筋)。在一般情况下,承受同一荷载时,螺旋箍筋柱所需截面尺寸较小,但施工较复杂,用钢量较多,因此,只有当承受荷载较大,而截面尺寸又受到限制时才采用。 (一)普通箍筋柱 1、构造要点 普通箍筋柱的截面常采用正方形或矩形。柱中配置的纵向钢筋用来协助混凝土承担压力,以减小截面尺寸,并用以增加对意外弯矩的抵抗能力,防止构件的突然破坏。纵向钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm;对水平浇筑的预制件,其纵向钢筋的最小净距应按受弯构件的有关规定处理。配筋率不应小于0.5%,当混凝土强度等级为C50及以上时应不小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。受压构件的配筋率按构件的全截面面积计算(图5.1-1)。 柱内除配置纵向钢筋外,在横向围绕着纵向钢筋配置有箍筋,箍筋与纵向钢筋形成骨架,防止纵向钢筋受力后压屈。柱的箍筋应做成封闭式,其直径应不小于纵向钢筋直径的1/4,且不小于8mm。构件的纵向钢筋应设置于离角筋中距不大于150mm范围内,如超出此范围设置纵向钢筋,应设复合箍筋。箍筋的间距不应大于纵向受力钢筋直径的15倍或构件短边尺寸(圆形截面采用0.8倍直径),并不大于400mm。在纵向受力钢筋搭接范围内箍筋间距不应大于搭接受压钢筋直径的10倍,且不大于200mm。纵向钢筋的配筋率大于3%时,箍筋间距不应大于纵向受力钢筋直径的10倍,且不大于200mm。

《钢筋混凝土结构原理》教学大纲_钢筋混凝土结构

《钢筋混凝土结构原理》教学大纲 一、教学目的与任务 了解钢筋和混凝土组成的各种受力构件的力学行为; 掌握受弯,受剪、受压、受拉、受扭等基本构件的破坏机理、承载力计算的基本理论,计算方法和配筋构造原理; 熟悉钢筋混凝土构件裂缝和变形发展的规律; 掌握预应力混凝土结构设计计算的原理和方法。 通过该课程的学习可培养学生理论联系实际的方法,提高结构设计和实验分析的能力,并使学生有进一步研究混凝土结构理论和提高工程实践的基础。 二、教学内容 (一)绪论(2学时) 1.钢筋混凝土结构一般结构概念及特点 2.钢筋混凝土结构的发展史、应用及进展 3.本课程的性质、内容及学习方法 (二)钢筋混凝土材料的物理力学性能(6学时) 1.钢筋:钢筋的分类及其应力-应变特性,钢筋的冷加工及其应力-应变特点,钢筋的品种、级别、钢筋混凝土结构对钢筋材料的要求。 2.混凝土:混凝土的强度、立方体强度、轴心抗压强度、抗拉强度、各强度之间大致数量关系,复杂应力状态下混凝土的强度

3.混凝土的变形:混凝土在一次短期加载下的应力-应变特性,不同混凝土强度等级不同加载方式下的应力-应变关系,混凝土的弹性模量、变形模量及其关系,混凝土的横向变形系数、极限变形值、混凝土重复荷载下的变形、混凝土的徐变、混凝土的收缩、钢筋混凝土中由于混凝土产生收缩和徐变的效应。 (三)钢筋混凝土结构的设计方法(6学时) 1.极限状态设计方法的基本概念:结构的功能要求,二种极限状态。 2.可靠度的基本概念:结构设计问题的不确定性,数理统计中的一些基本概念:均值、方差、离散率、保证率,结构的失效和可靠度指标、建筑结构设计统一标准。 3.极限状态设计的实用设计表达式,荷载和材料强度的标准值,荷载分项系数、材料强度分项系数的确定、荷载设计值、材料强度设计值、荷载组合系数、建筑结构安全等级的考虑。正常使用极限状态的设计表达式。 (四)受弯构件正截面承载力计算(10学时) 1.受弯构件正截面承载力的试验研究:三个工作阶段截面应力、应变特点、配筋率的变化对构件变形及其破坏特征的影响,不同的破坏性质。 2.受弯构件正截面承载力计算的一般规定:基本假定区等效矩形应力图形及弯曲抗压强度的概念,界限受压区高度、梁配筋率的高限和低限。 3. 受弯构件正截面承载力计算:应力图形、平衡方程、限制条件、计算方法步骤、计算表格的应用、双筋矩形截面、T形截面的计算。 4. 受弯构件截面及配筋构造知识。 (五)受弯构件斜截面承载力知识(8学时) 1.斜裂缝的形成、斜裂缝的形态 2.影响斜截面承载力的主要因素、斜截面的破坏形态

相关文档
最新文档