抽象函数单调性证明及两个技巧

抽象函数单调性证明及两个技巧
抽象函数单调性证明及两个技巧

江西省南昌市2015-2016学年度第一学期期末试卷

(江西师大附中使用)高三理科数学分析

一、整体解读

试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础

试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度

选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察

在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析

1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →

=,则A BA C →→

?的最小值为( )

A .1

4- B .12-

C .34-

D .1-

【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB

,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB

与OC 的夹角的倍数关系。

【解题思路】1.把向量用OA ,OB

,OC 表示出来。

2.把求最值问题转化为三角函数的最值求解。

【解析】设单位圆的圆心为O ,由AB AC →

=得,22

()()OB OA OC OA -=- ,因为

1OA OB OC ===

,所以有,OB OA OC OA ?=? 则()()AB AC OB OA OC OA ?=-?-

2OB OC OB OA OA OC OA =?-?-?+

21OB OC OB OA =?-?+

设OB 与OA 的夹角为α,则OB

与OC 的夹角为2α

所以,cos22cos 1AB AC αα?=-+ 211

2(cos )22

α=--

即,AB AC ? 的最小值为1

2

-,故选B 。

【举一反三】

【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知

//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ

== 则AE AF ? 的最小值为.

【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何

运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ? ,体

现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】

2918

【解析】因为1,9DF DC λ= 12

DC AB =

119199918CF DF DC DC DC DC AB λλλλλ

--=-=-== ,

AE AB BE AB BC λ=+=+ ,19191818AF AB BC CF AB BC AB AB BC λλλλ

-+=++=++=+ ,

()

221919191181818AE AF AB BC AB BC AB BC AB BC

λλλλλλλλλ+++?????=+?+=+++?? ? ?????

19199421cos1201818

λλ

λλ++=

?++???

?2117172992181818λλ=

++≥+= 当且仅当2192λλ=即23λ=时AE AF ? 的最小值为

29

18

. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的

交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设8

9

FA FB →

?=

,求BDK ?内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。 【解题思路】1.设出点的坐标,列出方程。 2.利用韦达定理,设而不求,简化运算过程。 3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =

则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -, 故2

14x my y x =-??

=?整理得2

440y my -+=,故121244

y y m y y +=??=? 则直线BD 的方程为()212221y y y y x x x x +-=--即2

222144y y y x y y ?

?-=- ?-??

令0y =,得1214

y y

x ==,所以()1,0F 在直线BD 上.

(Ⅱ)由(Ⅰ)可知121244

y y m y y +=??=?,所以()()2

12121142x x my my m +=-+-=-,

()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →

=-

故()()()2

1212121211584FA FB x x y y x x x x m →→

?=--+=-++=-,

则2

84

84,93

m m -=

∴=±,故直线l 的方程为3430x y ++=或3430x y -+=

21y y -==

故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,

故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131

,54t t +--------------10分 由

31315

4t t +-=

得1

9t =或9t =(舍去).故圆M 的半径为31253

t r +=

= 所以圆M 的方程为2

21499x y ?

?-+= ??

?

【举一反三】

【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=5

4|PQ|.

(1)求C 的方程;

(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.

【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x.

(2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入

y 2=2px ,得

x 0=8

p

所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8

p

.

由题设得p 2+8p =54×8

p ,解得p =-2(舍去)或p =2,

所以C 的方程为y 2=4x.

(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.

故线段的AB 的中点为D(2m 2+1,2m), |AB|=

m 2+1|y 1-y 2|=4(m 2+1).

又直线l ′的斜率为-m ,

所以l ′的方程为x =-1

m y +2m 2+3.

将上式代入y 2=4x ,

并整理得y 2+4

m y -4(2m 2+3)=0.

设M(x 3,y 3),N(x 4,y 4),

则y 3+y 4=-4

m

,y 3y 4=-4(2m 2+3).

故线段MN 的中点为E ? ????

2m

2+2m 2+3,-2m ,

|MN|=

1+1

m 2|y 3-y 4|=4(m 2+1)2m 2+1

m 2

.

由于线段MN 垂直平分线段AB ,

故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=1

2|MN|,

从而14|AB|2+|DE|2=1

4|MN|2,即 4(m 2+1)2+

? ????2m +2m 2+? ??

??2

m 2+22=

4(m 2+1)2(2m 2+1)

m 4

化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.

三、考卷比较

本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。

即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。题型分值完全一样。选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。

3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。

四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)

(完整版)高中抽象函数的单调性习题总结,推荐文档

10月2日 抽象函数的单调性 1、对任意都有:,当,又知 ()f x ,x y R ∈()()()f x y f x f y +=+0,()0x f x ><时,求在上的值域. (1)2f =-()f x []3,3x ∈-2、f(x)对任意实数x 与y 都有,当x>0时,f(x)>2 ()()()2f x f y f x y -=--(1)求证:f(x)在R 上是增函数; (2)若f(1)=5/2,解不等式f(2a-3) < 3. 3、已知函数对任意有,当时,f x ()x y R ,∈f x f y f x y ()()()+=++2x >0,,求不等式的解集. f x ()>2f ()35=f a a ()2223--<4、f(x)是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1. (1)求f(1)和f(1/9)的值;(2)证明f(x)在x>0上是减函数; (3)解不等式f(x) + f(2-x) < 2。 5、定义在上函数对任意的正数均有:,且当(0,)+∞()y f x =,a b (()() a f f a f b b =-时,,(I )求的值;(II )判断的单调性, 1x <()0f x >(1)f ()f x 6、若非零函数对任意实数均有,且当时,)(x f b a ,()()()f a b f a f b +=?0x f (1)求证: ;(2)求证:为减函数 (3)当时,解不等()0f x >)(x f 161)4(=f 式4 1)5()3(2≤ -?-x f x f 7、已知是定义在[-1,1]上的奇函数,且,若任意的,总有 ()f x (1)1f =[1,1]a b ∈-、. ()(()())0a b f a f b ++>(1)判断函数在[-1,1]上的单调性,并证明你的结论;(2)解不等式:()f x ;(3)若对所有的恒成立,其中 (1)(12)f x f x -<-2()21f x m pm -+≤[1,1]x ∈-

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

高中一年级函数单调性完整版

函数的单调性 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和 单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 【学习导航】 知识网络 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2 )(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的. (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2 )(x x f =在]0,(-∞ 上,f (x )随着x 的增大而_______;2 )(x x f =在),0(+∞上,f (x )随着x 的增大而________. 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时 函数的单调性 单调性的定义 定义法证明函数的单调性 增函数 减函数 单调区间 x y 0 x y 0 x x f =)( 2)(x x f =

自己整理抽象函数单调性及奇偶性练习及答案

1、已知f x ()的定义域为R ,且对任意实数x ,y 满足f xy f x f y ()()()=+,求 证:f x ()是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, f x ()<0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2)>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >. (1)求(0)f 的值; (2)求证: ()f x 在R 上是单调减函数;

用函数单调性定义证明

用函数单调性定义证明 例1、用函数单调性定义证明: (1)为常数)在上是增函数. (2)在上是减函数. 分析:虽然两个函数均为含有字母系数的函数,但字母对于函数的单调性并没有影响,故无须讨论. 证明: (1)设是上的任意两个实数,且, 则 = 由得,由得, . ,,即 . 于是即 . 在上是增函数. (2) 设是上的任意两个实数,且, 则 由得,由得

.又 , . 于是 即 . 在 上是减函数. 小结:由(1)中所得结论可知二次函数的单调区间只与对称轴的位置和开口方向有关,与常数 无关.若函数解析式是分式,通常变形时需要通分,将分子、分母都化成乘积的形式便于判断符号. 根据单调性确定参数 例1、函数 在 上是减函数,求 的取值集合. 分析:首先需要对 前面的系数进行分类讨论,确定函数的类型,再做进一步研究. 解:当 时,函数此时为 ,是常数函数,在 上不 具备增减性. 当 时, 为一次函数,若在 上是减函数,则有 ,解得 .故所求 的取值集合为 . 小结:此题虽比较简单,但渗透了对分类讨论的认识与使用. 例1、 设函数ax x x f -+=1)(2,其中0>a ,求a 的取值范围,使函数)(x f 在 区间[]+∞,0上是单调函数. 分析:由于函数的单调性不易直接判断,而且含有字母系数,求解过程中需要讨论字母的范围,因此可以从单调性定义出发,从定义求解释一种基本的方法,不可忽视. 解: 在[]+∞,0上任取1x ,2x ,使得21x x < )()(21x f x f -

)(11212 221x x a x x --+-+= )(1 12122 212 2 21x x a x x x x --+++-= )1 1)( (22 21 2121a x x x x x x -++++-= (Ⅰ)当1≥a 时,因为11 122 21 21<++++x x x x , 01 122 21 21<-++++a x x x x ,又 021<-x x , 所以0)()(21>-x f x f ,即)()(21x f x f > 所以当1≥a 时,函数)(x f 在区间[]+∞,0上是单调递减函数 (Ⅱ)当10<

专题:抽象函数的单调性与奇偶性的证明.

特殊模型 抽象函数 正比例函数f(x)=kx (k≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f (x)f(y) [或) y (f )x (f )y x (f = ] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y )=f(x )f(y) [) y (f )x (f )y x (f = -或 对数函数 f(x )=lo ga x (a 〉0且a≠1) f(xy)=f(x )+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x )=si nx f (x)=cosx f(x+T )=f(x ) 正切函数 f(x )=tanx )y (f )x (f 1)y (f )x (f )y x (f -+= + 余切函数 f(x)=co tx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 1。已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。 证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。 2.奇函数()f x 在定义域(-1,1)内递减,求满足2 (1)(1)0f m f m -+-<的实数m 的取值范围。 解:由2 (1)(1)0f m f m -+-<得2 (1)(1)f m f m -<--,∵()f x 为函数,∴2 (1)(1)f m f m -<- 又∵()f x 在(—1,1)内递减,∴2 21111110111m m m m m -<--? 3。如果()f x =2 ax bx c ++(a 〉0)对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小 解:对任意t 有(2)2)f t f t +=-∴x =2为抛物线y =2 ax bx c ++的对称轴 又∵其开口向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数 ∴f (3)〈f (4),∴f (2)〈f (1)〈f (4) 4。 已知函数f (x )对任意实数x,y ,均有f(x +y )=f (x )+f (y ),且当x >0时,f (x)>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。 分析:由题设可知,函数f (x )是的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。 解:设,∵当 ,∴ , ∵, ∴ ,即,∴f (x )为增函数. 在条件中,令y =-x ,则,再令x =y=0,则f (0)=2 f (0),∴f (0)=0,故f(-x)=f (x ),f(x )为奇函数, ∴f (1)=-f (-1)=2,又f (-2)=2 f (-1)=-4, ∴f(x )的值域为[-4,2]。

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

抽象函数的单调性

抽象函数的单调性 抽象函数的含义:没有解析式的函数,在考试中抽象函数始终作为一大难点出现在考生面前。思路:添项法。 类型:一次函数型,幂函数型,指数函数型,对数函数型。 或 例1、() f x对任意,x y R ∈都有:()()() f x y f x f y +=+,当0,()0 x f x >< 时,判断() f x在R上的单调性。 ()()() () ()()上是增函数 在 解: R x f x f x f x x f x x x x x x f x f x f x x f x f x x x f x f x f x x R x x ) ( ,0 ) ( ,0 ) ( ) ( ) ( ) ( , , 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 1 2 1 2 1 2 1 < - ∴ < - > - ∴ > - = - + - = - + - = - < ∈ ? 例2、f(x)对任意实数x与y都有()()()2 f x f y f x y -=--,当x>0时,f(x)>2 (1)求证:f(x)在R上是增函数;(2)若f(1)=5/2,解不等式f(2a-3) < 3 () () 2 5 2 3 2 ) ( )2( )3 2( 3 )2( 2 )1 2( )1( )2( ,1 ,2 2 ) ( ) ( ,0 2 ) ( 2 ) ( ,0 , 2 ) ( ) ( , 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 > > - ∴ < - ∴ = ∴ - - = - = = ∴ > - > - - ∴ > > > - > - - = - > ∈ < ? a a R x f f a f f f f f y x R x f x f x f x x f x f x x x x x x x f x f x f x x R x x 解得 上是增函数 在 又 原不等式可化为 则 )令 ( 上是增函数 在 则 时, 当 ) 解:( 【专练】:1、已知函数f x()对任意x y R ,∈有f x f y f x y ()()() +=++ 2,当x>0时,f x()>2,f()35 =,求不等式f a a () 2223 --<的解集。 2、定义在R上的函数f(x)满足:对任意x,y∈R都有()()() f x y f x f y -=-,且当0,()0 x f x << 时 (1)求证f(x)为奇函数; (2)若f(k·3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

证明函数单调性的方法总结归纳

证明函数单调性的方法总结归纳 1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 搜集整理,仅供参考学习,请按需要编辑修改

证明函数单调性的方法总结

证明函数单调性的方法总结 导读:1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的'单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 【证明函数单调性的方法总结】 1.函数单调性的说课稿 2.高中数学函数的单调性的教学设计 3.导数与函数的单调性的教学反思

函数单调性地判断或证明方法

函数单调性的判断或证明方法. ( 1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、 配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。 例 1. 判断函数在(-1,+∞ )上的单调性,并证明. 解:设- 10, x2+ 1>0. ∴当 a>0 时, f(x 1) - f(x 2)<0 ,即 f(x 1)0 ,即 f(x 1)>f(x ∴函数 y= f(x) 在 ( - 1,+∞ ) 上单调递减. 2),2), 例 2.证明函数在区间和上是增函数;在上为减函数。(增两端,减中间) 证明:设,则 因为,所以, 所以,

所以 所以 设 则, 因为, 所以 所以 所以 , 同理,可得 (2)运算性质法 . ①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数, 增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增 +增=增;减 +减 =减;增 -减=增,减 -增=减) ②若. ③当函数 ④ 函数 . 二者有相 反的单调性。 ⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。( 3)图像法 . 根据函数图像的上升或下降判断函数的单调性。 例 3. 求函数的单调区间。 解:

高中数学教师资格面试《函数的单调性》教案

高中数学教师资格面试《函数的单调性》教案: 函数的单调性 课题:函数的单调性 课时:一课时 课型:新授课 一、教学目标 1.知识与技能: (1)从形与数两方面理解单调性的概念。 (2)绝大多数学生初步学会利用函数图象和单调性定义判断、证明函数单调性的方法。 2.过程与方法: (1)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力。 (2)通过对函数单调性定义的探究,体验数形结合思想方法。 (3)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。 3.情感态度价值观:

通过知识的探究过程养成细心观察、认真分析、严谨论证的良好思维习惯;感受用辩证的观点思考问题。 二、教学重点 函数单调性的概念形成和初步运用。 三、教学难点 函数单调性的概念形成。 四、教学关键 通过定义及数形结合的思想,理解函数的单调性。 五、教学过程 (一)创设情境,导入新课 教师活动:分别作出函数y=2x,y=-2x和y=x2+1的图象,并且观察函数变化规律,描述前两个图象后,明确这两种变化规律分别称为增函数和减函数。然后提出两个问题:问题一:二次函数是增函数还是减函数问题二:能否用自己的理解说说什么是增函数,什么是减函数 学生活动:观察图象,利用初中的函数增减性质进行描述,y=2x的图象自变量x在实数集变化时,y随x增大而增大,y=-2x的图象自变量x在实数集变化时,y随x增大而减小。在此基础上描述y=x2+1在(-∞,0]上y随x增大而减小,在

(0,+∞)上y随x增大而增大。理解单调性是函数的局部性质,在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。 设计意图:数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本环节的设计上,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。通过一次函数认识单调性,再通过二次函数认识单调性是局部性质,进而完善感性认识。 (二)初步探索,形成概念 教师活动:(以y=x2+1在(0,+∞)上单调性为例)让学生理解如何用精确的数学语言(随着、增大、任取)来描述函数的单调性,进而得到增(减)函数的定义。并进一步提出如何判断的问题。 学生活动:通过交流、提出见解,提出质疑,相互补充理解函数定义的解释,讨论表示大小关系时,理解如何取值,明白任取的意义。 设计意图:通过启发式提问,实现学生从“图形语言”到“文字语言”到“符号语言”认识函数的单调性,实现“形”到“数”的转换。 (三)概念深化,延伸扩展 教师活动:提出下面这个问题:能否说f(x)=在它的定义域上是减函数从这个例子能得到什么结论并给出例子进行说明: 进一步提问:函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数,最后再一次回归定义,强调任意性。

《函数的单调性》教材分析

《函数的单调性》教材分析 一、内容结构 1、通过观察几个不同的函数图像,直观感受图像的变化 教材中通过以下三个不同的函数图像,让学生去发现它的变化规律,从而体验函数图像的上升与下降的变化。 2、结合直观图像和列表,归纳函数值的变化规律 教材中以二次函数为例,先从图像直观函数图像的上升与下降的变化,再结合列表归纳函数在某个区间上函数值与自变量的变化规律。 3、由特殊过渡到一般,得出增(减)函数的定义 教材中先由函数在某个区间上函数值与自变量的变化规律定义出该函数在某个区间是增函数还是减函数,再由特殊向一般转变,从而得出一般的增(减)函数的定义。 4、利用增(减)函数的定义,证明函数的单调性 教材中通过证明玻意耳定理,让学生得知如何利用定义证明函数的增减性,从而归纳证明函数单调性的一般证明方法与步骤。 二、教学目标与教学重、难点 依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为: 1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。 2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。 3.能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。

在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“取值、作差与变形、判断、结论”过程学生不易掌握。所以对教学的重点、难点确定如下 教学重点:函数的单调性的判断与证明; 教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。 三、地位与作用 《函数的单调性》选自人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性。这节内容是初中有关内容的深化、延伸和提高。这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 四、教学建议 函数的单调性是描述函数的整体特征之一,因此观察函数的图像时,首先应注意图像的升降变化,还有某些特殊位置的函数值的状态。让学生观察图像获得图像的变化规律时,应注意使用数形结合的思想。此外教学时,要特别重视从几个实例的共同特征过渡到一般性质的概括过程,引导学生用数学语言表示出来,生成数学概念。具体的,研究函数单调性应遵循“三步曲”: 第一步:观察图像,直观感知图像的变化 第二步:结合图表,用自然语言描述函数图像的变化规律 第三步:用数学语言定义函数的单调性

抽象函数单调性及奇偶性练习及答案

1、已知的定义域为R ,且对任意实数x ,y 满足,求 证:是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, <0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

(1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; 6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >.

函数的单调性证明

函数的单调性证明 一.解答题(共40小题) 1.证明:函数f(x)=在(﹣∞,0)上是减函数. 2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.3.证明f(x)=在定义域为[0,+∞)是增函数. 4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.

5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数. 6.证明:函数f(x)=x2+3在[0,+∞)上的单调性. 7.证明:函数y=在(﹣1,+∞)上是单调增函数. 8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.9.用函数单调性的定义证明函数y=在区间(0,+∞)上为减函数.

10.已知函数f(x)=x+. (Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数; (Ⅱ)若>0对任意x∈[4,5]恒成立,数a的取值围. 11.证明:函数f(x)=在x∈(1,+∞)单调递减. 12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.13.判断并证明f(x)=在(﹣1,+∞)上的单调性. 14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.

15.求函数f(x)=的单调增区间. 16.求证:函数f(x)=﹣﹣1在区间(﹣∞,0)上是单调增函数. 17.求函数的定义域. 18.求函数的定义域. 19.根据下列条件分别求出函数f(x)的解析式 (1)f(x+)=x2+(2)f(x)+2f()=3x.

20.若3f(x)+2f(﹣x)=2x+2,求f(x). 21.求下列函数的解析式 (1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x) (4)已知3f(x)﹣f()=x2,求f(x)

抽象函数的单调性专题

抽象函数的单调性专题突破 或例1、 ()f x 对任意,x y R ∈都有:()()()f x y f x f y +=+,当0,()0x f x ><时,又知(1)2f =-,求()f x 在 []3,3x ∈-上的值域。 例2、()f x 对任意实数x 与y 都有 ()()()2f x f y f x y -=--,当0x >时,()2f x > (1)求证:()f x 在R 上是增函数; (2)若5 (1)2 f = ,解不等式(23)3f a -< 【专练】:1、已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=, 求不等式f a a ()2 223--<的解集。 2、定义在R 上的函数()f x 满足:对任意x ,y ∈R 都有 ()()()f x y f x f y -=-,且当0,()0x f x <<时 (1)求证()f x 为奇函数; (2)若f(k ·3x )+f(3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

或例1、()f x 是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1. (1) (1)f 和1()9 f 的值;(2)证明f(x)在x>0上是减函数;(3)解不等式f(x) + f(2-x) < 2。 例2、定义在(0,)+∞上函数()y f x =对任意的正数,a b 均有:()()()a f f a f b b =-,且当1x <时,()0f x >,(I )求(1)f 的值;(II )判断()f x 的单调性, 【专练】:1、定义在(0,)+∞上的函数f(x)对任意的正实数,x y 有)()()(y f x f y x f -=且当01x <<时, ()0f x <. 求:(1))1(f 的值. (2)若1)6(=f ,解不等式2)1()3(<-+x f x f ;

抽象函数的单调性专题突破(20191224050241)

精品资料欢迎下载 抽象函数的单调性专题突破 一类:一次函数型函数满足: () () ()f a b f a f b k 或 () ()()f a b f a f b k 例1、 ()f x 对任意,x y R 都有:() () ()f x y f x f y ,当0,() 0x f x 时,又知(1) 2f ,求()f x 在 3,3x 上的值域。 例2、f(x)对任意实数x 与y 都有()()()2f x f y f x y ,当 x>0时,f(x)>2 (1)求证:f(x) 在R 上是增函数; (2)若f(1)=5/2,解不等式f(2a-3) < 3 【专练】:1、已知函数f x ()对任意x y R ,有f x f y f x y ()()()2,当x 0时,f x () 2,f ()35, 求不等式f a a () 2 223的解集。 2、定义在R 上的函数f(x)满足:对任意 x ,y ∈R 都有 ()()()f x y f x f y ,且当0,()0 x f x 时(1)求证f(x)为奇函数; (2)若f(k ·3x )+f(3x -9 x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 二类:对数函数型函数满足: ()()() f a b f a f b 或 () ()() a f f a f b b 例1、f(x)是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1. (1)求f(1)和f(1/9)的值;(2)证明f(x)在x>0上是减函数;(3)解不等式f(x) + f(2-x) < 2 。 例2、定义在(0,)上函数()y f x 对任意的正数,a b 均有:() () ()a f f a f b b ,且当1x 时,()0f x , (I )求(1)f 的值;(II )判断()f x 的单调性, 【专练】:1、定义在(0, )上的函数 f(x)对任意的正实数 ,x y 有)() ()( y f x f y x f 且当0 1x 时, ()0f x . 求:(1) )1(f 的值. (2)若1) 6(f ,解不等式2)1 () 3(x f x f ; 2、函数()f x 的定义域是 0x 的一切实数,对定义域内的任意 12,x x 都有1212()()()f x x f x f x ,且当1 x 时() 0,(2)1f x f 又,(1)求证:()f x 是偶函数;(2)()f x 在(0,)上是增函数( 3)解不等式

1.3.1函数的单调性例题

1.3.1函数的单调性 题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; (2)322++-=x x y ; (3)2 )2(1-++=x x y ; (4)969622++++-=x x x x y 相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性 用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论 ①取值,即_____________________________; ②作差变形,作差____________,变形手段有__________、_____、_____、_______等; ③定号,即____________________________________________________________; ④下结论,即______________________________________________________。 例2.用定义法证明下列函数的单调性 (1)证明:1)(3 +-=x x f 在()+∞∞-,上是减函数.

▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么 [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?>--? >--在[]b a ,上是增函数; [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?<--? <--在[]b a ,上是减函数. (2)证明:x x x f -+=1)(2在其定义域内是减函数; (3)证明:21 )(x x f = 在()0,∞-上是增函数; 法一: 作差 法二:作商

相关文档
最新文档