低压电网无功补偿最优方式和补偿容量的选择

低压电网无功补偿最优方式和补偿容量的选择
低压电网无功补偿最优方式和补偿容量的选择

低压电网无功补偿最优方式和补偿容量的选择

摘要:低压电网主要采用并联电容器组进行无功补偿,其补偿方式一般分为集中补偿、分组补偿和个别补偿。补偿容量的确定与补偿方式有关,应考虑选用最优的补偿方式和合理的补偿容量,以提高电网无功补偿的经济效益。

关键词:电网无功补偿电容器容量

Optimization of Reactive Compensation and Choice of Compens ation Capacity in Low-voltage

Electric Network

LUO He-ping ,Zhu Yi

(1.Fujian Quanzhou Administrative Division of Exhibition City,Quanzhou Fujian 362000,China 2.Fujian Technical College of Water Conservancy and Electric Power,Yongan Fujian 366000,China)

Abstract:Para11e1-series capacitors are chiefly used for reactive compensation in low—voltage,the ways of which fall generally into three categories,i.e.centralized compensation,grouped compensation and individualized comDeasation.The determinations of compensation capacity are related to the ways of compe nsation.In order to raise the economic efficiency of reactive compensation in electric network,optimization of reactive compensation and reas.onable compensation capacity should be taken into consideration.

Key words:electric network;reactive compensation;capacitor;capacity

低压电网的无功补偿一般都选择在各电力用户装设电容器装置。同其他无功功率补偿装置相比,并联电容器无旋转部分,具有安装、运行维护简单方便,有功损耗小以及组装增容灵活,扩建方便、安全,投资少等优点,因此,并联电容器改善功率因数可获得较显著的经济效益,并获得广泛应用。并联电容器的补偿方式一般分为集中补偿、分组补偿和单机(个别)补偿三

种。

1 无功补偿最优方式的选择

1.1 集中补偿

集中补偿方式是将电容器组装设在用户专用变电所或配电室的低压或高压母线上,这种补偿方式电容器组利用率较高,能补偿变配电所低压或高压母线前的无功功率。其接线如图

1中的C1所示。

1.1.1 集中补偿的效益

1)可以就地补偿变压器的无功功率损耗。由于减少了变压器的无功电流。相应地可减少变压器容量,或者说可以增加变压器所带的有功负荷;2)可以补偿变电所以上输电线路的功率损耗:3)可以就近供应380 V配电线路的前段部分本身及所带用电设备的无功功率损耗。但这种补偿方式也有其一定的局限性,它只能减少装设点以上线路和变压器因输送无功功率所造成的损耗,而不能减少用户内部配电网络的无功负荷所引起的损耗。正是由于用户内部的无功线损没有减少,其降损节电效益必然受到限制。这就是说,集中补偿的容量再多,其作用仅限于减少变压器本身及其以上输配电线路的无功功率损耗。凡是向负荷输送的无功功率,由于仍然要经过线路的电阻和电抗,低压配电线路上产生的无功损耗并未减少,因此集中补偿的容量不应选择过大,应为平均所需无功容量的为宜。否则,在变压器空载运行时,或者在总负荷较轻时,就会造成过补偿,致使无功功率向电力系统倒送和使用户内部电压升高。故集中补偿方式一般应配备电容器自动投切补偿装置,以便及时切除多余的补偿容量。

为了弥补这种补偿方式的不足.对生产车间内的用电设备最好采取分散补偿方式。但当分散补偿条件不够理想或者补偿效益不够明显时,就只得依靠集中补偿方式向车间配电线路及其末端的用电设备输送无功功率。

1.1.2 集中补偿方式的优点

这种装设方式,与分散补偿方式相比,还有以下优点:1)能方便地同电容器组的自动投切装置配套,自动追踪无功功率变化而改变用户总的补偿容量,避免在总的补偿水平上产生过补偿或欠补偿,从而使用户的功率因数始终保持在规定的范围内,达到最优补偿的效果;

2)集中补偿有利于控制用户本身的无功潮流,避免受电力网电压变化或负荷变化而产生过大的电压波动。当电压波动超过允许范围时,可借助于自动投切装置调整母线电压水平,以改善电压质量:3)电容器组的基本容量是根据用户正常负荷需要确定的,运行时间长,利用率高,补偿效益就高:而且集中补偿方式在运行维护上较为方便,事故率相对较少。

1.2 分组补偿

这种补偿是将电容器组按低压配电网的无功负荷分布情况,分组装设在相应的母线上,或者直接与低压干线相连接,形成低压电网内部的多组分散补偿方式。如对工厂车间来讲,就是将电容器组分别安装在各个车间的配电箱处,如图1中的C2所示。

1.2.1 分组补偿的效益

电容器分散装设,可以就近补偿用电设备所消耗的无功功率。由于这部分无功功率不再通过主干线以上线路输送,从而使变压器和配电主干线路的无功功率损耗相应地减少,因而分组补偿比集中补偿降损节电效益显著。尤其对于用电负荷点较多.而且距离较远的低压配电网,这种补偿效益更高。此外,这种补偿方式的节电效果还与补偿地点和补偿容量的选择有关。

1.2.2 分组补偿的优缺点

1)分组补偿有利于对配电变压器所带的无功进行分区控制,实现无功负荷就地补偿,就地平衡,减少无功功率在变(配)电所以下配电线路中的流动,使线损显著降低。但对补偿点以下线路无降损作用2)对于实行考核用电指标办法的用户,分组补偿有利于加强无功电力

管理,提高功率因数,降低产品单耗和生产成本;3)由于大多数负载是随时间、随季节变化的,采用分组或自动补偿较好。分组电容器的投切可随总的负荷水平而变化,其电容器组利用率较单机补偿高,所需容量也比个别补偿少;分组补偿也比单台电动机补偿易于控制和管理,但不如集中补偿管理方便:4)如果装设的电容器不能分组,则补偿容量无法调整。运行中可能出现过补偿或欠补偿;5)如果只进行分组补偿,则用户变压器消耗的无功功率必须由车间电容器组向上倒送(或由电网输送),显然效果是不好的:6)分组补偿方式的一次性投资大于集中补偿方式。

1.3 单机补偿(个别补偿)

即将电容器组直接装设在需要进行无功补偿的各个用电设备(主要是电动机)附近,就地补偿用电设备所消耗的无功功率。这种补偿方式能够补偿安装部位前面所有高低压线路和变压器的无功功率,补偿范围最大。补偿效果也最好,如图1中的C3所示。

1.3.1 单台电动机的补偿效益

对连续运行的用电设备所需的无功功率容量较大时。采用个别补偿最合适。如电容器组随电动机随时投人或退出运行,使电动机消耗的无功功率部分地得到就地补偿,从而使装设点以上输配电线路输送的无功功率减少,就能获得明显的降损效益。

1.3.2 单机补偿方式的优缺点

1)当负荷平稳、容量大且利用小时又较多时,这种补偿方式的降损节电效果是显著的。如大型感应电动机、高频炉等。也适用于容量虽小但数量多而且是长期稳定运行的设备,如荧光灯等。但因目前大量使用的小型电动机补偿用电容器的控制保护问题,尚未获得彻底解决,而且运行小时一般较少,所以这种补偿方式的应用受到较大限制;2)如果全部采用这种补偿方式,则整个无功潮流无法进行有效的控制调节。因此,如果不同其他补偿方式相配合,低压网的补偿将长期处于欠补偿状态。同时这种方式不能补偿变压器本身的无功损耗,以致配电网的补偿达不到最优水平。所以,这种方式只能作为辅助补偿方式来应用;3)由于有些电动机的容量选择通常偏大,而如果进行逐台补偿,会使补偿总容量加大,从而使补偿装置的总投资增大;4)当电容器组在用电设备停止工作时,它也一并被切除,因此其利用率降低。

2 补偿容量的选择

2、1 集中补偿容量的确定

确定集中固定补偿的电容器容量,首先应测算出低压电网最大负荷月的平均功率因数,然后再按要求达到的功率因数值计算所需要安装的电容器容量。

2.1.1 平均功率因数的测算

在配电变压器低压出口上安装有功电能表和无功电能表,在最大负荷抄算其月有功电量W p和无功电量W Q,然后按下式即可计算出该月的平均功率因数

2.1.2 补偿容量的确定

根据上式计算出的和要求达到的功率因数.查表1即可获得为达到cosψ2值每千瓦有功负荷所需的补偿电容器容量即无功补偿率。然后乘以最大负荷月平均有功功率,便可得出所需的补偿电容器的容量。月平均有功功率可按下式计算

式中W p一最大负荷月的有功电量,kwh;

t一最大负荷月用电时间,h。

应当注意的是,cosψ2的确定必须适当。如果cosψ2定得太低,则不能充分显示无功补偿的作用;如果cosψ2定得太高,则需补偿量太大,投资太高,而且线路负荷轻时会发生过补偿运行。使无功倒送,增加线损。因此,乡村工业和电力排灌用户需补偿到的功率因数cos ψ2,一般按选择0.9~0.95;其它农业用户需补偿到的功率因数cosψ2,一般按0.85~0.9选择。

2.2 个别补偿容量的确定

个别补偿一般指对容量较大的电动机或其他感性负载而言。对感应电动机的补偿,一般应按电动机空载时补偿到功率因数等于1来选择补偿容量。这样,可以保证负载时电流仍能滞后于电压一定角度。

如果按负载情况下补偿到功率因数等于l来选择补偿容量,那么空载或轻载时势必会产生过补偿。过补偿的电动机在切断电源后,由于电容放电供给电动机励磁,能使仍在转动着的电动机成为感应发电机,致使其感应电压超过额定电压好多倍.这对电动机的绝缘和电容器都会造成危害。因此,个别补偿的补偿容量可按下式确定

式中U一电动机的额定电压,kV:

I o一电动机的空载电流,A;

Q b一补偿电容器容量,kvar。

电动机空载电流的数值若在产品样本中查不到,可通过下面两个估算公式推算出。

按电动机最大转矩倍数推算公式

经验公式

式中,I o一电动机的空载电流,A;

I N一电动机的额定电流,A;

cosψN一电动机的功率因数;

b一电动机的最大转矩倍数,可以从产品样本中查得,约1.8~2.2;

K一计算参数,当cosψN≤0.85时,K=2.1;当cosψN>0.85时,K=2.15。

2.3分组补偿地点的选择和补偿容量的确定

1)在配电线路上取一点补偿的情况下,补偿点在线路首端时,线路中的无功电流分布无变化,没节能效果:在线路末端,可能存在无功倒送。只要补偿点不在首端。补偿点之前各段无功电流就会发生变化.从而电能损耗也发生变化,变化的大小和范围与补偿容量有关.最优的补偿地点可选从首端起线路总长的处,补偿容量取全补偿的,这时节电效率最高可达88%以上。而在一般情况下,取补偿地点在线路的,补偿容量为全补偿的,这时的节电效益在80%左右;2)如果线路分支较大或线路较长负载自然功率因数低,可采用分支线分段补偿方式,在每一补偿段或分支中的补偿地点和补偿容量的选择。按前上述原则选取,可取得更高的节电效益;3)在线路负载波动大的线路,按平均负载和平均功率因数进行选择。在最小负载时可能出现过补偿现象,但对整个节电效果影响不大:4)将电容器安装在电动机比较集中的场所,对低压电网中的部分电动机进行分组补偿时,这种补偿一般因采取固定补偿方式。所以其补偿容量的确定与集中固定补偿容量的确定方法相同。

3 结语

低压电网利用电容器进行无功补偿仍是目前广泛被采用的最佳方式。尽可能减少无功在网内的流动规模,尽量做到就地补偿,就地平衡,同时兼顾补偿的节电效益和投资成本是我们选用补偿方式的原则。在低压供电系统中,实际上多是综合采用上述各种补偿方式。以求经济合理地达到总的补偿要求。集中补偿和分组补偿应视具体情况而定,两种补偿方式共用,互为补充,效果更好。个别补偿应有限采用。

参考文献:

[1]孙成宝,配电技术手册[M],北京:中国电力出版社,2000.32-34。

[2]谈文华,万栽扬,科技进步与电网发展[M],北京:中国水利水电出版社。2002.36-38。

[3]刘介才,戴绍基,工厂供电[M],北京:机械工业出版社,2000.42--45。

作者简介:骆和平(1965一)。男,福建泉州人。泉州展览城管理处工程师;朱毅(1964一),男,福建永安人,福建水利电力职业技术学院工程师、高级讲师。

无功补偿容量计算

无功补偿容量计算 Prepared on 22 November 2020

一、无功补偿装置介绍 现在市场上的无功补偿装置主要分为固定电容器组、分组投切电容器组、有载调压式电容器组、SVC和SVG。下面介绍下各种补偿装置的特点。 1)固定电容器组。其特点是价格便宜,运行方式简单,投切间隔时间长。但它对于补偿变化的无功功率效果不好,因为它只能选择全部无功补偿投入或全部无功补偿切出,从而可能造成从补偿不足直接补偿到过补偿,且投切间隔时间长无法满足对电压稳定的要求。而由于光照强度是不停变化的,利用光伏发电的光伏场发出的电能也跟着光伏能力的变化而不断变化,因此固定电容器组不适应光伏场的要求,不建议光伏项目中的无功补偿选用固定电容器组。 2)分组投切电容器组。分组投切电容器组和固定电容器组的区别主要是将电容器组分为几组,在需要时逐组投入或切出电容器。但它仍然存在投切间隔时间长的问题,且分的组数较少,一般为2~3组(分的组数多了,投资和占地太大),仍有过补偿的可能。因此分组投切电容器组适用于电力系统较坚强、对相应速度要求较低的场所。 3)有载调压式电容器组。有载调压式电容器组和固定电容器组的区别主要是在电容器组前加上了一台有载调压主变。根据公式Q=2πfCU2可知,电容器组产生的无功功率和端电压的平方成正比,故调节电容器组端电压可以调节电容器组产生的无功功率。有载调压式电容器组的投切间隔时间大大缩短,由原来的几分钟缩短为几秒钟。且有载调压主变档位较多,一般为8~10档,每档的补偿无功功率不大,过补偿的可能性较小。因此分组投切电容器组适用于电力系统对光伏场要求一般的场所。

电网的无功补偿—

摘要 电压是电能质量的重要指标之一,网损是电力企业的一项重要综合性技术经济指标。长期以来电力系统网络损耗问题比较突出,而无功补偿是降低线损的有效手段。随着电力系统负荷的增加,对无功功率的需求也日益增加。在电网中的适当位置装设无功补偿装置成为满足电网无功需求的必要手段。 本文从无功补偿的现实意义出发,分析了无功补偿的必要性和经济效益。简单介绍了目前无功补偿研究的现状,探讨无功补偿的原理并对主要的几种无功补偿方式进行了简要的分析,给出本文设计用于并联电容器组补偿方式的智能低压无功补偿装置的研究任务。装置采用ATT7022A检测电网运行参数,减少了CPU运算量,提高电网参数辨识的精度,并可以简化系统软件设计。系统以Atlmega64处理器为控制核心,采用功率因数控制和电压限制相结合的方式工作,并给出采用永磁真空开关在特定电压相角投切电容器的方法,有效解决了电容器投切过程中在线路上产生涌流的缺点,并设有多种保护措施,保护系统可靠、稳定运行。装置还设计了友好的人机接口和通讯接口,使用方便。 关键词:无功补偿、并连电容器、ATT7022A、Atlnega64

ABSTRACT V oltage is one of important quality index of electric power system. Power loss is an important synthesis technical and economic index of power companies. In the past several years, the problem of power loss is very serious. However, reactive compensation is an effective method to save power loss .Due to increasing loads of electric power system, demand of reactive power was also increasing. It became necessary means that reactive power compensation devices were installed in proper position of electric network. This thesis considers the significance of reactive Power compensation and analyses the indispensability and economic benefits of reactive Power compensation. The development status of reactive power compensation is briefly introduced. Principles of reactive power compensation are explained. Several primary reactive power compensation solutions are discussed. This thesis proposed an intelligent low voltage reactive compensation control scheme and implemented device for shunt capacitor compensation. An ATT7022A is adopted to detect the power grid operation information to reduce the calculation volume of CPU and enhance the precision of power grid parameter identification. This also simplifies design work of the software. ATMEGA64 is utilized as the main process unit and method combining power factor control and voltage limitation is used as the system working mode. Specific voltage phase is determined to switching shunt capacitor via permanent magnetic vacuum synchronous switch. Thus the surge produced during the traditional capacitor switching method is greatly diminished. It provides diverse protect measures to ensure the stability and reliability. It bears friendly human machine

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

电气设备无功补偿装置的选用和无功补偿装置容量的确定

电气设备无功补偿装置的选用 无功补偿应本着全面规划,合理布局,分级补偿,就地平衡的原则确定最优的补偿容量和分布方式,具体内容如下: (1)总体的无功平衡与局部的无功平衡相结合。既要满足供电网的总无功需求,又要满足分线、分站的变电站及各用户无功平衡。 (2)集中补偿与分散补偿相结合。以分散补偿为主,这就要求在负荷集中的点进行补偿,既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,使无功就地平衡,减少变压器和线路的损耗。 (3)高压补偿与低压补偿相结合。以低压补偿为主,电气设备高压无功补偿装置应装设在变压器的主要负荷侧,当不具备条件时,可装设在变压器的第三绕组侧,高压侧无负荷时,不得在高压侧装设补偿装置。 (4)降损与调压相结合。以降损为主,兼顾调压。这是针对供电半径较长,分支较多,负荷比较分散,自然功率因数低的线路。这种线路负荷率低,线路的供电变压器多工作在空载或轻载的工况下,线路损失大,若对此线路进行补偿,可明显提高线路的供电能力。 电气设备无功补偿装置容量的确定 2.1低压集中补偿 配电网的无功补偿以配电变压器低压的集中补偿为主,以高压补偿为辅,电气设备配电变压器无功补偿装置的容量如果无法了解负荷的工作情况及系统参数,可按变压器最大负荷率为75%,负荷功率

因数为0.70考虑,补偿到变压器最大负荷时其高压侧的功率因数不低于0.95,或按变压器容量的20%~40%进行配置。 用户对功率因数有特殊要求时,可选择合适的补偿容量使功率因数达到用户的要求值。 2.2电动机定补 按照电动机的空载电流确定电动机的定补容量,电气设备电动机的空载电流约占额定电流的25%~40%。为了防止电机退出运行时产生自激过电压,电动机的补偿容量一般不应大于电动机的空载无功,通常取QC=(0.95~0.98)UeI0 对于排灌电动机等所带机械负荷轴惯性较大的电机,补偿容量可适当加大,大于电机空载无功负荷,但要小于额定无功负荷。对于排灌用普通电机,可按下式确定补偿容量:QC=(0.5~0.6)Pe(kvar) 2.3随器补偿 电气设备变压器在轻载及空载时的无功负荷主要是变压器的空载励磁无功。 Q0=I0%Se×10-2(kvar) 随器补偿只能补偿配变的空载无功Q0。如果在补偿容量大于变压器的空载无功时,则在配变接近空载时会造成过补偿,易产生铁磁谐振。因此推荐选用的补偿容量为QC=(0.95~0.98)Q0

浅析低压电网中的无功补偿

浅析低压电网中的无功补偿 【摘要】无功补偿对电网系统有着重要的意义,对电网进行适当的无功补偿是提高电压质量的有效手段,通过对电网进行适当的无功补偿,可以稳定电网电压,提高功率因数和设备利用率,减小网络有功功率损耗,提高经常效益,从而达到降耗的目的。本文简要介绍了低压电网中的无功补偿含义和重要意义,论述了低压电网中的无功补偿原理、方法,并阐述了对无功补偿装置的选择及应用。 【关键词】电网配置原则低压无功补偿技术应用 1 引言 随着我国民经济的不断发展,电力已成为国民生产生活中不可或缺的重要工具,合理用电、节约用电就显得尤为重要。在我国的工业、农业和民用用电量大幅增加的用电负荷中,整流和变频设备所占的比例也在不断增加,这使得无功电流成为一大障碍,不仅增大供电系统的损耗,而且还可能引发通信系统的故障。因此减少无功电流的损失成为诸多专家和学者面临的严峻挑战。其实,无功并非无用之功,依靠它才能在电路的电感、电容元件中建立变化的电、磁场,从而建立电压,传递和转换有功功率,成为电力系统和用电设备正常运转所不可缺少的重要因素。无功功率不足,会导致系统电压及功率因数降低,因而损坏用电设备,甚至会造成电压崩溃,使系统瓦解,从而造成大面积停电。 2 低压电网中的无功补偿含义及重要意义 (1)低压电网中的无功补偿是对低压电网中的无功功率进行补偿的措施,旨在提高低压电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善低压电网的供电环境。所谓无功补偿是因为电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。低压电网中的无功补偿通过选择合适的补偿方法和补偿装置,可以最大限度的减少低压电网的损耗,使电网质量提高,减少电压波动和降低谐波,从而提高电压稳定性。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。因此,电力系统无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最优补偿,不仅可以维持电压水平和提高电力系统运行的稳定性,而且可以降低网损,使电力系统能够安全经济的运行。 (2)低压电网中的无功补偿能够提高电网的电压稳定性,从而提高电压质量,有效降低电力传输过程中的功率损耗和电能损耗,提高供配电设备的供电能力,因此,工矿企业内部供配电系统需安装无功补偿装置。通过无功补偿,不但可以提高低压电网的电压质量和配电设备的利用率,还可以为企业的节能低碳作出贡献。企业的功率因数直接关系到企业的电价,企业若想降低电力费用,不但

配电变压器低压侧无功补偿容量选择

配电变压器低压侧无功补偿容量选择 为了提高功率因数,减少电能损耗,增强供电能力,在农网改造中,应对100kVA及以上配电变压器在低压侧安装 容量为配变额定容量8%左右的补偿电容器进行无功补偿。但许多人认为按配电变压器容量的8%配置补偿容量太 小,不足以补偿低压侧所有的无功负荷,配变高压侧功率因数提高不大。其实,这是一种误解,因为配变低压侧无 功补偿,作用仅限于减少变压器本身及以上配电网的功率损耗,凡是向负荷输送的无功功率,由于仍然要经过低压 线路的电阻和电抗,配电线路上产生的功率损耗并未减少。所以,配变低压侧无功补偿容量选择过大是无益的。而 只有采取配变低压侧补偿和用户端就地补偿相结合的补偿方式才可以在提高功率因数的同时,减少低压线路损耗, 取得最佳的经济效益。 配变低压侧补偿容量过大不但不经济,而且在变压器空载运行时,或者负荷较轻时,还会造成过补偿,使功率 因数角超前、无功功率向电力系统倒送和电源电压升高。 功率因数角超前的坏处是: (1)电容器与电源仍有无功功率交换,同样减少电源的有功出力。 (2)网络因传输容性无功功率,仍会造成有功损耗。 (3)白白耗费了电容器的设备投资。 另外,如补偿电容过大,当电源缺相时有可能发生铁磁谐振过电压,烧毁电容器和变压器。 所以,配变低压侧补偿容量过大不但不经济,而且还会影响设备的安全运行。 根据以上分析,配变低压侧集中无功补偿根据功率因数的需求选择不科学,补偿容量不应过大。为了防止发生 过补偿现象,配变低压侧无功补偿原则为:其补偿容量不应超过配变的无功功率。 变压器总的无功功率:Qb=Qb0+QbH·(S/Se)2 Qb=[I0%/100+Ud%/100·(S/Se)2]·Se(1) 式中Qb0-变压器空载无功功率,kvar QbH-变压器满载无功功率,kvar I0%-变压器空载电流百分数

电网无功补偿装置

工业企业供电课程报告电网无功补偿装置 学生姓名: 班级学号: 任课教师: 提交日期:2011.12.12 成绩:

电网无功补偿装置 一、研究背景、现状和意义 1.0无功问题背景 随着我国经济改革的不断深入,国民经济持续快速增长,工业企业的数量不 断增加,人们生活水平不断提高,这些都导致电量的需求大大增加。相比较而言, 我国发电机的装机容量与输配电能力的增加速度没有需求快,致使我们一些省份 出现“电荒”的情况,尤其一些经济相对发达的地区和用电负荷较大的大中城市。 更有甚者,部分城市在用电高峰期出现拉闸限电以使电网正常运行的情况,严重 制约着国民经济的发展,也给人民群众的生活带来很大不便。电压是电能主要质 量指标之一,电压高低反映无功出力与用户无功负荷是否平衡。就我国来说,电 力系统的用电负荷主要为感应电动机、变压器、感应电炉与电弧炉、电焊机与电 焊变压器、整流设备等感性负载。这些负载在消耗着大量有功功率的同时也在消 耗着大量的无功功率,造成电网功率因数偏低。大量感性负载的使用使得必须提 供足够的无功容量满足负载要求,否则会造成电网电压降低,电网供电质量下降 的不良后果。当电网低电压运行的危害可以归纳为以下6种[1]: (1) 当电压下降到额定电压65%---70%时,无功静态稳定破坏,发生电压 崩溃,造成大面积停电事故; (2) 发电机因运行电压降低而减少它的有功功率及无功功率的输出,由于定 子电流与转子电流受额定值限制,因此发电机的有功出力及无功出力近似与运行 电压成正比关系; (3) 送变电设备因运行降低而增加能耗; (4) 烧毁用户发动机; (5) 由于电源电压下降,引起电灯功率下降、光通量减小和照度的降低。 (6)发电机因电压低而影响有功及无功出力。 ?cos N N I U P = 由上式可见,当负载的功率因数1cos

无功补偿容量配置方法

1无功补偿作用: 提高变压器利用率,降低损耗、提高功率因数,避免罚款争取奖励。2型号示意 设计时:估算根据变压器容量估算补偿容量:变压器30%左右;计算负载有功功率,估算补偿前功率因数,确定补偿后达到的功率因数,根据无功补偿系数表查询数据,计算出所需补偿(比较准确)。 改造时:断掉现有补偿,记录、监测:有功功率、功率因数(补偿前),取得数据后,确定补偿后功率因数,查询无功补偿系数表,计算达到补偿后功率因数需要的补偿容量。 以上的到的补偿容量均为计算容量,即所需补偿的实际输出容量,而实际电容器输出容量和额定容量不是一致的。额定容量即安装电容器在电容器标注的额定电压下的容量,如450V电容器额定容量30kVar,指电容器在450V下输出30kVar,而实际在400V系统下,此电容器输出容量为30*(400*400/450*450)=23.7,如果实际电容端电压只有380V,输出只有21kVar。 (公式: Qc=2×π×f×C×U×U;当电源频率f=50HZ、π=3.14时,则简化为: Qc=0.314×C×U×U (Qc=千乏,C=μF))

带电抗时考虑电抗影响,实际输出容量(Qc)与安装容量(Qe),计算系数为,带7%电抗(额定电压480V)时,Qc=0.746Qe,带14%电抗(额定电压525V)时,Qc=0.675Qe,为确保容量配置足够,根据此公式计算所需安装电容补偿容量Qe。 附-无功补偿容量补偿表

根据上述计算容量,计算容量为补偿所需输出容量,根据输出容量计算出安装容量,为最后所需配置的补偿容量。一般配置补偿容量要求加一定裕量,1.2倍左右配置最佳。

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

无功补偿和变压器的容量选择

无功补偿和变压器的容量选择 摘要合理的无功就地补偿和选择变压器容量可以降低损耗,提高系统运行的经济性,是电力需求侧管理的重要内容。本文将二者有效结合,推导了最经济运行的公式,通过简单迭代来确定无功就地补偿容量和变压器容量的选择。算例证明了其效果。 关键词无功补偿变压器容量最佳负载率无功补偿和变压器的容量选择 Planning of Reactive Compensation and Transformer Capacity Abstract: Rational planning of local reactive compensation and transformer capacity is very important for demand side management to reduce power losses and improve the economical power system operation. The best economical formulas are deduced through connection of the both. The capacity determination of local reactive compensation and the rational transformer capacity can be got through simple iteration. Examples are presented to show the effectiveness. Keywords: reactive compensation transformer capacity optimal load coefficient 1 前言 电力市场的开放使电力需求侧管理越来越受到关注。电力需求侧管理指的是电力公司采取有效的激励和诱导措施以及适宜的运作方式,与用户共同协力提高终端用电效率,改变用电方式,为减少电量消耗和电力需求所进行的管理活动。其主要目标是节约电力,减少装机,提高环境质量;节约电量、减少消耗,提高电力公司的经济效益和市场竞争力。鼓励用户进行无功补偿和合理选择变压器的容量是需求侧管理的重要内容。大用户的无功补偿可有效的降低有功网损同时也可降低对变压器的容量要求:合理选择变压器容量可提高用电效率。本文对用户侧变压器最佳容量选择和最佳无功补偿进行了研究。 2 最佳变压器容量的选择 变压器损耗在系统损耗中占有重要一部分,特别是在配电网中,变压器损耗约占整个线损的50%以上,如何降低变压器损耗是电力公司必须面临的问题,也

各种无功补偿装置的比较

目前各国家各种无功补偿装置的性能比较 大类名称型号工作原理技术指标优点缺点应用场合 旋转式无功补偿同步发电 机/调相 机 欠励磁运行,向系统发出有功吸收 无功,系统电压偏低时,过励磁运 行提供无功功率将系统电压抬高 可双向/连续调节;能独立调节 励磁调节无功功率,有较大的 过载能力 其损耗、噪声都很大,设备投资高,起动/运 行/维修复杂,动态响应速度慢,不适应太大 或太小的补偿,只用于三相平衡补偿,增加系 统短路容量 适用于大容量的 系统中枢点无功 补偿 静止式静态无功补偿机械投切 电容器 MSC 用断路器\接触器分级投切电容 投切时间 10~30s 控制器简单,市场普遍供货, 价格低,投资成本少,无漏电 流 不能快速跟踪负载无功功率的变化,而且投切 电容器时常会引起较为严重的冲击涌流和操 作过电压,这样不但易造成接触点烧焊,而且 使补偿电容器内部击穿,所受的应力大,维修 量大 适用无功量比较 稳定,不需频繁投 切电容补偿的用 户 机械投切 电抗器 MSR 并联在线路末端或中间,吸收线路 上的充电功率 其补偿度 60% ~ 85% 防止长线路在空载充电或轻载 时末端电压升高 不能跟踪补偿,为固定补偿 超高压系统 (330kV及以上)的 线路上 静止式动态无功补偿SVC 自饱和电 抗器 SSR 依靠自饱和电抗器自身固有的能力 来稳定电压,它利用铁心的饱和特 性来控制发出或吸收无功功率的大 小 调整时间 长,动态补 偿速度慢 动态补偿 原材料消耗大,噪声大,震动大,补偿不对称 电炉负荷自身产生较多谐波电流,不具备平衡 有功负荷的能力,制造复杂,造价高 超高压输电线路 晶闸管投 切电容器 TSC 分级用可控硅在电压过零时投入电 容,在380V低压配电系统中应用较 多 10~20ms 无涌流,无触点,投切速度快, 级数分得足够细化,基本上可 以实现无级调节 晶闸管结构复杂,需散热,损耗大,遇到操作 过电压及雷击等电压突变情况下易误导通而 被涌流损坏,有漏电流 需快速频繁投切 电容补偿的用户 复合开关 投切电容 器 TSC+ MSC 分级先由可控硅在电压过零时投入 电容,再由磁保持交流接触器触点 并联闭合,可控硅退出,电容器在 磁保持交流接触器触点闭合下运行 0.5s左右无涌流,不发热,节能使用寿命短,故障较多,有漏电流 一般工厂/小区和 普通设备,无功量 变化大于30s 晶闸管控 制电容器 TCC 采用同时选择截止角β和导通角α 的方式控制电容器电流,实现补偿 电流无级、快速跟踪 20ms 价格低廉,效率非常高产生谐波 低压小容量,非常 适合广大终端低 压用户 第 1 页共2 页

变压器低压侧无功补偿容量的选择分析

浅谈变压器低压侧无功补偿容量的选择分析 【摘要】为了提高功率因数,减少电能损耗,应对某些配电变压器在低压侧安装补偿电容器进行无功补偿。采取配变低压侧补偿和用户端就地补偿相结合的补偿方式,可以在提高功率因数的同时,减少低压线路损耗,取得最佳的经济效益。本文中,就从无功补偿的节电原理入手,对变压器低压侧无功补偿容量的选择进行分析探讨。 【关键词】无功补偿;变压器;容量选择分析 引言 电网改造中,在配电变压器的低压侧可以安装一个一定容量的补偿电容器,这个电容器可以起到无功补偿的作用,不仅可以提高电网的功率因数,减少电网中电能的损耗,还可以增强供电能力,起到了无功补偿的作用。 就目前的观点来看,有人认为安装的配电变压器容量的补偿容量比较小,不能完全补偿低压侧所有的无功负荷。笔者以为,这种观点是一种误解。因为配变低压侧无功补偿,仅仅是用来减少变压器自身或者配电网方面的功率损耗的,它并不能减少向负荷输送的无功功率,这是因为向负荷输送的无功功率要经过低压线路的电抗或电阻,因此,配电线路上的功率损耗并不能减少。根据以上分析,配电低压侧的无功补偿容量的选择是无用过大的,过大反而是一种浪费。并起不到多大作用。采取用户端就地补偿和配变低压侧补偿

组合的方式无疑是最佳的结合方式。 1、节电原理分析 在电网中,发电机、变压器等电力负荷基本都属于感性负荷,这些设备在运行的时候是需要无功功率的。如果在电网中安装无功补偿设备,就等于给这些感性负荷提供了它们所消耗的无功功率,减少了电网向这些感性负荷提供无功功率,降低了线路和变压器等设备在输送电能过程中的损耗。 2、无功补偿的意义及具体实现方式 2.1就无功补偿的意义而言,笔者以为可以从以下几个方面阐述: ⑴对无功功率进行补偿后,电网中的有功功率的比例常数无疑得到了提高; ⑵电网中,进行无功补偿后,减少了相关的投资成本,减少了发电、供电设备的设计容量。特别是对改建或者新建的工程项目,可以考虑采用无功补偿的办法,减少其设计容量,达到投资成本的控制问题; ⑶在电网中进行无功补偿后,可以减低线路中的线损。因为无功补偿后,可以提高电网中的功率因数,这样的结果是电网中的线损率也得到了控制,提高了电网中有功功率的比例常数,这可以直接影响到供电企业的经济问题。 2.2电网中,比较常用的无功补偿方式可以概括为以下几种方式:(1)集中补偿的方式:集中补偿的方式主要是在配电线路中安

电网建设中的无功补偿

电网建设中的无功补偿 1功率因数和无功功率补偿的基本概念 1.1功率因数:电网中的电气设备如电动机变压器等属于既有电感又有电阻的电感性负载,电感性负载的电压和电流的相量间存在着一个相位差,相位角的余弦cosφ即是功率因数,它是有功功率与视在功率之比即cosφ=P/S。功率因数是反映电力用户用电设备合理使用状况、电能利用程度及用电管理水平的一个重要指标。 1.2无功功率补偿:把具有容性功率的装置与感性负荷联接在同一电路,当容性装置释放能量时,感性负荷吸收能量,而感性负荷释放能量时,容性装置却在吸收能量,能量在相互转换,感性负荷所吸收的无功功率可由容性装置输出的无功功率中得到补偿。 2无功补偿的目的与效果 2.1补偿无功功率,提高功率因数 2.2提高设备的供电能力 由P=S·cosφ可看出,当设备的视在功率S一定时,如果功率因数cosφ提高,上式中的P也随之增大,电气设备的有功出力也就提高了。 2.3降低电网中的功率损耗和电能损失 由公式I=P/(·U·cosφ)可知当有功功率P为定值时,负荷电流I与 cosφ成反比,安装无功补偿装置后,功率因数提高,使线路中的电流减小,从而使功率损耗降低:ΔP=I2R,降低电网中的功率损耗是安装无功补偿设备的主要目的。 2.4改善电压质量 在线路中电压损失ΔU的计算公式如下: ΔU=×10 -3 式中ΔU——线路中的电压损失 kV P——有功功率MW

Q——无功功率Mvar U e ——额定电压kV R——线路总电阻Ω X L ——线路感抗Ω 由上式可见,当线路中的无功功率Q减少以后,电压损失ΔU也就减少了。 2.5减少用户电费开支,降低生产成本。 2.6减小设备容量,节省投资。 3无功补偿容量的选择 3.1按提高功率因数值确定补偿容量Q c Qc=P[ ](kvar) 式中P——最大负荷月的平均有功功率kW cosφ 1cosφ 2 ——补偿前后功率因数值 例如:某加工厂最大负荷月的平均有功功率为300kW,功率因数cosφ=0.6,拟将功率因数提高到0.9,则所选的电容器容量为: Q C =300×[]=300×(1.33—0.48)=255 (kvar) 3.2按提高电压值确定补偿容量Q C Q C =(kvar) 式中ΔU——需要提高的电压值V U——需要提高的电压值V U 2 ——需要达到的电压值kV X——线路电抗Ω

无功补偿柜电容器的容量换算问题

在无功补偿领域,我们经常会问的一句话是:电容器容量是多少? 这里的“容量”又指电容器的额定容量,其实是指电容器的功率,单位用kvar(千乏)来表示。 专业知识普及 从下面这个公式可以看出电容器的功率与电压的关系: Q=2πfCU2 Q表示电容器的功率,单位var f表示系统频率,50Hz/60Hz C为电容器容量,单位uF(微法) U表示系统电压,单位kV(千伏) 由上面表达式可以看出,电容器的功率与施加到电容器两端 的电压平方成正比。 每一只电容器都有一个参数叫做额定电压,对应额定电压则有一个额定功率。 例如:选择电压为450V,额定功率为30kvar的电容器。 问1:当额定电压为450V,额定功率为30kvar的电容器,用在400V 系统中,其输出功率为多少呢? 这就是我们经常碰到的问题,电容器的额定电压都是高于系统的额定电压的。

通过上面的公式,我们可以很快算出来: Q400=Q450×(4002/4502) =30×(4002/4502) ≈23.7 kvar 问2:为什么要选择额定电压高于系统电压的电容器呢? 电容器经受过电压危害时将快速损坏。为了保障电容器的运行安全,需要选择额定电压大于系统电压的电容器。 到这个阶段我们知道了,如果无功补偿支路设计为纯电容器的话,无功补偿支路的输出功率要根据电容器的额定电压和系统电压进行折算。这也就是我们常说的安装功率(安装容量)和输出功率(输出容量)。 安装功率常指电容器的额定功率; 输出功率常指电容器在系统电压下的实际输出功率。 参照上面举例,我们可以知道:将额定电压为450V,30kvar的电容器应用于400V无功补偿系统,则此系统安装容量为30kvar,其输出容量为23.7kvar。 问3:当电容器串联电抗后,电容器与电抗器组成的补偿支路功率是多少呢?

110KV变电站设计中无功补偿容量计算及选型思路构建

【摘要】由于110kv变电站中巨大部分的负荷都产生于异步电动机,所以异步电动机在运行的时候,需要耗费很多无功功率,根据就地补偿原则分析,必须在变电位置中装置无功功率装置。此种变电设计中一般使用断路的顺利运行。在经济发展的带动下,电力行业得到了快速发展,本文主要对变电站设计中无功补偿容量计算和选型思考的构建进行分析,介绍了在不同情况下无功效补偿容量的方法,并针对性的提出一些无功补偿容量方案,希望可以给变电行业的研究提供参考。 【关键词】变电站无功补偿容量配置方案 1 110kv变电站加装无功补偿装置后的重要性 为了保证电力系统在负荷集中区域电压的稳定,除了让电力系统中无功电源产生的无功功率和无功负荷及无功损耗平衡,还应该备用无功功率电源。无功补偿的合理设置,既可以稳定电网功率因素,减少供电变电和输送线路产生的损耗,还可以稳定电网和电源端使用的电压,对供电质量的提升具有很大作用,同时还减少了施工成本。反之,将会出现供电系统电压不稳定、谐波增大等多种伤害。进行无功补偿装置电网设计的时候,必须按照全面规划、分层分区补偿等原则,合理确定补偿容量和分布配置方式。 2 无功补偿容量的计算和检验 无功补偿装置的种类非常多,根据《电力系统电压和无功电力技术原则》,现阶段,变电站无功补偿装置通常使用并联电容组。下面根据不同要求和作用针对性的提出两种对无功补偿容量计算的方法: 2.1 将110kv母线功率因素作为原则计算补偿容量 根据《国家电网公司电力系统无功补偿配置技术原则》和电网配置中的相关要求发现,110kv变电站使用的无功补偿容量必须按照主变容量的20%左右进行配置,而且将变电器高压部分的因数控制在0.95以上了,低谷负荷功率因数不能高于0.95,系统轻负荷发生时,110kv 以下变电站的电缆线路如果非常复杂,可以切除电容组,切除后依然出现系统侧送无功功率,可以在变电站中、低压母线等位置安装并联电容器。 通常情况下,直接供电的公用变电所,最大容性无功量就是母线负荷所补偿的最大容性无功量和主变压器补偿的最大容性之和,表示方式如下所示: q=q1+q2(q表示变电站安装的最大容性无功量;q1表示负荷需要补偿的最大容性无功量;q2表示主变压器需要补偿的最大容性无功量。负荷需要的最大容性无功量如下式所示:(其中p表示母线最大有功负荷;表示补偿前最大功率因素角;表示补偿后最小功率因素角。 主变压器产生的最大容性无功量如下式所示: 其中ud代表进行补偿的变压器一侧电压百分数值;im表示母线完成装设补偿后,使用变压器得到的一侧最大负电流数值;id代表变压器需要进行补偿时,一侧额定电流数值(a);io表示变压器空载电流百分数值;se表示变压器需要补偿时,额定电量(kva)。 2.2 按照变电器输出的恒定电压对无功补偿容量进行选择 使用110kv的用户都必须使用专用的变电站而且都是两绕变压器,如果负荷电压不能满足要求,就必须进行横调压。无功补偿电容中最小容量按小负荷退出,进行最大负荷选择时,可以根据电压比决定,简而言之,在最小负荷时,将变压器电压比k数值确定出来,然后分别得出高侧分接头电压:其中,表示最小负荷对高压侧母线电压的计算;是最小低压绕组额定电压;表示用户需要的母线电压。根据相关分析得出,分接头电压数值选取与分接头比较类似。k=(1+接头值)×u1n/u2n,其中u1n表示高压接头绕组产生的额定电压。补充容量可以表示为: 其中表示最大负荷算到高压侧低压母线电压;x表示电源侧等值电抗;表示需要最大负

无功补偿装置几种常见类型

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR 型)动态无功补偿装置、SVG动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜,占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图所示。通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。优点:响应速度快,≤40m s。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被击穿,维护困难;晶闸管发热量大,一般情况采用纯水冷却,除了有一套水处理装置可靠的水源外,还需配监护维修人员。另外,其晶闸管产生的大量谐波电压污染电网,需配套滤波装置。整套装置占地面积很大,价格较贵。在风电工况下不予推荐使用。而且本工程位于海边滩涂,盐雾腐蚀较严重,相控式动态无功补偿装置有部分装置为户外敞开布置,不利于设备在重雾潮湿地区的安全运行。 ④智能新型动态无功发生器(SVG ) SVG是当今无功补偿装置领域最新技术的代表。SVG并联于电网中,相当于一个可变的无功电流源,其无功电流可以快速地跟随负荷无功电流的变化而变化,自动补偿系统所需的无功功率。可直接发感性或容性无功,补偿效果最好的。由于SVG响应速度极快,所以又称静止同步补偿器,其响应时间为5ms 。该产品是动态无功补偿的装置的换代产品,其占地面积极小,免维护,一般年损耗在0.3%以下,可布

无功补偿怎么计算

没目标数值怎么计算? 若以有功负载1KW,功率因数从0.7提高到0.95时,无功补偿电容量: 功率因数从0.7提高到0.95时: 总功率为1KW,视在功率: S=P/cosφ=1/0.7≈1.4(KVA) cosφ1=0.7 sinφ1=0.71(查函数表得) cosφ2=0.95 sinφ2=0.32(查函数表得) tanφ=0.35(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=1.4×(0.71-0.7×0.35)≈0.65(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =0.75, 现在需要安装动补装置,要求将功率因数提高到0.95,那么补偿装置的容量值多大?在负荷不变的前提下安装动补装置后的增容量为多少?若电网传输及负载压降按5%计算,其每小时的节电量为多少? 补偿前补偿装置容量= [sin〔1/cos0.75〕-sin〔1/cos0.95〕]×1000=350〔KVAR〕安装动补装置前的视在电流= 1000/〔0.4×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×0.75=1082〔A〕 安装动补装置后视在电流降低=1443-1082/0.92=304 〔A〕 安装动补装置后的增容量= 304×√3×0.4=211〔KVA〕 增容比= 211/1000×100%=21% 每小时的节电量〔304 ×400 ×5% ×√3 ×1 〕 /1000=11 (度) 每小时的节电量(度)

相关文档
最新文档